The invention relates to a method for portionwise preparation of a beverage, in which a portion of beverage concentrate is mixed with a portion of water, wherein the portion of water is admixed with carbon dioxide prior to mixing with the beverage concentrate. The present invention further relates to a device for portionwise preparation of a beverage, in which a portion of beverage concentrate is mixed with a portion of water, wherein the portion of water is admixed with carbon dioxide in a static mixer prior to mixing with the beverage concentrate.
The need for portionwise preparation of carbonated beverages using a portion of beverage concentrate is constantly increasing. However, the often insufficient carbonation in the past meant that the beverage prepared portionwise using a portion of beverage concentrate did not taste like the bottled or kegged original.
It is therefore an object of the invention to provide a method and a device for portionwise preparation of a beverage, in which a portion of beverage concentrate is mixed with a portion of water, which method/device does not have the disadvantages of the prior art.
The object is achieved with a method for portionwise preparation of a beverage, in which a portion of beverage concentrate is mixed with a portion of water, wherein the portion of water is admixed with carbon dioxide prior to mixing with the beverage concentrate, in which the admixing with carbon dioxide is done at a positive pressure of at least 7 bar, preferably >8 bar, particularly preferably at 9-11 bar.
The disclosure made in relation to this subject of the present invention also applies to the other subjects of the present invention. Features disclosed in connection with this subject of the present invention can also be incorporated into other subjects.
The present invention relates to a method for portionwise preparation of a beverage. Provided for this purpose, especially in disposable or reusable packaging, is a portion of beverage concentrate, the liquid or powdered content of which is mixed with a portion of water, especially a portion of tap water, which forms the completed beverage. Prior to mixing with the beverage concentrate, the water admixed with carbon dioxide admixed with carbon dioxide bubbles, and the carbon dioxide at least partially, preferably completely, dissolved in the water. The admixing of the water with the carbon dioxide is preferably likewise done portionwise and particularly preferably done immediately before the carbonated water is mixed with the beverage concentrate.
The admixing of the water with the carbon dioxide is preferably done in a continuous process in which water and carbon dioxide are admixed in a ratio attuned to one another.
According to the invention, a positive pressure of at least 7 bar, preferably >8 bar, particularly preferably at 9-11 bar, prevails during the admixing of the water with carbon dioxide. As a result, the carbon dioxide at least substantially dissolves in the water, preferably completely.
The portion of water is preferably taken from a water tank and brought to the desired pressure using a pump. The carbon dioxide is preferably taken from a pressure cylinder.
The mixing of water and carbon dioxide is preferably done portionwise, but particularly preferably continuously while the water is flowing, is in particular being taken from a water tank for beverage preparation.
According to a preferred embodiment, the water is provided at a temperature of 0-4° C. prior to mixing with carbon dioxide. According to a further preferred embodiment, the water is provided at a temperature of 4-10° C. prior to mixing with carbon dioxide. For this purpose, the water is preferably cooled, especially in a heat exchanger, after removal from the water tank. The cooling of the water is preferably done portionwise.
The carbon dioxide is preferably added to the water at least substantially in the form of bubbles. Preferably, the carbon dioxide is dissolved in the water by mixing the carbon dioxide with the water in a static mixer, though, according to another preferred embodiment, a dynamic mixer, i.e., a mixer with a rotor, is alternatively or additionally used. Particularly preferably, the flow rate in the static mixer is 3-8 m/s.
A reduced pressure compared to the operating conditions, preferably ambient pressure, preferably prevails in the static mixer before and after the preparation of the portion of carbonated water. As soon as the volume of water required for the preparation of a portion of beverage has been carbonated, the pump is switched off and the pressure in the static mixer is reduced, preferably to ambient pressure.
According to a preferred embodiment, the ratio of the amount of water to the amount of carbon dioxide is regulated. For this purpose, the volumetric flow rate and/or the flow rate of the water is particularly preferably measured and the volumetric flow rate of the carbon dioxide is metered in accordingly.
The object is also achieved with a device for portionwise preparation of a beverage, in which a portion of beverage concentrate is mixed with a portion of water, wherein the portion of water is admixed with carbon dioxide in a static mixer prior to mixing with the beverage concentrate and the static mixer is formed of multiple mixer stages.
The disclosure made in relation to this subject of the present invention also applies to the other subjects of the present invention. Features disclosed in connection with this subject of the present invention can also be incorporated into other subjects.
This subject of the present invention relates to a device for portionwise preparation of a beverage. A portion of water is mixed with a portion of a beverage concentrate, resulting in the beverage to be prepared. The water is carbonated prior to mixing with the beverage concentrate. For this purpose, carbon dioxide is added to the water and they are mixed together in a static mixer in such a way that the carbon dioxide metered in at least substantially dissolves in the water.
According to the invention, the static mixer has multiple mixer stages which are, for example, separated from one another by a wall having a hole. The water and the carbon dioxide flow through the hole.
Preferably, the static mixer is manufactured as a single piece, preferably as a plastic injection-molded part.
Preferably, the exit of a downstream mixer stage forms a nozzle for the upstream mixer stage adjacent thereto.
Preferably, the flow cross section of the static mixer decreases in the direction of flow, preferably in steps.
Preferably, two to four, preferably four, static mixers, especially static mixers of identical construction, are connected in series.
Preferably, a compensator is provided downstream of the static mixer. The carbonated water flows through the compensator before it is used to prepare a beverage. The compensator can be used for pressure reduction in which little gas outgasses from the liquid.
The compensator is preferably a substantially rotationally symmetrical component.
Preferably, the compensator has an inlet and an outlet, and the outlet is offset from the longitudinal central axis of the compensator. According to this preferred embodiment of the present invention, the outlet is offset from the longitudinal central axis of the compensator, preferably eccentric to the longitudinal central axis of the compensator. As a result, the center of the compensator is free and can be used for other purposes, for example for regulation of pressure loss.
Preferably, the compensator has a housing in which a fitted element is present, wherein a gap, the width of which is preferably adjustable, is present between the housing and the fitted element. The carbonated water flows through this gap from the inlet of the compensator to the outlet thereof. The gap width is preferably constant over its entire length.
Preferably, the fitted element has a conical and a cylindrical section, wherein the cylindrical section has provided thereon projections and/or indentations, the length of which in the longitudinal direction is at most 40% of the length of the cylindrical part.
According to a preferred embodiment, the conical part of the fitted element has provided thereon ribs, which are preferably elastic. The ribs can consist of the same material as or a different material than the fitted element and/or be a characteristic of the conical part of the fitted element. Preferably, the fitted element has provided therein indentations which receive the ribs interlockingly and/or frictionally.
In what follows, the invention will be explained with reference to
These explanations are merely by way of example and do not limit the general concepts of the invention. These explanations apply equally to all subjects of the present invention.
Preferably, the residence time of the water between the static mixer and the chamber 12, in which the carbonated water is mixed with the portion of beverage concentrate, is as short as possible. The completed beverage runs out of the beverage concentrate portion capsule 2 and is collected in a container, in this case a glass. The beverage concentrate is preferably pushed out of the portion capsule 2 by means of air.
As can be seen in
Number | Date | Country | Kind |
---|---|---|---|
10 2019 217 331.4 | Nov 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/080961 | 11/4/2020 | WO |