The present invention relates to a method and a device for producing edge thickenings on a web for bag-like package blanks. These package blanks are formed to be transported along a web for the filling of the bag-like package blanks joined together one after the other. After filling, the package blanks are sealed and separated into individual sealed bags.
The background of the invention is seen in the patent specification SE 501544 (U.S. Pat. No. 5,687,549), which discloses a method and a device for forming and filling packages that are formed of package blanks manufactured by folding a flexible strip of plastic material into the package blank that consists of bag-like parts joined together one after the other. Said parts are furthermore arranged to be carried and transported along a web by support arms provided with channels and channel gaps in which the package blank slides. The bag-like parts slide along the support arms for opening, filling, sealing and separation into individual packages filled with contents. The package blank is formed with upper edge parts provided with thickenings, which are intended to slide in each one of the channels in the support arms, which are situated parallel in relation to each other. At a filling area, the support arms curve off from each other and form a greater spacing between them, the joined together bag-like parts being opened and filling can take place. After the bag-like parts having passed said filling area, the distance decreases between the support arms again, an after-treatment in the form of sealing, separation and detachment from the support arms commencing.
The patent specification SE 525741 (WO 2005/023693) discloses a method and a device for producing a continuous edge thickening along the running direction of a stretched and tensioned web of a positively and continuously transported thermoplastic film. The thickening according to this patent specification is provided by edge parts of the plastic film being folded and welded into a final state for the use of the plastic film as packages, e.g., in a packing machine according to prior art, e.g. WO 02/083506.
These disclosed methods and devices for providing edge thickenings on a package blank make great demands on the material and its thickness as well as the manufacturing equipment and not the least on the skill of the operator. These demands represent disadvantages each of which is difficult to solve separately, and imply furthermore an expensive manufacture of the package blanks.
The object of the present invention is to provide an improved method and an improved device for producing continuous edge thickenings of package blanks along the running direction thereof.
The object is furthermore to provide a method and a device to obtain edge thickenings having easily adaptable properties. In doing so, the invention can provide on one hand solid and on the other hand stiffer edge thickenings, which means that the package blanks slide with lower friction in the support arms and also that the edge thickenings do not jam in the channel gaps of the support arms.
By the present invention, as the same is set forth in the independent claim, the above-mentioned objects are met, wherein the mentioned disadvantages have been eliminated. Suitable embodiments of the invention are defined in the dependent claims.
The invention is based on edge thickenings on the package blanks being applied by jet moulding, so-called extrusion, by granulate being heated and fed through an extruder nozzle for the formation of a homogeneous, essentially cylindrical bead on both side edges of a plane sheet. By such an extruder method, it is possible to easily set the diameter of the edge thickenings depending on which product weight that is to be packed. It is also possible to easily mix in different materials into the edge thickenings depending on the desired properties of the edge thickening, e.g. small friction, hardness, strength etc., without affecting the other material in the sheet subsequently forming the bags.
By this extruder method, it is also possible to use recycled material. The method also increases the quality and decreases the rejections of the package blanks.
More specifically, the invention concerns a method for manufacturing a continuous bag-like package blank that is produced by a plane plastic sheet being unwound from a storage reel of the sheet, the sheet being conveyed through an edge thickening equipment and further to a folding device, to a welding device and to a slotting tool in order to obtain a continuous bag-like package blank, which, e.g., may be introduced into channels intended therefore in support arms in a packing machine. The edge thickening equipment comprises a process bed over which the sheet is conveyed. It furthermore comprises an extruder device having a first extruder nozzle placed on the opposite side of the sheet in relation to the process bed and aligned to continuously extrude a material bead that is permanently attached to a first edge area of the sheet. The extruder device also comprises a second extruder nozzle placed on the opposite side of the sheet in relation to the process bed and aligned to continuously extrude a material bead that is permanently attached to an edge area of the sheet opposite the first edge area.
One embodiment of the method involves that the extruder nozzles individually can be controllably displaced in relation to each other, on one hand for an adaptation to different widths of the sheet, and on the other hand for an exact alignment in relation to the respective edges of the sheet, as well as for an alignment of the location of the two nozzles in relation to the storage reel and thereby the sheet in the edge thickening equipment. The advantage of such controllable extruder nozzles is that the position of the extruded material beads can be accurately controlled in relation to the edges of the sheet, which gives an optimum attachment of the bead to the sheet by the fact that the sheet part enclosing the bead can be determined.
One embodiment of the method involves that the angle of at least one extruder nozzle, and also of both, in relation to the process bed can be regulated. This provides additional advantages of how the material bead is applied to the edge area of the sheet. For instance, a changed feed rate of the sheet may require an adjustment of said angle.
One embodiment of the method involves that the distance of at least one extruder nozzle to the process bed can be regulated. Also this provides additional advantages in view of the possibility of controlling how the material bead is applied to the edge area of the sheet.
One embodiment of the method involves that the opening diameter of at least one extruder nozzle can be set. Also this provides additional advantages in view of the desired size of the material bead. The setting can be formed by an automatic regulation of the opening of the nozzle of the type variable aperture or by a manual replacement of the opening of the nozzle, which requires a shutdown.
One embodiment of the method involves that auxiliary material for the material bead is conveyed into the extruder device, either together with the ordinary granulate, in the screw part of the extruder or in the nozzle part, to be mixed and extruded with the material bead.
One embodiment of the method involves that pressure and temperature are adapted in the extruder nozzles so that the abutment of the material bead against the edge area of the sheet provides a capillarity, thermal stress or adhesive force that attaches the edge of the sheet to the material bead and there forms a permanent joint between the sheet and the bead. In doing so, by the heat from the thickening, the extrusion compound, the sheet and the thickening are welded together into a strong joint.
The invention also concerns a device for manufacturing a continuous bag-like package blank. This device comprises an edge thickening equipment, which is mounted on a stand that is provided with an extruder. This is arranged to feed extrusion compound through two paired extruder nozzles placed on an essentially horizontal feed beam in the stand. Each one of the extruder nozzles is directed to a process bed in the stand for extrusion against a sheet running between the process bed and each extruder nozzle, which sheet preferably is manufactured from a thermoplastic, e.g. polyethylene, polypropylene, polystyrene or polyvinyl chloride. The sheet is arranged to pass a folding device placed adjacent to the edge thickening equipment. The sheet is furthermore arranged to be fed to a welding device and to a slotting tool for forming a continuous bag-like package blank, which, e.g., may be introduced into channels intended therefore in support arms in a packing machine or be reeled for storage and later use. The continuous bag-like package blank may also be folded to and fro in a box or be reeled into a transport reel for storage.
One embodiment of the device involves that the process bed is provided with at least one cooling element placed right opposite each extruder nozzle so that a cooling of the extrusion compound can be effected almost directly after, or at least speed up, the extrusion for the formation of the material bead that attaches to the edge portions of the sheet and forms the edge thickening. This plays a part in providing a controlled material thickening of the sheet, which is important for the final product, i.e., the bag-like package blanks, to run without problems in the support arms of a packing machine.
One embodiment of the device involves that each cooling element is provided with a plane surface, which surfaces are orientated in the same plane against which surfaces the sheet can slide. This embodiment means that the cooling elements themselves make up the plane on which the sheet slides during the extrusion process, which implies that the process can be controlled better. Cooling medium, e.g. in the form of cooling water, cooling air or another cooling medium, is used in the cooling elements to provide a rapid cooling after extrusion. This is important to achieve a good final result of the material bead.
One embodiment of the device involves that the process bed is provided with a support placed between said cooling elements. This embodiment means that the process bed can be stiffened, which contributes to an optimum final result of the material bead and thereby the edge thickening.
One embodiment of the device involves that the support is provided with a plane surface having an antistatic border, which is orientated in said plane. This is an additional design of the process bed that improves the supporting surface of the sheet during the process and that contributes to keeping the sheet and its edge portions plane during the extrusion until the extrusion compound reaches the sheet.
One embodiment of the device involves that the feed beam is provided with a lateral adjustment device, which is arranged to laterally displace the two extruder nozzles simultaneously and equally much along the feed beam. This lateral adjustment makes it easier to obtain the correct position of the extruder nozzles in relation to the sheet and its edge portions.
One embodiment of the device involves that the lateral adjustment device is provided with spacer members arranged to adjust the distance between the two extruder nozzles. These spacer members contribute to being able to adapt the edge thickening equipment to different widths of sheets and thereby to different sizes of the subsequently manufactured packages.
One embodiment of the device involves that the process bed is provided with at least one slit plate placed in the longitudinal direction of the process bed and remotely from the extruder nozzle, which slit plate forms a slit directed to the process bed that corresponds to the maximal edge thickening formed by the extrusion compound. This slit plate limits the thickness of the edge thickening so that the same can be introduced into channels in the support arms, which channels have a limited width. The slit plates may also be formed to mould the edge thickenings to correspond to an optimum cross-section for said channels. Such a moulding is made while the extrusion compound is still mouldable and has not yet solidified.
The device is formed to handle all weldable plastic films and laminates and also foils of plastic-coated aluminium and sheets of plastic-coated paper etc.
Now, the invention will be described in more detail, reference being made in connection with the accompanying drawing figures. The drawing figures show only explanatory sketches intended to facilitate the understanding of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1050397-7 | Apr 2010 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2011/050487 | 4/20/2011 | WO | 00 | 10/19/2012 |