Not applicable.
The invention relates to a method in reel change, in which a paper web to be reeled on a reeling core is affected at least by the torque of the reeling cylinder and the nip load to form a reel, wherein in connection with the reel change, a new reeling core is brought in nip contact with the reeling cylinder above the reeling cylinder together with a change device, especially a so-called gooseneck, and wherein an adhesive, or the like, is applied between the paper web layers during the reel change in connection with the cutting of the paper web by means of a cutting device.
As for the state of the art, reference is made to publication FI-B 102826, which discloses a method in reeling up a paper or paper board web, in which the paper web is supported during the reeling by means of a belt traveling via a nip between the reeling cylinder and the reel shaft. In connection with the reel change, an adhesive is sprayed on the paper web passed to the reel at the same time the paper web is cut. In said publication the adhesive is spread on the web passed to the reel within a fixed distance from the cutting line. Such a method is advantageous as such especially in so-called high-speed reeling, in which the web speeds exceed 1600 m/min. In cases where the web travels at high speed, the method according to the publication FI-B 102826 can be applied without actual drawbacks especially for such paper grades, in which the absorption of the adhesive is insignificant.
Advantageously, but not solely, the present invention relates to a method to be applied in connection with a Pope-type reel-up. The Pope-type reel-up is the oldest of the reel-up types currently in use. The function of the Pope-type reel-up is based on one roll that is driven, i.e. a reeling cylinder, and a paper reel pressed against the same and formed around a reeling core. The paper reel that is being formed rotates by means of friction between the reeling cylinder and the paper.
A surface drive reel-up based on the Pope method is advantageous in the production of relatively small reels, when the paper is not sensitive to the linear load. The paper also has to be sufficiently compressible. As such, the Pope-type reel-up has a very simple structure and it functions in a reliable manner. By means of the Pope method, the reel change is typically conducted with a change device, especially with a so-called gooseneck. In the gooseneck change a small, crosswise cut is made to the paper web before the reeling cylinder by means of a cutting device. The cut functions as an initial tear when the paper web is lifted around a new reeling core by means of a blow nozzle at the end of the gooseneck. In the Pope-type reel-up the web speeds vary between approximately 300 and 1500 m/min. However, a drawback occurring in the act of applying the Pope method is that the surface layers of the reel reeled on the reeling core tend to slacken. There have been no suggestion as to how to keep tight the layers of a full reel reeled on the reeling core. This may cause significant production losses, the scope of which is primarily determined on the basis of the running speed and the smoothness of the paper web.
In addition to the Pope method, reeling methods are also used in which a third control variable is used in addition to the surface drive, i.e. a centre-drive apparatus placed in connection with the reeling core, as well as possibly a device for finishing the surface of the reel. The method according to the invention is also suitable to be used in connection with these more developed methods.
The above-mentioned special properties, especially those of Pope method as well as the problems occurring in the act of applying the same, have led up to the present invention. The method disclosed in the publication FI-B 102826, in which an adhesive is sprayed on a web passed to the reel, contains several drawbacks especially in view of the general technology applied in the Pope-type reel-ups and the paper grades generally used in Pope-type reel-ups. Especially in view of the continuity of the reeling, it is important to prevent the access of adhesive on the surface of the reeling cylinder in all conditions. The access of the adhesive on the surface of the reeling cylinder almost without exception causes a production break, which can even be a long-lasting one.
To eliminate the above-presented problems and especially to improve the state of the art in the technology applied in connection with so-called Pope-type reel-ups, as well as to produce new, advantageous possibilities in relation to reel change in other reeling up methods, the method according to the invention is primarily characterized in that the adhesive, or the like, is applied on the surface of the reel that is being formed. By means of this arrangement it is in all conditions possible to substantially minimize the possibility that the adhesive applied on the paper would be released on the surface of the reeling cylinder, even though e.g. the driving speeds were low and the paper grade porous, as is characteristic to the Pope method in particular. If the adhesive is absorbed in the paper, the absorption is most likely directed towards the centre boss of the paper reel that is being formed, because the adhesive is applied on the surface of the reel that is being formed when it has already passed the reeling cylinder. On the other hand, in the nip point of the reel-up a “protective” paper web is placed on the adhesive applied on the surface of the paper reel that is being formed and the contact point of the adhesive with the reeling cylinder is linear and of a very short duration, due to the nature of the nip, wherein the transfer of the adhesive through the paper web through the “protective” paper web to the reeling cylinder is very unlikely because of the aforementioned act of applying the adhesive on the surface of the reeling cylinder before the nip contact in the travel direction of the paper web.
It is particularly advantageous that the member applying the adhesive is placed in connection with a change device, especially a so-called gooseneck. The adhesive is applied to the paper reel that is being formed in connection with the reel change, immediately before the cutting of the paper web, wherein the change device used in the threading of the paper web to the new reeling core is a so-called gooseneck. The gooseneck is placed in the change station before the cutting of the paper web, wherein the member applying the adhesive can be advantageously placed at the same point of location. The moment of transferring the gooseneck to the change station does not have to be substantially changed.
The invention also relates to a device in reeling up: The device is primarily characterized in that the member applying the adhesive is arranged to apply the adhesive on the surface of the reel that is being formed.
The invention will be described in more detail with reference to the appended drawings, in which
During the change sequence of the reel R, an adhesive is applied between the paper layers (adhesive jet 5 in
As can be seen in
The act of applying the adhesive is stopped before, but advantageously substantially at the same time the operation of the cutting device 7 is started. The cutting device 7 is placed before the reeling cylinder 1 in the travel direction of the paper web PR, within a distance from the member applying the adhesive. In the portioning of the adhesive it is possible to use one or more nozzles placed in connection with the change device 4, which nozzles can be positioned in such a manner that they produce a fan-like formation, wherein it is possible to supply several adhesive jets producing an adhesive stripe on the surface P of the reel R that is being formed, thus increasing the hold or attaining a stronger adherence by means of spraying the adhesive for a shorter period of time.
Most advantageously, the operating power of the pneumatically operated nozzles spraying the adhesive is attained from the gooseneck operating as a change device, in which pressurized air is already used. The adhesive can be conveyed via a pipework from a container located close to the Pope-type reel-up. To increase the pressure of the adhesive so that it is sufficient in view of applying the same, it is possible to place a pump close to the nozzles. The adhesive can be applied via the nozzles by starting the blowing from the gooseneck, wherein the pressurized air in use can be utilized as operating power of the nozzles. Each portioned adhesive stripe covers typically approximately ¼ of the length of the perimeter of the reel R. If a stronger hold is necessary, it is possible to increase the supply time of the adhesive thereby lengthening the adhesive stripe. The fact that the supply of the adhesive is stopped when the cutting device produces a cut, ensures that the adhesive remains underneath the surface layers of the paper web PR and does not enter in contact e.g. with the surface layers of the paper web PR, thereby not being able to touch the outer surface of the reeling cylinder.
The agent effecting the operation according to the invention can also be called a binding agent, because adhesive properties, by means of which the layers of the paper web PR adhere to each other, are not necessarily required as such of said medium, but said medium has such an effect that it generates such changes in the surface of paper web layers positioned next to each other, that the layers adhere to each other. Thus, the binding agent binding the paper web layers together can be for example water. An advantageous adhesive, thanks to its pulpability, is starch dissolved or dispersed in water. In view of applying the method according to the invention, it is important that the adhesive forms as coherent a flow as possible, so that the drying would be as slight as possible, before the paper web layers are bound together, to attain the best possible adherence. This is especially important in the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
19992513 | Nov 1999 | FI | national |
This application is a US national stage application of PCT Application No. PCT/FI00/01016, filed Nov. 23, 2000, and claims priority on Finnish Application No. 19992513, filed Nov. 25, 1999, the disclosures of both of which applications are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTFI00/01016 | 11/23/2000 | WO | 00 | 10/29/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0138213 | 5/31/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4572451 | Ikeda et al. | Feb 1986 | A |
4775110 | Welp et al. | Oct 1988 | A |
5441211 | Ueda et al. | Aug 1995 | A |
5782426 | Kinnunen et al. | Jul 1998 | A |
6467719 | Rodriguez | Oct 2002 | B1 |
6474589 | Enwald et al. | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
41 16 963 | Nov 1992 | DE |
44 15316 | Nov 1995 | DE |
0 044 814 | Feb 1984 | EP |
0 484 323 | May 1992 | EP |
0 512 196 | Dec 1994 | EP |
0 765 832 | Apr 1997 | EP |
WO 9403386 | Feb 1994 | WO |
WO 9817564 | Apr 1998 | WO |
WO 0138213 | May 2001 | WO |