Method and Device for Filling Pressure Containers with Low-Boiling Permanent Gases or Gas Mixtures

Abstract
On cold filling of pressure containers the filling gas is cooled before introduction into the pressure container to be filled. On completion of the filling process the pressure container is sealed in a pressure-tight manner. As the gas warms up the pressure in the pressure container rises rapidly. According to the invention, the pressure container is cooled before the introduction of the filling gas. The filling gas cools rapidly by means of heat transfer to the pressure container, whereby the filling capacity of the pressure container is considerably increased. Said method is particularly suitable for the filling of small tanks, in particular, for gas-driven vehicles and fuel-cell systems.
Description

The single drawing (FIG. 1) schematically shows a device according to the, invention for filling pressure tanks with hydrogen.





The device 1 comprises a coolant bath 2 in whose upper area there are feed openings 4 for the pressure tanks 5 that are to be filled. The coolant bath 2 is flow-connected via a feed line 7 to a tank 8 for liquefied nitrogen. In the operating state, the coolant bath 2 is filled with liquefied nitrogen in such a way that, after the pressure tank 5 is put into it, liquefied nitrogen flows around at least most of the pressure tank 5. The outer walls of the coolant bath are provided with thermal insulation 6 which prevents a rapid evaporation of the liquefied nitrogen 3 from the coolant bath 2. A gas discharge line 9 serves to carry evaporated nitrogen away.


At a distance from the feed openings 4 of the coolant bath 2, there is a connection fitting 10 that is in flow connection via a filling line 11 with a hydrogen reservoir 12. This hydrogen reservoir 12 can be, for example, a pressure tank in which the hydrogen is stored at room temperature under high pressures, for instance, 200 bar, or else a thermally insulated intermediate pressure tank that is filled with liquefied hydrogen. The connection fitting 10 is provided with one or more filling hoses 14 that can be detachably connected to the pressure tanks 5. The number of filling hoses 14 depends on the maximum number of pressure tanks 5 that can be attached to the connection fitting 10. Thus, the embodiment has a total of five filling hoses 14.


When the device 1 is properly used, the pressure tanks 5 that are to be filled are placed into the feed openings 4 of the coolant bath 2 that is filled with liquefied nitrogen 3 and affixed there in a detachable manner not shown here. When the pressure tank 5 is taken out of the coolant bath 2, part of the liquefied nitrogen 3 evaporates and this is carried away via the gas discharge line 9. It is replenished with liquefied nitrogen that is taken from the tank 8. In the operating state of the coolant bath 2, liquefied nitrogen 3 flows essentially all around the pressure tanks 5.


Subsequently, the pressure tanks 5 are connected to the filling hoses 14 and valves 17 on the pressure tanks 5 are opened. The hydrogen intended for filling into the pressure tanks 5 is taken from the hydrogen reservoir 12. It can be pre-cooled in a heat exchanger 16. The heat exchanger 16 here is either operated with liquefied nitrogen that can be taken directly from the tank 8 via a line 19, or else with cold gaseous nitrogen stemming from the evaporation in the coolant bath 2, which is supplied via a flow connection 18 with the gas discharge line 9. The latter arrangement better utilizes the cold energy of the nitrogen, thereby increasing the cost-effectiveness of the process.


It is also possible to obtain the hydrogen in the cold gaseous or liquid state from an intermediate pressure tank. In this case, the installation of a heat exchanger 17 can be dispensed with.


Preferably, the hydrogen in the hydrogen reservoir 12 is under pressure and/or is brought to a certain filling pressure by suitable means, for example, compressors, before reaching the connection fitting 10. It is also conceivable to use a pressure tank 5 that was already filled at high pressure in the device 1 as the hydrogen reservoir 12 for the filling of additional, preferably smaller pressure tanks.


The hydrogen flows through the connection fitting 10 into the filling hoses 14 and from there into the pressure tank 5. As a result of the cooling in the heat exchanger 17 or through contact with the pressure tanks 5 that have been brought to the nitrogen temperature, the hydrogen compresses a great deal. The filling procedure can be terminated at any time, before a pressure equilibrium is reached between the pressure tank 5 and the hydrogen reservoir 12. After the filling procedure has been completed, the valves 16 are closed and the pressure tank is taken out of the coolant bath 2. As a result of the subsequent warming up of the pressure tank 5 to the outside temperature, the pressure in the tanks rises drastically to an operating pressure of, for example, 400 to 1200 bar, something which can only be achieved with compression technology at a disproportionately high cost.


The process makes it possible to fill the pressure tanks extremely quickly. Effects encountered in the prior art processes that reduce the compression of the gas when the filled cold gas warms up as a result of contact with the warm tank are avoided. The device is especially well-suited for filling vehicle tanks. Such tanks, which can have a capacity of 100 to 500 liters in a mid-sized car, can be divided up into modules that can be separated from each other, each having a capacity of 10 to 50 liters. In order to fill them, the modules are each immersed into a bath with liquefied nitrogen and filled with a gaseous fuel, for example, hydrogen or natural gas. Another application possibility for the device according to the invention is the filling of compact pressure tanks or cartridges for fuel cell systems that can be used as power sources, for example, for cellular telephones or portable computers.


EXAMPLE

Hydrogen from a 200 bar cylinder bank as the hydrogen reservoir 12 is fed into a pressure tank 5 that can hold 10 liters. During the filling procedure, the pressure tank 5 is immersed into liquefied nitrogen at a temperature of about 77K (−196° C. [−320.8° F.]). A pre-cooling of the fed-in hydrogen is not fundamentally necessary here but it can serve to improve the cost-effectiveness. The hydrogen from the reservoir flows through the open valve 16 into the receiving pressure tank 5 and cools off there. After about 2 minutes, a pressure equilibrium is established between the bundle of cylinders and the pressure tank; the maximum possible hydrogen density in the pressure tank has been reached. The filling procedure is terminated by closing the valve 16. Subsequently, the pressure tank is taken out of the coolant bath. During the subsequent warming of the pressure tank to the outside temperature, a pressure of about 1000 bar is reached in the pressure tank.


LIST OF REFERENCE NUMERALS




  • 1 hydrogen storage system


  • 2 coolant bath


  • 3 liquefied nitrogen


  • 4 feed openings


  • 5 pressure tank


  • 6 thermal insulation


  • 7 feed line


  • 8 tank


  • 9 gas discharge line


  • 10 connection fitting


  • 11 filling line


  • 12 hydrogen reservoir


  • 13


  • 14 filling hose


  • 15


  • 16 valves


  • 17 heat exchanger


  • 18 flow connection


  • 19 line


Claims
  • 1. A process for filling pressure tanks (5) with a low-boiling permanent gas or gas mixture in which a gas or gas mixture as the filling gas is fed into a pressure tank (5), whereby the pressure tank (5) is cooled before or during the filling with gas.
  • 2. The process according to claim 1, characterized in that the filling gas is cooled in a pre-cooler (17) before being fed into the pressure tank (5).
  • 3. The process according to one of the preceding claims, characterized in that the filling gas is fed into the pressure tank (5) at a specified filling pressure, preferably at more than 100 bar.
  • 4. The process according to one of the preceding claims, characterized in that the pressure tank (5) is cooled in a coolant bath (2) containing liquefied nitrogen (3) before the filling gas is fed in and thus it is brought to a temperature that at least approximates the temperature of the liquefied nitrogen.
  • 5. The process according to one of the preceding claims, characterized in that, through the heat contact with the pressure tank (5) and/or in the pre-cooler (17), the filling gas is cooled to a temperature that lies above its boiling point.
  • 6. A device for carrying out the process according to one of claims 1 to 6, having a coolant bath (2) to detachably receive at least one pressure tank (5), and having a filling line (11) that is in flow connection with a filling gas reservoir (12) and that is equipped with a connection (10) for detachably connecting it to the pressure tank or tanks (5).
  • 7. The device according to claim 6, characterized in that a hydrogen intermediate pressure tank is provided as the filling gas reservoir (12).
  • 8. The device according to claim 6 or 7, characterized in that the filling line (11), between the filling gas reservoir (12) and the connection (10) for the pressure tank (5), passes through a heat exchanger (18) that is operated with a coolant, for example, liquefied or cold gaseous nitrogen.
  • 9. The use or the process according to one of claims 1 to 5 or of the device according to one of claims 6 to 8 for filling pressure tanks (5) for fuel cells and/or for vehicles powered by gaseous fuel.
Priority Claims (1)
Number Date Country Kind
101 07 895.1 Feb 2001 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP02/01710 2/18/2002 WO 00 6/6/2007