The single drawing (
The device 1 comprises a coolant bath 2 in whose upper area there are feed openings 4 for the pressure tanks 5 that are to be filled. The coolant bath 2 is flow-connected via a feed line 7 to a tank 8 for liquefied nitrogen. In the operating state, the coolant bath 2 is filled with liquefied nitrogen in such a way that, after the pressure tank 5 is put into it, liquefied nitrogen flows around at least most of the pressure tank 5. The outer walls of the coolant bath are provided with thermal insulation 6 which prevents a rapid evaporation of the liquefied nitrogen 3 from the coolant bath 2. A gas discharge line 9 serves to carry evaporated nitrogen away.
At a distance from the feed openings 4 of the coolant bath 2, there is a connection fitting 10 that is in flow connection via a filling line 11 with a hydrogen reservoir 12. This hydrogen reservoir 12 can be, for example, a pressure tank in which the hydrogen is stored at room temperature under high pressures, for instance, 200 bar, or else a thermally insulated intermediate pressure tank that is filled with liquefied hydrogen. The connection fitting 10 is provided with one or more filling hoses 14 that can be detachably connected to the pressure tanks 5. The number of filling hoses 14 depends on the maximum number of pressure tanks 5 that can be attached to the connection fitting 10. Thus, the embodiment has a total of five filling hoses 14.
When the device 1 is properly used, the pressure tanks 5 that are to be filled are placed into the feed openings 4 of the coolant bath 2 that is filled with liquefied nitrogen 3 and affixed there in a detachable manner not shown here. When the pressure tank 5 is taken out of the coolant bath 2, part of the liquefied nitrogen 3 evaporates and this is carried away via the gas discharge line 9. It is replenished with liquefied nitrogen that is taken from the tank 8. In the operating state of the coolant bath 2, liquefied nitrogen 3 flows essentially all around the pressure tanks 5.
Subsequently, the pressure tanks 5 are connected to the filling hoses 14 and valves 17 on the pressure tanks 5 are opened. The hydrogen intended for filling into the pressure tanks 5 is taken from the hydrogen reservoir 12. It can be pre-cooled in a heat exchanger 16. The heat exchanger 16 here is either operated with liquefied nitrogen that can be taken directly from the tank 8 via a line 19, or else with cold gaseous nitrogen stemming from the evaporation in the coolant bath 2, which is supplied via a flow connection 18 with the gas discharge line 9. The latter arrangement better utilizes the cold energy of the nitrogen, thereby increasing the cost-effectiveness of the process.
It is also possible to obtain the hydrogen in the cold gaseous or liquid state from an intermediate pressure tank. In this case, the installation of a heat exchanger 17 can be dispensed with.
Preferably, the hydrogen in the hydrogen reservoir 12 is under pressure and/or is brought to a certain filling pressure by suitable means, for example, compressors, before reaching the connection fitting 10. It is also conceivable to use a pressure tank 5 that was already filled at high pressure in the device 1 as the hydrogen reservoir 12 for the filling of additional, preferably smaller pressure tanks.
The hydrogen flows through the connection fitting 10 into the filling hoses 14 and from there into the pressure tank 5. As a result of the cooling in the heat exchanger 17 or through contact with the pressure tanks 5 that have been brought to the nitrogen temperature, the hydrogen compresses a great deal. The filling procedure can be terminated at any time, before a pressure equilibrium is reached between the pressure tank 5 and the hydrogen reservoir 12. After the filling procedure has been completed, the valves 16 are closed and the pressure tank is taken out of the coolant bath 2. As a result of the subsequent warming up of the pressure tank 5 to the outside temperature, the pressure in the tanks rises drastically to an operating pressure of, for example, 400 to 1200 bar, something which can only be achieved with compression technology at a disproportionately high cost.
The process makes it possible to fill the pressure tanks extremely quickly. Effects encountered in the prior art processes that reduce the compression of the gas when the filled cold gas warms up as a result of contact with the warm tank are avoided. The device is especially well-suited for filling vehicle tanks. Such tanks, which can have a capacity of 100 to 500 liters in a mid-sized car, can be divided up into modules that can be separated from each other, each having a capacity of 10 to 50 liters. In order to fill them, the modules are each immersed into a bath with liquefied nitrogen and filled with a gaseous fuel, for example, hydrogen or natural gas. Another application possibility for the device according to the invention is the filling of compact pressure tanks or cartridges for fuel cell systems that can be used as power sources, for example, for cellular telephones or portable computers.
Hydrogen from a 200 bar cylinder bank as the hydrogen reservoir 12 is fed into a pressure tank 5 that can hold 10 liters. During the filling procedure, the pressure tank 5 is immersed into liquefied nitrogen at a temperature of about 77K (−196° C. [−320.8° F.]). A pre-cooling of the fed-in hydrogen is not fundamentally necessary here but it can serve to improve the cost-effectiveness. The hydrogen from the reservoir flows through the open valve 16 into the receiving pressure tank 5 and cools off there. After about 2 minutes, a pressure equilibrium is established between the bundle of cylinders and the pressure tank; the maximum possible hydrogen density in the pressure tank has been reached. The filling procedure is terminated by closing the valve 16. Subsequently, the pressure tank is taken out of the coolant bath. During the subsequent warming of the pressure tank to the outside temperature, a pressure of about 1000 bar is reached in the pressure tank.
Number | Date | Country | Kind |
---|---|---|---|
101 07 895.1 | Feb 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/01710 | 2/18/2002 | WO | 00 | 6/6/2007 |