The present disclosure relates to a method for positioning portion packets of a product for oral use into a container. The disclosure further relates to a device for positioning portion packets of a product for oral use into a container. The disclosure also relates to a container comprising a plurality of portion packets of a product for oral use.
Typically, a portion packet of a product for oral use comprises a filling material enclosed by a packaging material. An example of such a portion packet is a portion-packed pouched oral smokeless tobacco product. Pouched smokeless tobacco products may be produced by measuring portions of the smokeless tobacco composition and inserting the portions into a nonwoven tube.
Patent document U.S. Pat. No. 4,703,765 discloses a device for packaging precise amounts of finely divided tobacco products, such as snuff tobacco or the like, in a tubular packaging material into which snuff portions are injected via a fill tube. Downstream from the tube, welding means are positioned for transverse sealing of the packaging material and also cutting means for severing the packaging material in the area of the transverse seal to thus form discrete or individual portion packets.
As an alternative, finely divided tobacco products, such as snuff tobacco or the like, may be placed on a planar web of packaging material as a portion before the planar web is formed to a tubular-shape, e.g. according to a technique called “NYPS” described in U.S. Pat. No. 6,135,120. Thereafter the packaging material is wrapped around the already placed snuff portion to form the tubular-shaped packaging material, thereby enclosing the snuff portion. The arranged packaging material is then sealed by a longitudinal seal. A subsequent unit forms individual portion packets from the discharged portions and the packaging material.
In order to store and transport the portion packets, it is desirable to place them in a container. Traditionally, a preselected number of portion packets have simply been allowed to tumble down into the container. The portion packets then end up in an arbitrary three-dimensional arrangement, which will differ from one container to the next. There is then a possibility that a portion packet may assume such a disadvantageous position that it risks being squeezed between the container and a lid, which is applied to the container. In that case, it may be difficult to open the lid and the squeezed portion packet may break.
It has been found that portion packets positioned in a predefined pattern in the container provide a more attractive appearance to the user. Further, the portion packets may be packed into the container quicker and/or more geometrically efficient, i.e. space-saving. However, the portion packets may be relatively difficult to handle at high speed in automated processes, since they may be soft and somewhat sticky. The production rate in portion packing processes is very high, typically several hundreds of portion packets per minute.
Patent document EP 2457834 A1 discloses a device for placing portion packets of a product for oral use in a container. The device comprises a portion packet positioning unit configured to position the portion packets in relation to each other in the container, wherein the positioning unit includes a set of portion packet receiving compartments arranged in a certain pattern, each of the compartments having an entrance end allowing a portion packet to enter the compartment and, at an opposite side of the compartment, a retaining end preventing a portion packet from exiting the compartment in that direction. The positioning unit further comprises a discharging member configured to discharge portion packets from the compartments to the container. The disclosure of EP 2457834 A1 also relates to a method for placing portion packets of a product for oral use into a container using such a device. According to EP 2457834 A1, the three-dimensional pattern in which the portion packets are positioned in the compartments is substantially retained in the container.
Patent document DE 19 32 852 A1 discloses a device for placing bags, e.g. filled by a liquid, in compartments of a container, e.g. a cardboard box. The device comprises a plurality of canals located beside and/or behind each other, which are closable at their lower ends by means of a flap and below which a lifting device for the containers is located.
The object of the present disclosure is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
The object above may be achieved by the subject-matter of claim 1. Embodiments are set forth in the appended dependent claims, in the following description and in the drawings.
Thus, there is provided a method for positioning portion packets of a product for oral use into a container by means of a compartment unit. The container comprises a bottom wall and a side wall together defining a storage volume. The container has a height direction.
The compartment unit comprises a plurality of compartments, each with a respective discharge opening.
The method comprises:
As mentioned above, a portion packet of a product for oral use comprises a filling material enclosed by a packaging material. The packaging material may be made of a nonwoven material, e.g. comprising viscose, optionally including an acrylic polymer that acts as binder in the nonwoven material and provides for thermo-welding of pouches during manufacturing thereof. Nonwovens are fabrics that are neither woven nor knitted.
Methods for the manufacturing of nonwoven, as well as suitable polymer materials for the nonwoven, are commonly known in the art.
The filling material may comprise a pulverulent material, such as a smokeless tobacco or tobacco-free material, which may be nicotine-containing or nicotine free, which may also be referred to as filling composition or snuff composition. As an alternative, the filling material may be tea or another food product.
By the term “pulverulent material” as used herein is meant any material in the form of particles, granules, grinds, plant fragments, short fibres, flakes etc.
The portion packet is commonly provided with a transverse seal at either end, such that the sealed product has a pillow-like shape, e.g. having a general rectangular shape when seen from above. Square is herein seen as a special case of rectangular. The portion packet then has a length I and a width w. The transverse seal is substantially perpendicular to a direction of travel of the tubular-shaped packaging material. The pouched product may further, as an option, be provided with a longitudinal seal, which is substantially parallel to the direction of travel of the tubular-shaped packaging material. Commonly, the tubular-shaped packaging material is first longitudinally sealed to form a circumferentially closed tubular shape and then transversely sealed. The pillow-like shape comprises two parallel short edges and two parallel long edges, which are perpendicular to the short edges. A respective transverse seam may be arranged at the short edges. The longitudinal seam is typically not located at the long edges. Instead it may, for example, be located substantially halfway between the long edges.
By the term “tobacco” as used herein is meant any part, e.g., leaves, stems, and stalks, of any member of the genus Nicotiana. The tobacco may be whole, shredded, threshed, cut, ground, cured, aged, fermented, or treated otherwise, e.g., granulated or encapsulated.
The term “tobacco material” is used herein for tobacco leaves or parts of leaves, such as lamina and stem. The leaves and parts of leaves may be finely divided or disintegrated, such as ground, cut, shredded or threshed, and the parts of leaves may be blended in defined proportions in the tobacco material.
“Oral” and “oral use” is in all contexts used herein as a description for use in the oral cavity of a human, such as buccal placement.
Portion packets of pouched oral smokeless tobacco products are normally sized and configured to fit comfortably and discreetly in a user's mouth between the upper or lower gum and the lip. In general, the portion packets have a generally rectangular shape.
Some typical shapes, length×width, of commercially available pouched oral smokeless tobacco products are, for instance, 35 mm×20 mm, 34/35 mm×14 mm, 33/34 mm×18 mm, and 27/28 mm×14 mm. Each pouched oral snuff product may have a maximum length within the range of from 25 mm to 35 mm along the longitudinal direction of the product and a maximum width within the range of from 12 mm to 20 mm along the transverse direction of the product. The thickness, i.e. height, of the portion packet is normally within the range of from 2 mm to 8 mm. The total weight of commercially available portion packets of oral smokeless tobacco products are typically within the range from about 0.3 g to about 3.5 g, such as from about 0.5 g to 1.7 g per portion packet.
The first distance d1, mentioned in step a of the method, is preferably less than an extension of the portion packets in the height direction of the container. Assuming the portion packets have a pillow-like shape, the portion packets may abut on one of their short edges on the bottom wall of the container. In that case, the extension of the portion packet equals the length l of the portion packet and it is preferred that 0≤d1<l. If instead abutting on a long edge, the extension equals the width w of the portion packet and it would be preferred that 0≤5 d1<w. Thereby, the portion packets will at least partly be retained in the compartments. Preferably, the first distance d1 is very small, i.e. close to zero, but yet large enough to allow the compartment unit to rotate in relation to the container, which may be used for sequentially introducing the portion packets in the compartments.
In step b, i is an integer going from 1 to n, i.e. step b is repeated n times, n >2. The number n is the number of compartments to be loaded, i.e. filled by at least one portion packet, and is typically in the range from 5 to 30, preferably from 10 to 25. If there is to be a single portion packet in each compartment, the number n of portion packets intended to be positioned in the container will also equal n. However, the number of portion packets in the container may also be higher than n, if placing more than a single portion packet in the same compartment, as is further explained below.
The step of introducing a portion packet, see step b, is normally repeated for each compartment of the compartment unit. If the compartment unit has a cross-section being a full circle, a semi-circle or any other part of a circle, it is suitable to rotate the compartment unit into a suitable position for introducing a portion packet into the next compartment. If instead the compartment unit has a rectangular cross-section, it is suitable to linearly translate the compartment unit into a suitable position for introducing a portion packet into the next compartment. Square is herein seen as a special case of rectangular. If rectangular, the portion packets may be arranged in one, two, three or more parallel lines.
It would also be feasible to fill two, three, etc. . . . , or even all compartments at the same time. Further, it could be feasible to load the compartments first and then position the compartment unit in relation to the container. In that case, it may be desirable to temporarily block the discharge openings, such that the portion packets do not fall out of the compartment unit before it has been positioned in relation to the container.
Each compartment may be adapted to receive a single portion packet. It would also be feasible to have two, three or more portion packets in the same compartment. In that case, one portion packets may be located inside the other in the same compartment, such that the edge of one portion packet faces the edge of the other. Alternatively the portion packets may be located next to each other with their largest sides facing each other. As yet an alternative, one portion packets may be located on top of the other in the same compartment. These variants may also be combined. A compartment unit may comprise compartments of different types, e.g. a mixture of compartments intended for a single portion packet and compartments intended for two portion packets.
Step c comprises a controlled reconfiguration of the portion packets. In step c, one of the compartment unit and the container may be moved and the other may be held still. Preferably, the compartment unit is displaced and the container is held still. It is also possible that both the compartment unit and the container are moved.
Step c may be performed by:
The overlap helps the portion packets to retain their relative positions, resulting in a stable distribution of portion packets within the container, which is obtained after the portion packets have been discharged into the container. This three-dimensional pattern may be referred to as a packaging pattern or a display pattern, as it is the pattern, which is presented to a user when opening the container. This pattern provides an attractive and highly functional display of the packaged portion packets. The obtained packaging pattern can remain stable, even if the container, being closed by a corresponding lid, is carried around in a pocket of the user and/or if the container is shaken. Further, the pattern configuration provides a user with an easy way to estimate the number of portion packets in the container. In addition, the exposed free edges of the portion packets may be immediately identified and easily grasped when the user wants to take a portion packet from the container. Additionally, this pattern configuration may help to obtain a regular distribution of the filling material within the portion packet.
Since the compartments typically are larger than the portion packets, the portion packets tend to be somewhat inclined in first three-dimensional orientation. The first three-dimensional orientation may also be influenced by the compartment unit being moved during introduction of the portion packets. The compartment unit may for example be stepwise moved during the introduction, e.g. stepwise rotated or stepwise linearly translated.
When the compartment unit has been raised in relation to the container in step c1, the whole portion packets are located outside the compartment unit and will therefore fall down. Due to the somewhat inclined first three-dimensional orientation, the portion packet has a preferred falling direction and will tilt about the portion being in contact with the bottom wall of the container, typically being an edge. Thereby, the portion packets will be brought to the second three-dimensional orientation by a controlled reconfiguration. If the compartments are regularly arranged, which is preferred, the portion packets will fall down in a staggered, domino-like pattern.
As an alternative, or complement, to the above way of performing step c, step c may be performed by:
In step c1′, the compartment unit is positioned at the second distance d2from the bottom wall of the container. If the portion packets abut on one of their short edges on the bottom wall of the container, comparison is made to the length l of the portion packet, such that d2<l. Suitably, 0.25 l<d2<0.99 l, or preferably 0.4 l<d2<0.95 l, or more preferably 0.6 l<d2<0.95 l. If instead abutting on a long edge, comparison is instead made to the width w of the portion packets d2<w, such that suitably 0.25 w<d2<0.99 w, or preferably 0.4 w<d2<0.95 w, or more preferably 0.6 w<d2<0.95 w. The second distance may be larger than or equal to the first distance. In any case, the second distance should be large enough to obtain the desired controlled reconfiguration of the portion packets to the second three-dimensional orientation, in which the portion packets are partly overlapping, and yet small enough so that a portion of each portion packet is still retained in the compartment, such that this portion packet may be moved by the compartment unit, e.g. by a wall member of the compartment. If the compartment unit is arranged vertically above the container, this portion will be the upper portion.
When the compartment unit is moved in relation to the container in step c2′ by relative movement of the compartment unit in the reconfiguration plane, a portion of each portion packet will be moved by the compartment unit, while the other portion of the portion packet remains abutting the bottom wall of the container. Thereby the portion packets will be brought to the second three-dimensional orientation. If the portion packet abuts on one of its edges before the displacement, i.e. in the first three-dimensional orientation, the portion packet will tilt in the manner of dominos, such that the portion packet partly overlaps with an adjacent portion packet, i.e. the portion packet partly lies on top of the adjacent portion packet in the second three-dimensional orientation in a staggered, domino-like pattern. In the second three-dimensional orientation, the portion packets may assume a pre-definable three-dimensional pattern of portion packets in the container, which may be regular, i.e. the portion packets partly overlap with each other in a similar way. The length of the relative movement in step c2′ is preferably selected to be large enough to cause the desired tilting of the portion packets.
The relative movement in step c2′ may be performed by a rotational movement and/or a linear translational movement in the reconfiguration plane of the compartment unit in relation to the container. The rotational movement may be particularly suitable if the compartment unit has a cross-section being a full circle, a semi-circle or any other part of a circle. The linear translational movement may be particularly suitable if the compartment unit has a rectangular cross-section. Preferably, the compartment unit is moved and the container is held still. However, it is also possible that the container is moved and the container unit is held still, or that both of them are moved.
As an additional option, the compartment unit may be raised after the relative movement performed in step c2′, such that the portion packets are allowed to fall down on each other from their tilted position resulting from the relative movement of step c2′ to the second three-dimensional orientation.
Steps c1′ and c2′ may be performed simultaneously, or at least partly simultaneously, such that the compartment unit is positioned in relation to the container to second distance from the bottom wall at the same time as the compartment unit is moved in the reconfiguration plane. For example, the compartment unit may be moved upwards while being rotated. As another example, the compartment unit may first be moved straight upwards then be moved upwards while being rotated.
In addition, steps c1 and c2 may be combined with steps c1′ and c2′.
The method may further comprise a step of
Step d is carried out after step c. Thereby the portion packets may be locally compressed by means of the compartment unit. This will help to form a neat pattern of portion packets and to retain a stable configuration of the portion packets in the container. The pressure may be applied with the compartment unit being at a third distance from the bottom wall of the container, which third distance is less than the second distance.
The portion packet may be introduced into the compartment, such that one of its edges faces the bottom wall of the container, preferably one of its short edges.
The distance from one portion packet to the adjacent portion packet when located in the compartment unit is preferably less than an extension of the portion packets in the height direction of the container, being the length l or the width w, when the portion packets assume the first three-dimensional orientation. Thereby, the desired configuration of the portion packets in the container, such that the portion packets partly overlap each other, is easily obtained. The distance from one portion packet to the adjacent portion packet is determined as the smallest distance from a geometrical centre of one portion packet to the geometrical centre of the adjacent portion packet.
This disclosure further relates to a device for positioning portion packets of a product for oral use into a container. The device comprises a compartment unit, comprising a plurality of compartments for receiving at least one portion packet, and a positioning unit, having an axial direction. The positioning unit is adapted to displace the compartment unit in a first displacement motion in the axial direction of the positioning unit. The first displacement motion is used to adjust the interspace between the compartment unit and the container, cf. steps a, c1′ and the optional step d of the method described above. The axial direction is parallel to the height direction of the container.
The compartment unit forms a rigid structure, which is adapted to hold the portion packets in the first predefined three-dimensional pattern given by the compartment pattern, which pattern however is changed in step c to the second selectable three-dimensional pattern, which is the pattern of the portion packets in the container, which may also be referred to as the packaging pattern or the display pattern, as it is the pattern, which is presented to a user when opening the container.
The compartments are preferably arranged side-by-side, such that a single wall member forms a dividing wall between two adjacent compartments.
The positioning unit may also be adapted to displace the compartment unit in a second displacement motion in the reconfiguration plane being perpendicular to the axial direction. The second displacement motion is used for the displacement movement in step c2′. In addition, the second displacement motion may be used during introduction of the portion packets into the compartments, see step b.
The compartments may be arranged in a compartment pattern forming a first sequence being a full circle, a semi-circle or any other part of a circle. The compartments may then be wedge-shaped, wherein the wider end of the wedge shape forms an entrance end of the compartment. By utilizing the method as described herein, especially if the portion packets abut on one of their edges on the bottom wall of the container, it may be avoided that the portion packets assume a wedge-shape in the container, since they instead overlap each other.
The compartments may be arranged in a compartment pattern forming the above first sequence and in a second sequence, being a full circle, a semi-circle or any other part of a circle, the second sequence preferably being concentric with the first sequence. Further the second sequence preferably has the same general shape as the first sequence, e.g. both being full circles. The number of compartments in the second sequence is normally less than in the first sequence, e.g. a half, a third or a fourth. The number of compartments in the first sequence may be a multiple of the number of compartments in the second sequence.
The device may comprise a centre column located at a centre of the compartment unit, the centre column being displaceable in relation to the compartments in the axial direction, which is parallel to the height direction of the container. The centre column may e.g. be spring-biased, such that the centre column protrudes from the compartments when the compartment unit is positioned spaced from the bottom wall of the container. The centre column may help to keep the portion packets in place during the first displacement motion and/or the second displacement motion and to achieve a controlled reconfiguration of the portion packets. The centre column prevents the portion packets from sliding into the centre of the container. The centre column may have a diameter in the range of from 0% to 80%, preferably in the range of from 20% to 60%, more preferably in the range of from 30% to 50% of the diameter of the compartment unit. An optional indentation at the end of the centre column may be adapted to fit on a corresponding protuberance of the bottom wall of the container.
The compartments may be configured such that each of the compartments has an entrance end, at which a portion packet may be introduced into the compartment in an entrance direction, a retaining end opposite the entrance end, the retaining end preventing the portion packet from further movement when being introduced, and a discharge opening facing in a direction being perpendicular to a straight line drawn between the entrance end and the retaining end. The discharge opening is thereby adapted to face the container.
The device may further comprise a transport unit configured to transport individual portion packets to the compartment unit, wherein the transport unit comprises a product channel arranged for transportation of individual portion packets.
The portion packets may be transported by means gravity and/or pressurized gas. The product channel forms an angle a to a horizontal plane. If using gravity only, the angle a may be in the range from 30° to 90°, preferably from 40° to 80°, more preferably from 50° to 70°. If using pressurized gas, any angle would work since the portion packet will be moved by the pressurized gas. If using pressurized gas, the product channel may be configured like the product channel described in EP 2457834 A1.
It is preferred that the product channel is configured to introduce each individual portion packet into the compartment with a predefined three-dimensional orientation in relation to the compartment, more preferably such that an edge of each portion packet faces a bottom wall of the container, most preferably one of the short edges of the portion packet.
Such a transport unit can also be used to introduce portion packets into other types of devices for positioning portion packets of a product for oral use into a container than the device disclosed herein, e.g. into the device described in EP 2457834 A1.
The device may further comprise a packaging unit configured to wrap the packaging material around the filling material, wherein the packaging unit is arranged upstream of the transport unit, such that portion packets fed to the transport unit comprise portions of filling material wrapped in the packaging material. Examples of such packaging units are given in the above-mentioned patent documents U.S. Pat. Nos. 6,135,120 and 4,703,765.
The disclosure further relates to a container comprising a plurality of portion packets of a product for oral use. The container comprises a bottom wall and a side wall together defining a storage volume, in which the portion packets are contained. The container has a height direction. The portion packets have a pillow-like shape, the shape comprising two parallel short edges and two parallel long edges, which are perpendicular to the short edges. The portion packets are arranged such that one portion packet partly overlaps with an adjacent portion packet, wherein the portion packets are arranged such that one of the short edges of each portion packet abuts the bottom wall of the container.
This disclosure further relates to a container comprising a plurality of portion packets of a product for oral use. The portion packets are arranged such that one portion packet partly overlaps with an adjacent portion packet, wherein the portion packets are arranged in a first sequence being a full circle, a semi-circle or any other part of a circle and in a second sequence, being a full circle, a semi-circle or any other part of a circle, preferably being concentric with the first sequence.
When the portion packets are arranged in a sequence being a full circle, a semi-circle or any other part of a circle, the display pattern may form a polygon or a part of a polygon, wherein the number of sides in the polygon equals the number of portion packets.
This disclosure further relates to a container comprising a plurality of portion packets of a product for oral use, the portion packet having a minimal extension s. The portion packets are arranged in a first sequence being a full circle, a semi-circle or any other part of a circle. A centre space located at a centre of the circle is free from portion packets. The centre space has a diameter ds, wherein ds≥s, and yet ds≤dc−2s, wherein dc is a diameter of the container. The size and the location of the centre space may correspond to that of the centre column in the compartment unit. The centre space may be used to dispose of used portion packets, e.g. in a disposal container located in the free centre space. If the portion packet has a pillow-like shape as mentioned above, typically substantially rectangular, the minimal extension would be the width of the portion packet.
The containers described herein comprising a plurality of portion packets are suitably closed by a corresponding lid, which will help the packaging pattern of the portion packets to remain stable, even if the container is carried around in a pocket of the user and/or if the container is shaken.
The present invention will hereinafter be further explained by means of non-limiting examples with reference to the appended drawings wherein:
It should be noted that the appended drawings are schematic and that individual components are not necessarily drawn to scale and that the dimensions of some features of the present invention may have been exaggerated for the sake of clarity.
The invention will, in the following, be exemplified by embodiments. It should however be realized that the embodiments are included in order to explain principles of the invention and not to limit the scope of the invention, as defined by the appended claims. Details from two or more of the embodiments may be combined with each other.
The container 3 has a height direction H. The container 3 comprises a bottom wall 13, extending perpendicularly to the height direction H and a side wall 15 extending in the height direction H. The bottom wall 13 and the side wall 15 define a storage volume 17. In the illustrated embodiment of
Each compartment 9a, 9b, 9c, . . . is adapted to receive at least one portion packet 11a, 11b, 11c, . . . per compartment. In the illustrated embodiment of
Each compartment 9a, 9b, 9c, . . . has an entrance end 19, at which a portion packet 11a, 11b, 11c, . . . may be introduced into the compartment 9a, 9b, 9c, a retaining end 20 opposite the entrance end 19 and a discharge opening 21 adapted to face the container 3. This is best seen in
The positioning unit 7 is adapted to displace the compartment unit 5 in a first displacement motion in the axial direction A, which is parallel to the height direction H of the container 3. The positioning unit 7 may also, as an option, be adapted to displace the compartment unit 5 in a second displacement motion in a reconfiguration plane being perpendicular to the axial direction A and thus also perpendicular to the height direction H of the container 3. In the illustrated embodiment, the optional second displacement motion is a rotation around the axial direction A. If the container 3 has a cross-section forming a circle, as illustrated, a semi-circle or another part of a circle, the axial direction A preferably goes through the centre of the circle, as illustrated.
If the container is a substantially rectangular, the second displacement motion may instead be a linear translational movement in the reconfiguration plane. In addition, combinations of linear translational movement and rotations in the reconfiguration plane are possible.
As an option, illustrated in
A centre space 31 located at a centre of the circle is free from portion packets 11a, 11b, 11c, . . . The centre space 31 has a diameter ds, wherein ds≥s, and yet ds≤dc−2s, wherein s is a minimal extension of the portion packets 11a, 11b, 11c, i.e. the width w of the portion packet 11a, 11b, 11c illustrated in
The distance f from one portion packet 11 a to the adjacent portion packet 11b when located in the compartment unit 5, see
The method comprises:
In step b, i is an integer going from 1 to n, n being the number of compartments 9a, 9b, 9c, . . . to be loaded, n≥2. If there is to be a single portion packet in each compartment, the number of portion packets intended to be positioned in the container 3 will also equal n. However, the number of portion packets in the container may also be higher than n, if placing more than a single portion packet in the compartment, as is further explained below.
The step of introducing a portion packet, i.e. step b, is repeated for each compartment to be loaded. If the compartment unit 5 has a circular cross-section, as is illustrated in
As mentioned above, the introduction of portion packets is made with the compartment unit 5 being at the first distance d1. The first distance d1 is preferably less than an extension of the portion packets 11a, 11b, 11c, . . . in the height direction H of the container. In the illustrated embodiment, see
The method further comprises:
Step c may be performed by:
Since the compartments 9a, 9b, 9c . . . are larger than the portion packets 11a, 11b, 11c, . . . , the portion packet 11a, 11b, 11c, . . . tend to be somewhat inclined in first three-dimensional orientation. See
When the compartment unit 5 has been raised in relation to the container 3 in step c1′, the whole portion packets 11a, 11b, 11c, . . . are located outside the compartment unit 5 and will therefore fall down. Due to the somewhat inclined first three-dimensional orientation, the portion packet 11a, 11b, 11c, . . . has a preferred falling direction and will tilt about the lower short edge 23a. Thereby the portion packets 11a, 11b, 11c, . . . will be brought to the second three-dimensional orientation, which is seen in
As an alternative to the above way of performing step c, step c may be performed by:
In step c1′, the compartment unit 5 is positioned at the second distance d2 from the bottom wall 13 of the container 3. In the illustrated embodiment, the portion packets 11a, 11b, 11c, . . . stand on one of their short edges 23a on the bottom wall 13 of the container 3, hence d2<l. Suitably, 0.25 l<d2<0.99 l, or preferably 0.4 l<d2<0.95 l, or more preferably 0.6 l<d2<0.95 l, here illustrated as 0.8 l.
When the compartment unit 5 is displaced in relation to the container 3 in step c2′ by movement in the reconfiguration plane, an upper portion of the portion packet 11a, 11b, 11c, . . . will be moved by the compartment unit 5, while a lower portion of the portion packet 11a, 11b . . . remains with the short edge 23a in contact with the bottom wall 13 of the container 3, such that the portion packet 11a, 11b, 11c, . . . is tilted about the lower short edge 23a. Thereby the portion packets 11a, 11b, 11c, . . . will be brought to the second three-dimensional orientation, which is seen in
As an option, the method may comprise:
Thereby the portion packets 11a, 11b, 11c, . . . may be locally compressed by means of the compartment unit 5. This will help to retain a stable configuration of the portion packets 11a, 11b, 11c, . . . in the container 3. The pressure is applied with the compartment unit 5 being at a third distance d3 from the bottom wall 13 of the container 3 being less than the second distance d2.
In the container 3, the five portion packets of the second sequence form a pentagon, surrounded by the fifteen portion packets of the first sequence substantially forming a polygon with fifteen sides. There may be a small centre space without portion packets, or the bottom wall 13 of the container 3 may be substantially covered as in
Step c may be performed by steps c1 and c2 above. Since the compartments are larger than the portion packets, the portion tend to be somewhat inclined in first three-dimensional orientation, see
Alternatively, step c may be performed by steps c1 and c2′ above. Then a second displacement motion, which is is a linear translational movement in the reconfiguration plane in the longitudinal direction L, may be utilized. An upper portion of the portion packet 11a, 11b, 11c, . . . will be moved by the compartment unit 5″, while a lower portion of the portion packet 11a, 11b remains with one of the short edges 23a, 23b in contact with the bottom wall of the container 3″, such that the portion packet 11a, 11b, 11c, . . . is tilted about the lower short edge. Thereby the portion packet 11a, 11b, 11c, . . . will be brought to the second three-dimensional orientation, which is seen in
Even if the embodiments illustrated in
The device 1 may further comprise a transport unit 37 configured to transport individual portion packets 11a, 11b, 11c, . . . to the compartment unit 5, see
It is preferred that the product channel 39 is configured to introduce each individual portion packet 11a, 11b, 11c, . . . into the compartment with a predefined three-dimensional orientation in relation to the compartment, more preferably such that an edge of each portion packet faces a bottom wall of the container 3, most preferably one of the short edges 23a, 23b of the portion packet 11a, 11b, 11c, . . .
The method for positioning portion packets is performed as described above. The optional indentation 41 in the centre column 22 is adapted to fit on a corresponding protuberance 43 of the bottom wall 13 of the container 3.
Further modifications of the invention within the scope of the appended claims are feasible. As such, the present invention should not be considered as limited by the embodiments and figures described herein. Rather, the full scope of the invention should be determined by the appended claims, with reference to the description and drawings.
Number | Date | Country | Kind |
---|---|---|---|
16197948.9 | Nov 2016 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | 16344168 | Apr 2019 | US |
Child | 17330459 | US |