The invention relates to a method for producing (hard) packs, in particular cigarette packs of the hinge-lid-box type, with an outer wrapping of shrinkable film, wherein the packs which are provided with the outer wrapping are transported through a shrinkage station having heat elements, in particular having heating plates, for transmitting shrinkage heat to the packs. Furthermore, the invention relates to an apparatus for carrying out the method.
The shrinkage treatment of cigarette packs of the hinge-lid-box type with an outer film wrapping is known in principle. In the case of the apparatus according to one above another in a sealing sequence past heating plates. During a standstill phase, heat is transmitted to the upwardly directed large-surface-area pack sides, namely the front side or rear side with the packs lying one above another. The handling of the heating plates is difficult because of the arrangement between the pack rows lying one above another.
The invention is based on the object of proposing a method and apparatus for producing in particular cigarette packs, including shrinkage treatment, in which a high degree of efficiency with a precise result from the treatment are ensured.
To achieve this object, the method according to the invention is characterized by the following features:
For the further processing of the packs, namely for the production of customary multipacks, “cigarette multipacks”, it is indispensable for the packs to be formed in groups of packs having their front side and rear side in contact with one another. This formation has proven disadvantage for the shrinkage process. Accordingly, for this region, the packs are conveyed and treated individually in two (parallel) pack rows and are then brought together with (two) groups being formed.
Accordingly, the apparatus according to the invention is provided, at least in the region of a shrinkage station, with two parallel pack conveyors which each convey one pack row, wherein, during a momentary standstill, in the region of the shrinkage elements, in particular the heating plates assigned to each pack row, the heating plates obtain contact with the upper side and/or lower side of the packs in order to transmit the predetermined shrinkage heat.
The pack conveyors are designed in such a manner that the lower side, namely front side or rear side of the packs, is free for contact by the heating plates. For this purpose, the packs are held on a pack conveyor, which runs above the packs or next thereto, by means of suction air and/or by means of mechanical holding elements.
In the positioning of the packs, which are supplied in two rows, in groups of packs lying one above another, there is a particular characteristic in that the packs arrive in offset planes in the region of a grouping station, to be precise in particular by means of pack conveyors which run with an upwardly directed or downwardly directed inclination and the vertical spacing of which substantially corresponds to the height of an individual pack in the region of a transverse displacement of the packs.
The method according to the invention and exemplary embodiments of the apparatus are explained in more detail below with reference to the drawings, in which:
The exemplary embodiments are concerned with the treatment of cuboidal packs 10, namely cigarette packs of the hinge-lid-box type. The packs 10 are delimited by a large-surface-area front side 11, an opposite rear side 12, by side surfaces 13, 14 and by an end surface 15 and bottom surface 16. The (hard) packs 10, which are composed of thin cardboard, are surrounded by an outer wrapping of shrinkable film.
The packs 10 coming from a packaging machine are provided with the outer wrapping in the region of a film turret 17. Said outer wrapping is initially folded in a customary manner in a shape of a U around the pack 10 as it is inserted into a pocket of the film turret 17. Then, on the radially outer side surface 13, folding tabs of the film are connected to each other in the region of an overlap by means of sealing. Furthermore, first foldings of the film in the region of the end surface 15 and bottom surface 16 are completed.
Directly downstream of the film turret 17, the pack 10 passes into a rectilinear pack path. In the region thereof, the packs 10 first of all pass through a folding station 18 in which sideways directed folding tabs of the film wrapping are folded with customary end and bottom folds being formed.
This is followed by a sealing station 19. In the region therefore, the folding tabs or folds are connected to one another in the region of the sideways directed end surface 15 and bottom surface 16 by thermal sealing. For this purpose, sealing elements, namely elongated sealing jaws 20, 21 are arranged on both sides of the pack path. The latter come into contact with the facing pack surfaces 15, 16 during a momentary standstill of the packs as they are being conveyed cyclically. The sealing jaws 20, 21 are therefore movable to and fro in the transverse direction.
The packs 10 which are completed with regard to the outer film wrapping now pass into a shrinkage station 22. In the region thereof, heat is transmitted to the packs 10 in order to produce a shrinkage effect on the outer wrapping.
The finished packs 10 pass into the region of a grouping station 23. The packs 10 are subsequently supplied in formed groups to a multipacker which produces customary multipacks from pack groups.
The shrinkage station 22 is designed in such a manner that heat is transmitted to the large-surface-area pack sides, namely to the front side 11 and rear side 12, by heating elements, in particular by heating plates. During a treatment cycle, i.e. while the packs 10 are at a standstill, the heating plates preferably bear against the full surface area of said packs. For, this purpose, the packs 10 are conveyed in such a manner that the pack surface to be subjected to heat is exposed during the treatment. For this purpose, the packs 10 are conveyed in two pack rows 26, 27 running next to each other, to be precise, individual packs following one another at a distance, at least in the region of the shrinkage station 22, and as early as in the region of the sealing station 19 and therebefore in the region of the film turret 17 in the present exemplary embodiments. In the shrinkage station 22, the pack surfaces 11, 12 which are to be acted upon are kept free for contact by the respective heating plates by means of an appropriate design and manner of operation of pack conveyors. In the region of the grouping station 23, the mutually assigned packs 10 of the pack rows 26, 27 are brought together by a transverse movement in order to form a pack unit 28 comprising in each case two packs 10 lying one above the other.
In the present exemplary embodiments, the packs 10—coming from the packer—are supplied in two pack rows 26, 27 to the film turret 17. The latter is designed in such a manner that two corresponding sub-turrets 29, 30 for in each case one pack row 26, 27 are combined to form a unit and are then moved synchronously. Downstream of the film turret 17, the pack rows 26, 27 are guided through the folding station 18 and subsequently through the sealing station 19. In the folding station 18, folding elements are assigned to each pack row 26, 27, and also respective sealing jaws 20, 21 are arranged on both sides of the pack rows 26, 27.
In the exemplary embodiment according to
In the following substation, heating plates 45, 46 are arranged above the pack rows 26, 27 such that the upwardly directed front side 11 is acted upon.
The pack conveyors for transporting the individual packs 10, with the two parallel pack rows 26, 27 being formed, are designed in a particular manner. In the exemplary embodiment according to
Each pack row 26, 27 is assigned one such pack conveyor 31. The latter run parallel to one another and are driven synchronously such that the packs 10 of the pack rows 26, 27 are transported in an aligned formation. After emerging from the film turret 17, the packs 10 are conveyed through the folding station 18 and subsequently through the sealing station 19. The latter extends into the region of the shrinkage station 22. The pack conveyor 31 ends at the shrinkage station 22.
Subsequently, namely particularly in the region of the heating plates 24, 25 acting on the lower side of the packs 10, the transportation of the packs 10 is taken over by a connecting conveyor assigned to each pack row 26, 27, to be precise by a respective upper conveyor 35. The latter is designed in an identical or similar manner to the pack conveyor 31, namely with transversely directed carry-along means 36, 37 for grasping the packs 10 at the side surfaces 13, 14. The packs are conveyed by a lower strand 38 in such a manner that the downwardly directed pack surfaces, namely the rear sides 12, are exposed for contact by the heating plates 24, 25.
The upper conveyor 35 is designed in such a manner that, when the heating plates 24, 25 are lowered, i.e. in particular during the conveying cycle, the packs 10 are held on the conveyor. For this purpose, the upper conveyor 35 is designed as a suction conveyor. The lower strand 38 is assigned a suction unit, namely a suction box 40. The latter is connected to a negative pressure source in such a manner that suction air is transmitted to the packs 10 at least during the conveying cycle. The belt of the upper conveyor 35 is of air-permeable design.
The packs 10 are transported only in the region of the first substation, i.e. in the region of the downwardly acting heating plates 24, 25, by the upper conveyor 35. The packs are then taken on by the lower conveyor 41, 42 as a subsequent pack conveyor, the lower conveyor transporting the packs in the region of the heating plates 45, 46 acting on the upper side. This (third) pack conveyor extends into the region of the grouping station 23. The lower conveyor 41, 42 is expediently designed like the pack conveyor 31 with an upper strand 43, 44 for transporting the packs 10 between front and rear drivers 33, 34.
The grouping station 23 following the shrinkage station 22 is designed in such a manner that packs 10 of the two pack rows 26, 27, which packs arrive in offset planes, are brought by transverse displacement into a position with packs arranged in pairs one above another (
If heating plates 45, 46 are arranged in the region of the inclined upper strands 43 and/or 44, the shape of the heating plates is matched to the position of the packs 10, namely to the inclined conveying position. A contact surface of the heating plates 45, 46, which contact surface faces the pack surfaces (front side 11, rear side 12), is arranged obliquely corresponding to the inclination of the packs 10 such that the heating plates 45, 46 can bear over their entire surface area against the obliquely directed packs 10.
In the grouping station 23, the packs 10 are pushed in the transverse direction off the two upper strands 43, 44 by transverse conveyors, namely slides 47, 48, and are deposited lying one above another on a support, namely on a platform 49. The two-pack groups of packs 10 are taken from the latter by a removal conveyor 50, namely an endless conveyor, which grasps the packs 10 by means of carry-along means 51 supplied from below and transports them away. The packs 10 are transported along a guide 52 of curve design and are transferred in groups in an upright position to a belt conveyor 53 which conveys away the packs 10 between upright strands, in particular to a multipacker.
An ejection station 54 is arranged upstream of the grouping station 23 in the conveying direction, i.e. between shrinkage station 22 and grouping station 23. In the region of said ejection station, faulty packs identified during the manufacturing and transportation are separated out. The ejection station 54 is equipped with transverse conveyors 55, 56. The latter are designed as belt conveyors with carry-along means 57 arranged at suitable distances from one another. The transverse conveyors 55, 56 are arranged movably above the lower conveyors 41, 42, namely such that they are pivotable about a drive shaft 58. In this starting position (on the right,
The concept of the exemplary embodiment according to
In order to ensure a small distance between the two transporting paths for the packs 10, the intermediate conveyors 60, 61 and the conveyor belts 62, 63 of the two pack rows 26, 27 are arranged offset with respect to each other in the conveying direction (
Downstream of the shrinkage station 22 and of the intermediate conveyor 60, 61, the packs 10 are transported to the grouping station 23 by a further pack conveyor, namely by the lower conveyor 41, 42 which is formed with the shorter upper strand 43, 44. Said lower conveyor is designed analogously to the exemplary embodiment according to
An apparatus having a lower technical outlay is shown in
The two pack rows 26, 27 are each assigned a pack conveyor 66 which conveys the packs 10 from the film turret 17 via the folding station 18, the sealing station 19, the shrinkage station 22 to the grouping station 23.
In the exemplary embodiment according to
A further particular characteristic is the transfer of the packs 10 of a pack row 26, 27 from a pack conveyor to a subsequent pack conveyor. This characteristic is illustrated in
The arriving packs 10 are carried along by the pack conveyor 31 into the region of the upper conveyor 35 (
Number | Date | Country | Kind |
---|---|---|---|
10 2006 024 559.8 | May 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/002967 | 4/3/2007 | WO | 00 | 11/21/2008 |