METHOD AND DEVICES FOR IMPROVED EFFICIENCY OF RNA DELIVERY TO CELLS

Abstract
The instant invention provides a method for improving efficiency of RNA delivery to cells. The method comprises applying a low strength electric field to the cells and then after a certain time period, administering the ribonucleic acid sequence to the cells. Devices, kits, and RNA molecules suitable for delivery and devices suitable for practicing the disclosed methods are also provided.
Description
FIELD OF THE INVENTION

The instant invention is directed to a method of delivering RNA to a cell of a patient, comprising electrically stimulating an area in a patient's body containing said cell, with a low-voltage electric stimulation followed by delivery of the RNA.


BACKGROUND OF THE INVENTION

RNA interference (RNAi) is a natural method of gene silencing in plant and mammalian cells. RNAi provides a mechanism for the sequence specific silencing of genes. RNAi has been adopted by researchers as a tool to investigate gene function and it has potential applications in the clinical arena such as treatment of neurodegenerative diseases, heart diseases, cancer, and other diseases where silencing of a specific gene or genes is desirable.


However, the efficient delivery of RNAi agents has been a major roadblock on the way to establish RNAi as a suitable gene therapy agent in modern medicine, mostly due to inefficient intake of RNAi agents and quick degradation thereof by RNAses present in blood, lymph, CSF, and intercellular space.


Initial work in the electroporation of siRNAs recommends conditions for transfecting cells in vitro have been to recommend pulse length to 100 μs and pulse voltages from 150-900 V (i.e., 150, 300 . . . 900 V) and then directly transferring the transfected cells to a growth medium(siRNA transfection protocol, Ambion, 2008). Bio-Rad, a maker of in vitro electroportation devices, has published recommended conditions between 200 and 300 volts as optimal for transfection followed by transferring to the cell growth medium (BioTechniques Protocol Guide 2009 (p. 19) doi 10.2144/000113012).


In-Vivo methods for electroporation of RNA to patients has also been described in the literature. In vivo two different electroporation procedures are being used in ongoing clinical trials. In the first procedure, DNA is injected (by needle and syringe) followed by insertion of a four-needle electrode array at the site of injection to deliver electrical pulses, and in the second procedure two standard syringes with injection needles are mounted on a movable sled. As the needles are advanced into the muscle tissue, DNA is injected at a predetermined rate. When DNA injection is completed, electrical pulses are delivered via the two injection needles now serving as electrodes. These clinical studies are sponsored separately by Southampton University Hospitals, and Merck.


Three electroporation devices are known to be approved for use in clinical trials; however, none of these devices are presently commercially available (S. Li (ed.), Electroporation Protocols: Preclinical and Clinical Gene Medicine. 497. From Methods in Molecular Biology, Vol. 423. Humana Press 2008). The first system, the Elgen system, consists of a square wave pulse generator, interfacing with a combined injection/electrode device, which injects the DNA during needle insertion and uses of-the-shelf syringes and needles. The output pulses used in human studies so far were set at a constant current of 250 mA, corresponding to about 60-70 V. The second system, the MedPulser DNA Delivery System (DDS) made by Inovio Biomedical Corporation consists of a pulse generator and a reusable applicator with a disposable tip containing a four-needle array electrode. The MedPulser DDS delivers two unipolar pulses of 60 ms at 106 V, with a frequency of 4 Hz. Typically, DNA vaccine is injected intramuscularly, followed by insertion of the electrode array encompassing the injection site and subsequent pulse delivery. The third system, also made by MedPulser, is the DNA Electroporation Therapy System, and also supplied by Inovio Biomedical Corporation, is similar to the MedPulser DDS. However, it uses a six-needle electrode array, with the needles either integrated into the applicator or contained in a disposable tip (needle length up to 3 cm; electrode distance, 8.6 mm). This system delivers six bipolar, rotating pulses of 100 μs each at 1,130 V, with a frequency of 4 Hz.


So far there does not appear to be any current human studies directed to delivery of RNA molecules subsequent to electroporation. Further the RNA protocol methods are directed to use of relative higher voltages to achieve transfection of these molecules. The present invention overcomes several limitations of the art by providing more efficient delivery of RNAs that does not require the high voltages presently used, which may require sedation during the electroporation process. Further, current electroporation procedures do not provide for chronic delivery of RNA agents. As discussed previously, current delivery protocols couple the nucleic acid delivery with providing the siRNA.


Other delivery methods also have their drawbacks. For example, viral delivery is unproven as an effective in vivo delivery mechanism in humans, and is not approved by the FDA. Lipofection entails administration of extraneous compounds to the patient in addition to the therapeutic agent itself. It is also not approved by the FDA.


Accordingly, new methods of efficient delivery of RNA to the patients are needed.


SUMMARY OF THE INVENTION

The instant invention addresses these and other needs of the prior art by providing, in one aspect, a method of delivering RNA to a cell of a patient, comprising electrically stimulating an area in a patient's body containing said cell, with a low-voltage electric stimulation followed by delivery of the RNA. Preferably, the cell is selected from cardiomyocytes, skeletal muscle cells, kidney cells, neurons, and glial cells.


In other words, an aspect of the invention is related to a use of RNA in the manufacture of a medicament for use in a method of delivering said RNA to a cell of a patient, wherein a plurality of pulses of an electric field is or is to be applied to the cell for a time period between about two and about 24 hours, said RNA is or is to be administered after the administration of the plurality of pulses, and wherein the electric field has strength of between about 0.5 V/cm and about 40 V/cm, calculated according to Formula I:






E=V/d


wherein in said formula E is the strength, V is Voltage and d is distance between electrodes. Preferably, the cell is selected from cardiomyocytes, skeletal muscle cells, kidney cells, neurons, and glial cells.


The parameters of the electric stimulation are tailored to each cell type as to ensure the maximal efficiency of the RNA delivery.


In different embodiments, the RNA comprises a siRNA, an shRNA, an aptamer, a spiegelmer, and antimir, a template for a protein or a protein fragment, or a combination thereof.


In another aspect, the invention also provides a device suitable for the methods of the instant invention, the device generally comprising a plurality of electrodes and a catheter for delivery of the RNA.


In one embodiment, the device comprises a plurality of electrodes, a catheter, the catheter comprising a wall and a cavity, wherein the members of said plurality of electrodes are disposed within or on the surface of said wall, a reservoir containing a composition comprising the nucleic acid sequence, said reservoir fluidly connected with said catheter, a pump or syringe operably connected to said reservoir, a processor operably connected to the members of said plurality of electrodes and adapted to receive electrical signals from said members and to deliver an electric field to said members.


Preferably, the device of the instant invention is treated to ensure the absence of RNAse to prolong the lifespan of the administered RNA.


In another aspect, the invention provides a kit comprising a plurality of electrodes, a composition comprising RNA, a processor adapted to actuate an electric stimulation by the members of said plurality of electrodes receive a signal from the members of said plurality of electrodes and, within a predetermined time period after receiving said signal from the members of said plurality of electrodes to actuate release of at least a portion of said composition comprising RNA.


In another aspect, the invention provides a ribonucleic acid molecule for use in treating or preventing a disease, disorder or infection, wherein said ribonucleic acid molecule is for the administration to a cell within 24 hours of subjecting said cell to a plurality of pulses of an electric field for a time period between about two and about 24 hours, wherein the electric field has strength of between about 0.5 V/cm and about 40 V/cm, calculated according to Formula E=V/d wherein in said formula E is the strength, V is Voltage and d is distance between electrodes.


According to certain embodiments, the ribonucleic acid molecule is for inhibition of mRNA of a gene selected from the group consisting of DMPK, Antisense to KLHL1, JPH3, AR, IT15, DRPLA, SCA1, SCA2, SCA3/MJD, CACNA1A, SCA7, TBP, PABPN1, PHOX2B, ARX, HOXD13, α-synuclein, SOD1, TNF-a, IL-1b, SCN9A, IKBKB, RELA, IKBKG, PLN, BIM, RUNX2(runt-related transcription factor2, involved in in cleidocranial dysplasia) ZIC2 (Zic family member 2 involved in holoprosencephaly), HOXA13 (homeobox A13 involved in hand-foot-genital syndrome), FOXL2 (forkhead box L2 involved in type II blepharophimosis, ptosis, and epicanthus inversus syndrome), COMP (cartilage oligomeric matrix protein involved in multiple epiphyseal dysplasia.


In some embodiments, the cell may be selected from the group consisting of cardiac cells, skeletal muscle cells, kidney cells, neurons and glial cells.


In certain embodiments, the RNA of the instant invention is for the treatment of neurodegenerative diseases, kidney diseases, heart diseases, inflammation, and muscle disease.


In different embodiments of this aspect of the invention, the parameters of the electric field are tailored to each cell type as to ensure the maximal efficiency of the RNA delivery, as discussed in the description of the methods of the instant invention.


In different embodiments, RNA comprises a siRNA, an shRNA, an aptamer, a spiegelmer, and antimir, a template for a protein or a protein fragment, or a combination thereof





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 demonstrates that the electric stimulation according to the instant invention does not affect cell viability.



FIG. 2 demonstrates that stimulation-mediated uptake of siRNA is frequency-dependent.



FIG. 3 demonstrates that the RNA uptake caused by electrical stimulation is due to a cell-based process.



FIG. 4 demonstrates that the RNA uptake caused by electrical stimulation is at least partially due to a caveolae-mediated endocytotic pathway.



FIG. 5 demonstrates different embodiments of the instant methods and the results thereof in different cell types.



FIG. 6 demonstrates the long-term effect of electrical stimulation on the RNA intake.



FIG. 7 demonstrates that RNA delivered according to the methods of the instant invention keeps its biologic function.



FIG. 8 is a schematic illustration of a device according to one embodiment of the instant invention.



FIG. 9 is a photographic image of a rat with an implanted device without a cap (FIG. 9A) and with the cap (FIG. 9B).



FIGS. 10A and 10B illustrate two protocols used for investigation of the RNA uptake in vivo.



FIG. 11 demonstrates that electrical stimulation improves local uptake of dsRNA in neuronal cells in vivo.



FIG. 12 demonstrates that neurons and glial cells are susceptible to pre-treatment with electric stimulation for enabling dsRNA uptake.



FIG. 13 demonstrates siRNA uptake in neurons within the dorsal and ventral gray horns of the spinal cord.





DETAILED DESCRIPTION OF THE INVENTION

For purposes of better understanding the instant disclosure, the following non-limiting definitions have been provided:


The term “chronically implanted” with respect to a device refers to a device that remains in the body of a patient, after being positioned in a bodily tissue of the patient by a practitioner, for any period of time after the patient encounter with the practitioner is completed and the patient has departed from the presence of the practitioner.


The term “treating” or “treatment” of a disease refers to executing a protocol, which may include administering one or more drugs to a patient (human or otherwise), in an effort to alleviate signs or symptoms of the disease. Alleviation can occur prior to signs or symptoms of the disease appearing, as well as after their appearance. Thus, “treating” or “treatment” includes “preventing” or “prevention” of disease. In addition, “treating” or “treatment” does not require complete alleviation of signs or symptoms, does not require a cure, and specifically includes protocols which have only a marginal effect on the patient.


The term “patient” refers to a biological system to which a treatment can be administered. A biological system can include, for example, an individual cell, a set of cells (e.g., a cell culture), a pathogen, an organ, a tissue, or a multi-cellular organism. A “patient” can refer to a human patient or a non-human patient.


The term “practitioner” refers to a person who uses methods, kits and compositions of the current invention on the patient. The term includes, without limitations, doctors, nurses, scientists, and other medical or scientific personnel.


The terms “field strength” and “electric field strength” refer to a parameter equal to the ratio of voltage to distance between electrodes, i.e., E=V/d, wherein “E” is the field strength, “V” is the voltage and “d” is the distance between electrodes.


The term “uniform” as applied to a parameter of the electric field stimulation does not indicate absolute uniformity and may be 10% of the base parameter (e.g., field strength, duration, frequency, etc).


The term “about” will be understood by persons of ordinary skill in the art and will vary to some extent according to the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.


The terms “RNA” or “RNA agent” refer to nucleic acid molecules comprising a plurality of nucleotides. The majority of these nucleotides comprise ribose, rather than other sugars (e.g., deoxyribose). Thus, in one embodiment, the term RNA may refer to DNA-RNA hybrid, with a proviso that greater than 50% of the nucleotides comprise ribose. Preferably, such molecules comprises at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 99% or 100% of nucleotides having ribose as a sugar.


The nucleotides may be modified in other ways, such as, for example, Such modifications include phosphorothioate linkages, fluorine-derivatized nucleotides (e.g., 2′-O-trifluoromethyl nucleotides2′-O-ethyl-trifluoromethoxy nucleotides, or 2′-O-difluoromethoxy-ethoxy nucleotides), deoxynucleotide overhangs, 2′-O-methylation, 2′-O-allylation, and locked nucleic acid (LNA) substitutions (Dorset and Tuschl, Nat. Rev. Drug Discov. 3:318 (2004); Gilmore et al., J. Drug Targeting 12:315 (2004)). Also see U.S. Patent Publication No. 20060270623 (McSwiggen).


In one embodiment, the 2′-deoxy-2′-fluoronucleotides are present at specifically selected locations in the RNAi agent that are sensitive to cleavage by ribonucleases, such as locations having pyrimidine nucleotides.


In a further set of embodiments, the RNAi agent may be chemically modified on a 3′ end, a 5′ end, or both the 3′ end and the 5′ end. These terminal modifications protect the nucleic acid molecule from exonuclease degradation and may help in delivery and/or localization within a cell. Examples of moieties suitable for the modification of the 5′ end of the RNAi agent include, without limitations, glyceryl, inverted deoxy abasic residue (moiety); 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl)nucleotide, 4′-thio nucleotide; carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2′-inverted nucleotide moiety; 3′-2′-inverted abasic moiety; 1,4-butanediol phosphate; 3′-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3′-phosphate; 3′-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety.


Non-limiting examples of the moieties suitable for modification of the 3′-end of the RNAi agent include glyceryl, inverted deoxy abasic residue (moiety), 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate; 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5′-5′-inverted nucleotide moiety; 5′-5′-inverted abasic moiety; 5′-phosphoramidate; 5′-phosphorothioate; 1,4-butanediol phosphate; 5′-amino; bridging and/or non-bridging 5′-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5′-mercapto moieties. Yet additional suitable modifications of the RNAi agent are described in details in U.S. patent application Ser. No. 11/450,856, filed on Jun. 9, 2006 (McSwiggen), which is incorporated herein by reference to the extent it is not inconsistent with the instant disclosure.


The RNA of the instant invention may be in a single-stranded form (i.e., ssRNA) or a double-stranded form (i.e., dsRNA).


The methods of the present invention utilize routine techniques in the field of molecular biology. Basic texts disclosing general molecular biology methods include Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001) and Ausubel et al., Current Protocols in Molecular Biology (1994).


In a general aspect, the instant invention provides methods for improved efficiency of delivering ribonucleic acids to cells and devices suitable for implementation of these methods.


The methods generally comprise stimulation of cells. In one aspect, the method comprises electrically stimulating an area in a patient's body containing said cell, with a low-voltage electric stimulation followed by delivery of the RNA.


In other words, an aspect of the invention is related to a use of RNA in the manufacture of a medicament for use in a method of delivering said RNA to a cell of a patient, wherein, in said method, a low-voltage electric stimulation is or is to be applied to the cell and said RNA is or is to be administered after the application of the low-voltage stimulation.


In different embodiments, the cells are selected from Adipocytes, Alzheimer type II astrocytes, Ameloblasts, Astrocytes, B cells, Basophil activation cells, Basophil granulocytes, Boettcher cells, Cementoblasts, Chondrocytes, Chromaffin cells, Clara cells, Corticotropes, Cytotoxic T cells, Dendritic cells, Eosinophil granulocytes, Extraglomerular mesangial cells, Gastric chief cells, Goblet cells, Gonadotropes, Hepatocytes, Hypersegmented neutrophils, Intraglomerular mesangial cells, Juxtaglomerular cells, Keratinocytes, Kidney proximal tubule brush border cells, Kupffer cells, Lactotrophs, Leydig cells, Macrophages, Macula densa cells, Magnocellulars, neurosecretory cells, Mast cells, Megakaryocytes, Melanocytes, Microglia, Monocytes, Myocardiocytes, Myocytes, Naive B cells, Natural Killer T cells, Natural killer cells, Neutrophil granulocytes, Nuclear chain cells, Osteoblasts, Osteoclasts, Osteocytes, Ovums, Oxyphil cells (parathyroid), Paneth cells, Parafollicular cells, Parathyroid chief cells, Parietal cells, Pericytes, Perivitelline space cells, Platelets, Pneumocytes, Podocytes, Pre-B cells, Red blood cells, Regulatory T cells, Reticulocytes, S cells, Sertoli cells, Somatotropes, Spermatozoons, Stellate cells, T helper cells, Tendon cells, Thrombocytes, Thyroid epithelial cells, Thyrotropes, Trichocytes (human), Type I pneumocytes, Type II pneumocytes, etc. Notably, the inventors were able to show unexpectedly advantageous results in neurons and muscle cells, which are known to be difficult to transfect. Thus, the other cell types disclosed above would also be susceptible to the methods described in the instant invention.


In other embodiments of invention, cells comprising pathogenic organisms (e.g., viruses) are treated.


In yet other embodiments, the treatment is directed against pathogenic organisms, including, without limitation, bacteria, fungi, protozoa, helmints, etc.


In certain embodiments, the cells are selected from the group consisting of brain cells (such as neurons and glial cells), cardiomyocytes, skeletal muscle cells, and kidney cells, with an electric field having specific parameters for a time period up to about 24 hours, prior to administering the RNA. Importantly, the parameters of the electric field strength are generally insufficient to perforate the membrane, and thus, the methods of the instant invention cannot be considered an “electroporation” in an art-accepted definition of that term (i.e., delivery of genetic material to cells via electrically caused perforations of respective cell membranes).


Generally, the electric stimulation of the instant invention comprises an electric field that has a strength of between about 0.5 V/cm and about 40 V/cm, calculated according to formula I:






E=V/d


wherein in said formula E is the strength, V is Voltage and d is distance between electrodes. The frequency of the stimulation is below about 400 Hz and the duration of each pulse is preferably between about 100 μs and about 500 μs.


In different embodiments, the strength of the electric field is between about 0.5 V/cm and about 2 V/cm, or between about 2 V/cm and about 6 V/cm, or between about 6 V/cm and about 12 V/cm, or between about 12 V/cm and about 28 V/cm, or between about 28 V/cm and about 40 V/cm. Preferably, the strength of the electric field is below 20 V/cm.


The pulse duration is between about 100 μs and about 200 μs, or between about 200 μs and about 300 μs, or between about 300μs and about 400 μs, or between about 400μs and about 500 μs.


In different embodiments, the frequency is between about 4 Hz and about 100 Hz, or between about 100 Hz and about 200 Hz or between about 200 Hz and about 250 Hz or between about 250 Hz and about 300 Hz, or between about 300 Hz and about 350 Hz, or between about 350 Hz and about 400 Hz.


Thus, the instant invention discloses 120 different treatment combinations. Ninety six of these combinations are summarized in the following table.














TABLE 1








Voltage range
Frequency range
Pulse duration



No.
(≈, V/cm)
(≈, Hz)
(≈, ms)









 1
0.5-2  
100-200
 4-100



 2
0.5-2  
100-200
100-200



 3
0.5-2  
100-200
200-250



 4
0.5-2  
100-200
250-300



 5
0.5-2  
100-200
300-350



 6
0.5-2  
100-200
350-400



 7
0.5-2  
200-300
 4-100



 8
0.5-2  
200-300
100-200



 9
0.5-2  
200-300
200-250



10
0.5-2  
200-300
250-300



11
0.5-2  
200-300
300-350



12
0.5-2  
200-300
350-400



13
0.5-2  
300-400
 4-100



14
0.5-2  
300-400
100-200



15
0.5-2  
300-400
200-250



16
0.5-2  
300-400
250-300



17
0.5-2  
300-400
300-350



18
0.5-2  
300-400
350-400



19
0.5-2  
400-500
0.5-2  



20
0.5-2  
400-500
0.5-2  



21
0.5-2  
400-500
0.5-2  



22
0.5-2  
400-500
0.5-2  



23
0.5-2  
400-500
0.5-2  



24
0.5-2  
400-500
0.5-2  



25
2-6
100-200
 4-100



26
2-6
100-200
100-200



27
2-6
100-200
200-250



28
2-6
100-200
250-300



29
2-6
100-200
300-350



30
2-6
100-200
350-400



31
2-6
200-300
 4-100



32
2-6
200-300
100-200



33
2-6
200-300
200-250



34
2-6
200-300
250-300



35
2-6
200-300
300-350



36
2-6
200-300
350-400



37
2-6
300-400
 4-100



38
2-6
300-400
100-200



39
2-6
300-400
200-250



40
2-6
300-400
250-300



41
2-6
300-400
300-350



42
2-6
300-400
350-400



43
2-6
400-500
 4-100



44
2-6
400-500
100-200



45
2-6
400-500
200-250



46
2-6
400-500
250-300



47
2-6
400-500
300-350



48
2-6
400-500
350-400



49
 6-12
100-200
 4-100



50
 6-12
100-200
100-200



51
 6-12
100-200
200-250



52
 6-12
100-200
250-300



53
 6-12
100-200
300-350



54
 6-12
100-200
350-400



55
 6-12
200-300
 4-100



56
 6-12
200-300
100-200



57
 6-12
200-300
200-250



58
 6-12
200-300
250-300



59
 6-12
200-300
300-350



60
 6-12
200-300
350-400



61
 6-12
300-400
 4-100



62
 6-12
300-400
100-200



63
 6-12
300-400
200-250



64
 6-12
300-400
250-300



65
 6-12
300-400
300-350



66
 6-12
300-400
350-400



67
 6-12
400-500
 4-100



68
 6-12
400-500
100-200



69
 6-12
400-500
200-250



70
 6-12
400-500
250-300



71
 6-12
400-500
300-350



72
 6-12
400-500
350-400



73
12-20
100-200
 4-100



74
12-20
100-200
100-200



75
12-20
100-200
200-250



76
12-20
100-200
250-300



77
12-20
100-200
300-350



78
12-20
100-200
350-400



79
12-20
200-300
 4-100



80
12-20
200-300
100-200



81
12-20
200-300
200-250



82
12-20
200-300
250-300



83
12-20
200-300
300-350



84
12-20
200-300
350-400



85
12-20
300-400
 4-100



86
12-20
300-400
100-200



87
12-20
300-400
200-250



88
12-20
300-400
250-300



89
12-20
300-400
300-350



90
12-20
300-400
350-400



91
12-20
400-500
 4-100



92
12-20
400-500
100-200



93
12-20
400-500
200-250



94
12-20
400-500
250-300



95
12-20
400-500
300-350



96
12-20
400-500
350-400










It should be further understood that the methods and/or uses of the instant invention are sufficiently flexible as to allow embodiments where the parameters of the pulses are not uniform. Thus, for example, the pulses may vary in duration or amplitude, the bursts of pulses may vary in the interburst and intraburst characteristics. Such non-uniform electrical stimulation may be potentially advantageous for the embodiments wherein the electrical stimulation is administered to an organ with natural rhythmic electrical activity, such as, for example, heart.


Optionally, the RNA of the instant invention may be administered to the cells within a composition comprising an imaging agent. This embodiment will allow verification of distribution of the composition comprising the RNA, thus optimizing the targeting of the desired cells within the patient's body.


Using the methods of the instant invention, including, without limitation, the combinations selected from those disclosed in Table 1, it is possible to increase the uptake of the RNA by up to at least about 1000% (e.g., at least by about 25%, about 50%, about 75%, about 100%, about 125%, about 150%, about 175%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%, about 500%, about 550%, about 600%, about 650%, about 700%, about 750%, about 800%, about 850%, about 900%, about 950%).


Stimulation of Brain Cells


The parameters of the stimulation with the electric field are specifically tailored to the targeted cell types. If the selected cells are brain cells, e.g., neurons, advantageously, the parameters for the electric stimulation may be those used for DBS, or deep brain stimulation. For example, the inventors have surprisingly discovered that the field strength of about 28 V/cm administered for about 2 hours results in increased uptake of the RNA by Neuro2a cells.


Thus, in different embodiments of the method of administration of RNA to neuronal cells, the following parameters may be used:


a) field strength of greater than about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or 27 and up to about 28 V/cm;


b) duration of treatment of at least about 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and up to about 24 hours;


c) frequency of greater than about 20 Hz, 40 Hz, 60 Hz, 80 Hz, 100 Hz, 120 Hz, 140 Hz, 160 Hz, 180 Hz, or 200 Hz;


d) pulse width of at least about 0.1 msec, 0.2 msec, 0.3 msec, 0.4 msec, 0.5 msec, 0.6 msec, 0.7 msec, 0.8 msec, 0.9 msec, or 1 msec. In some embodiments, the pulses of the electric stimulation may be administered in bursts, such as, for example bursts of several pulses separated by a time interval. The time interval may be greater than about 100 msec, 200 msec, 300 msec, 400 msec, 500 msec, 600 msec, 700 msec, 800 msec, 900 msec, and 1 sec.


In one selected embodiment, the electric field strength is between about 2 and about 12 V/cm, the duration of electric stimulation is greater than about 1 and less than 24 hours (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 hrs), pulse duration is between about 0.1 msec and about 0.5 msec (e.g., about 0.3 msec), and the frequency of the pulses is between about 50 Hz and about 150 Hz (e.g., about 100 Hz).


In another embodiment, the electric field strength is greater than 24 and less than 40 V/cm (e.g., between 26 and 30 V/cm, preferably, about 28 V/cm), with the duration of the stimulation of less than six hours (e.g., about 5, or about 4, or about 3, or about 2, or about 1, or about 0.5 hr), pulse frequency of between about 50 Hz and about 150 Hz (e.g., about 100 Hz) and pulse duration between about 0.1 msec and about 0.5 msec (e.g., about 0.3 msec).


The inventors have also discovered that even though high field strength (e.g., about 28 V/cm) successfully improves uptake of RNA into neuronal cells, some cytotoxicity may be seen in vitro and in vivo. Accordingly, in yet another embodiment, low field strength (below 20 V/cm, such as, for example 10, 6, or 2 V/cm) may be used, for as little as two hours (but, of course, the duration may be greater than two hours), with pulse frequency of between about 50 Hz and about 150 Hz (e.g., about 100 Hz) and pulse duration between about 0.1 msec and about 0.5 msec (e.g., about 0.3 msec).


Notably, Deep Brain Stimulation (DBS) for patients with certain diseases (e.g., Parkinson's disease or Essential tremor) fall within these ranges. For example, typical stimulus parameters employed for DBS for movement disorders are in the range of 2-4 V (or 2-4 mA for a typical DBS electrode impedance of 1,000), 90-180 μs pulse width, and 100-185 Hz. Testerman RL et al., IEEE Eng Med Biol Mag. 2006 September-October; 25(5):74-8. Review. Thus, in selected embodiments, the methods of the instant invention may be administered in conjunction with the DBS to a patient in need thereof, wherein the DBS provides the electrical stimulation according to the instant invention.


Using the parameters outlined in this section, one may improve the uptake of RNA by up to at least about 1000% (e.g., at least by about 25%, about 50%, about 75%, about 100%, about 125%, about 150%, about 175%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%, about 500%, about 550%, about 600%, about 650%, about 700%, about 750%, about 800%, about 850%, about 900%, about 950%).


Inventors have also discovered that out of the multiple cell types present in the brain, neurons are among the cell types most susceptible to the electric field stimulation. Thus, in another embodiment of the invention, the electric stimulation (and the RNA therapy) may also be used for treatment of any part of the patient's body where neuronal bodies are present and where uptake of dsRNA into neurons is desired. For example, such body parts may include spinal cord, dorsal root ganglia, brain and neurons comprising the peripheral nervous system, and enteric nervous system.


Stimulation of Cardiac and Skeletal Muscle Cells.


In this set of embodiments of the instant invention, the electric field is preferably less than 28 V/cm, preferably less than 20 V/cm, more preferably, between about 0.5 V/cm and about 12 V/cm, even more preferably, between about 2 V/cm and about 12 V/cm, e.g., 3, 4, 5, 6, 7, 8, 9, 10, or 11 V/cm.


Due to natural electric activity of the heart muscle, it may be advantageous to tailor the electric stimulation parameters to the natural rhythms of the heart. Thus, especially advantageous embodiments are those where the pulses are administered in bursts. It is necessary to note, nevertheless, that the stimulation in burst is not absolutely necessary to successfully improve RNA uptake by the targeted cells. Thus, in different embodiments, the frequency of stimulation is between about 10 Hz and about 150 Hz. In selected embodiments, the frequency may be between about 80 Hz and about 120 Hz, e.g., about 90 Hz, about 100 Hz, or about 110 Hz. In other embodiments, the stimulation is delivered in bursts, as discussed above. For example, the frequency may be between about 10 Hz and about 50 Hz, e.g., about 15 Hz, about 20 Hz, about 25 Hz, about 30 Hz, about 35 Hz, about 40 Hz, about 45 Hz). In an exemplary embodiment, the frequency is about 20 Hz, and the stimulation comprises bursts of 10 pulses, separated by 500 msec, with the duration of each pulse of about 0.3 msec. However, these numbers (i.e., duration of each pulse, number of bursts, number of pulses in each burst, and interburst interval) may be varied (e.g., the duration of each pulse of about 0.5 msec and correspondingly decreased interburst interval).


The duration of the electric field treatment may be varied between about two and about 24 hours, e.g., 4 hrs, 6, hrs, 8 hrs, 10 hrs, 12 hrs, 14 hrs, 16 hrs, 18 hrs, 20 hrs, 22 hrs.


In selected embodiments, the method comprises determining the heart rate of a patient, and then administering the electrical stimulation according to that heart rate. Further, the bursts of the heart activity may be sensed, and the occurrence of these bursts would provide a signal for administering the respective bursts of the electrical stimulation.


Using these parameters, one can improve RNA intake by up to at least about 1000% (e.g., at least by about 25%, about 50%, about 75%, about 100%, about 125%, about 150%, about 175%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%, about 500%, about 550%, about 600%, about 650%, about 700%, about 750%, about 800%, about 850%, about 900%, about 950%).


Stimulation of Kidney Cells


In another embodiment of the invention, kidney cells are treated with the combination of electric field stimulation and RNA. The inventors have surprisingly discovered that kidney cells are susceptible to the wide varieties of the electric field stimulation. Thus, if the kidney cells are to be treated according to the methods of the instant invention, the strength of the electric field may be in a range of between about 0.5 V/cm and about 60 V/cm, such as for example, 0.8 V/cm, 1 V/cm, 2 V/cm, 5 V/cm, 10 V/cm, 12 V/cm, 15 V/cm, 20 V/cm, 25 V/cm, 20 V/cm, 25 V/cm, 30 V/cm, and 35 V/cm. The frequency of the stimulation may be as low as e.g., about 4 Hz and as high as at least 100 Hz. The duration of the stimulus may be in the range between about 0.1 msec and about 1 msec, e.g., 0.2 msec, 0.3 msec, 0.4 msec, 0.5 msec, 0.6 msec, 0.7 msec, 0.8 msec, or 0.9 msec. The precise duration of the electric stimulation is also not crucial and may be from about 1 hr to about 24 hours, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 hours.


Using these parameters, one can improve RNA intake by up to at least about 1000% (e.g., at least by about 25%, about 50%, about 75%, about 100%, about 125%, about 150%, about 175%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%, about 500%, about 550%, about 600%, about 650%, about 700%, about 750%, about 800%, about 850%, about 900%, about 950%).


RNA


It is important to note that for all embodiments, the RNA may, but does not need to, be administered immediately after the electric field stimulation. In various embodiments, the RNA is administered up to about 24 hours after the disclosed cells have been stimulated for the predetermined amount of time, as described above (e.g., 0.5, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 hours). It is also important to know that the electric field stimulation does not need to stop when RNA is administered. Thus, in some embodiments, the cells may be pre-treated with electric stimulation for the desired amount of time, and then essentially co-treated with the electric stimulation and the RNA. Thus, in additional embodiments, the RNA is delivered to the cells at least 1 minute, at least 5 minutes, at least 30 minutes, at least 45 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours, at least 16 hours, at least 17 hours, at least 18 hours, at least 19 hours, at least hours, at least 21 hours, at least 22 hours, at least 23 hours or 24 hours after the cells have been stimulated. However, as demonstrated in the examples, it is important not to withdraw the RNA treatment within a short time after the electrical stimulation.


Thus, generally, the practitioner of the described method may stimulate the disclosed cells according to the suitable parameters as recited above, then optionally wait for a desired amount of time (up to about 24 hours, as noted in the previous paragraph), and then administer the RNA according to this invention. During the optional waiting time (or any part thereof) or during the RNA delivery, the electric field stimulation may be on or off.


The RNA agents of the instant invention may be used for multiple purposes, such as, for example, as RNA interference agents or to supplement expression of a desired gene. Most generally, the RNA agents may be used either to suppress expression of an undesirable gene (e.g., huntingtin, SCA-1, etc) or to suppress gene expression and/or function implicated in the pathogenesis of a disorder (BACE-1, alpha synuclein, ect). Table 2 describes in part examples of triplet repeat expansion diseases and the mutant gene associated with each disease.









TABLE 2







Triplet Repeat Expansion Disorders


Non-coding repeats











Disease
Symptoms
Gene
Locus
Protein





Dystrophia
Weakness,
DMPK
19q13
Dystrophia


myotonica 1
Myotonia


myotonica






Protein kinase


Spinocerebellar
Ataxia
Antisense
13q21
Undetermined


ataxia 8

to KLHL1


Huntington disease-
Chorea, dementia
JPH3
16q24.3
Junctophilin 3


like2







Polyglutamine disorders











Spinal and bulbar
Weakness
AR
Xq13-q21
Androgen


muscular atrophy



receptor


Huntington disease
Chorea, dementia
IT15
4P16.3
Huntingtin


Dentatorubral-
Ataxia, myoclonic
DRPLA
12p13.31
Atrophin 1


pallidoluysian
epilepsy,


atrophy
dementia


Spinocerebellar
Ataxia
SCA1
6p23
Ataxin 1


ataxia 1


Spinocerebellar
Ataxia
SCA2
12q24.1
Ataxin 2


ataxia 2


Spinocerebellar
Ataxia
SCA3/MJD
14q32.1
Ataxin 3


ataxia 3 (Machado-


Joseph disease)


Spinocerebellar
Ataxia
CACNA1A
19p13
α1A-voltage-


ataxia 6



dependent






calcium






channel






subunit


Spinocerebellar
Ataxia
SCA7
3p12-p13
Ataxin 7


ataxia 7


Spinocerebellar
Ataxia
TBP
6q27
TATA box


ataxia 17



binding






protein







Polyalanine disorders*











Oculopharyngeal
Weakenss
PABPN1
14q11.2-q13
Poly(A)-


dystrophy



binding






protein 2


Congential central
Respiratory
PHOX2B
4p12
Paired-like


hypoventilation
difficulties


homeobox 2B


syndrome


Infantile spasms
Mental
ARX
Xp22.13
Aristaless-



retardation,


related



epilepsy


homeobox, X-






linked


Synpolydactyly
Limb malformation
HOXD13
2q31-q32
Homeobox D13





*Polyalanine expansions have also been reported among mutations in other genes, including RUNX2 (runt-related transcription factor2) in cleidocranial dysplasia, ZIC2 (Zic family member 2) in holoprosencephaly HOXA13 (homeobox A13) in hand-foot-genital syndrome, and FOXL2 (forkhead box L2) in type II blepharophimosis, ptosis, and epicanthus inversus syndrome. Small aspartic acid repeat expansions have been reported among other mutations in the COMP (cartilage oligomeric matrix protein)gene in patients with multiple epiphyseal dysplasia.






Suitable classes of RNA agents for RNA interference include, without limitations, siRNA, shRNA and miRNA. These agents may target selected regions within their respective target mRNAs, including, without limitations, sequences recited in the following Table 3.













TABLE 3








Target Gene



SEQ ID NO:
Target Gene
Nucleotide Base Sequence
Accession #



















1
SCA1
AACCAAGAGCGGAGCAACGAA
NM_000332.3






2
IT15 (Htt)
TGACAGCAGTGTTGATAAA
NM_002111.6





3
IT15 (Htt)
AAGAACGAGTGCTCAATAA
NM_002111.6





4
IT15 (Htt)
TTTATGAACTGACGTTACA
NM_002111.6





5
IT15 (Htt)
GGAGTATTGTGGAACTTAT
NM_002111.6





6
IT15 (Htt)
GAGTATTGTGGAACTTATA
NM_002111.6





7
IT15 (Htt)
AGACCGTGTGAATCATTGT
NM_002111.6





8
IT15 (Htt)
GGTTACAGCTCGAGCTCTA
NM_002111.6





9
IT15 (Htt)
GGTTTTGTTAAAGGCCTTC
NM_002111.6





10
IT15 (Htt)
TGACAGCAGTGTTGATAAATTTGTGTT
NM_002111.6





11
IT15 (Htt)
AAGAACGAGTGCTCAATAATGTTGTCA
NM_002111.6





12
IT15 (Htt)
TTTATGAACTGACGTTACATCATACAC
NM_002111.6





13
IT15 (Htt)
GGAGTATTGTGGAACTTATAGCTGGAG
NM_002111.6





14
IT15 (Htt)
GAGTATTGTGGAACTTATAGCTGGAGG
NM_002111.6





15
IT15 (Htt)
AGACCGTGTGAATCATTGTCTGACAAT
NM_002111.6





16
IT15 (Htt)
GGTTTTGTTAAAGGCCTTCATAGCGAA
NM_002111.6





17
BACE1
AAGGGTGTGTATGTGCCCTAC
NM_012104.3





18
BACE1
AATTGGCTTTGCTGTCAGCGC
NM_012104.3





19
BACE1
AAGACTGTGGCTACAACATTC
NM_012104.3





20
BACE1
AAGGCTGCCTGGAGAAAGGAT
NM_012104.3





21
BACE1
CACTGAATCGGACAAGTTCTT
NM_012104.3





22
BACE1
CATGATCATTGGTGGTATCGA
NM_012104.3





23
BACE1
CATCCTTCCTCAGCAATACCT
NM_012104.3





24
BACE1
CAGACGCTCAACATCCTGGTG
NM_012104.3





25
α-synuclein
CTACGAACCTGAAGCCTAA
NM_000345.3





26
α-synuclein
TCAAGACTACGAACCTGAA
NM_000345.3





27
α-synuclein
CATTAGCCATGGATGTATT
NM_000345.3





28
α-synuclein
ACGAACCTGAAGCCTAAGA
NM_000345.3





29
α-synuclein
GTACAAGTGCTCAGTTCCA
NM_000345.3





30
α-synuclein
GCTTCAATCTACGATGTTA
NM_000345.3





31
α-synuclein
CTAAGTGACTACCACTTAT
NM_000345.3





32
α-synuclein
GTTCAGAAGTTGTTAGTGA
NM_000345.3





33
α-synuclein
AGTTGTTAGTGATTTGCTA
NM_000345.3





34
α-synuclein
GACGTATTGTGAAATTTGT
NM_000345.3





35
SOD1
TCATCAATTTCGAGCAGAA
NM_000454.4





36
SOD1
TGAGTTTGGAGATAATACA
NM_000454.4





37
SOD1
TGGCCGATGTGTCTATTGA
NM_000454.4





38
SOD1
CGATGTGTCTATTGAAGAT
NM_000454.4





39
SOD1
GCATTAAAGGACTGACTGA
NM_000454.4





40
SOD1
TCGTTTGGCTTGTGGTGTA
NM_000454.4





41
SOD1
AATTTCGAGCAGAAGGAAAGT
NM_000454.4





42
SOD1
AAGCATTAAAGGACTGACTGA
NM_000454.4





43
SOD1
AATGTGACTGCTGACAAAGAT
NM_000454.4





44
SOD1
AAGATTCTGTGATCTCACTCT
NM_000454.4





45
TNF-a
CCAGGGACCTCTCTCTAAT
NM_000594.2





46
TNF-a
AGGGACCTCTCTCTAATCA
NM_000594.2





47
TNF-a
GCCTGTAGCCCATGTTGTA
NM_000594.2





48
TNF-a
TGTAGCCCATGTTGTAGCA
NM_000594.2





49
IL-1b
GTGAAATGATGGCTTATTA
NM_000576.2





50
IL-1b
CGATGCACCTGTACGATCA
NM_000576.2





51
IL-1b
TAACTGACTTCACCATGCA
NM_000576.2





52
IL-1b
GAACCTATCTTCTTCGACA
NM_000576.2





53
SCN9A
CAGAAGAACAGAAGAAATA
NM_002977.2





54
SCN9A
TGAAGAAGCTAAACAGAAA
NM_002977.2





55
SCN9A
GGTAAGAGCTACAAAGAAT
NM_002977.2





56
SCN9A
AGGCAGAGGAAGAGATATA
NM_002977.2





57
SCN9A
AGACAGAGATGATGATTTA
NM_002977.2





58
SCN9A
GGGAAAGACAGCAAGGAAA
NM_002977.2





59
SCN9A
GAACAAGACAGAACAGAAA
NM_002977.2





60
SCN9A
GTGAAGAAGACTTTAGAAA
NM_002977.2





61
SCN9A
CCAAAGATTTCCAGGGAGA
NM_002977.2





62
SCN9A
TAACATAGAGTCAGGGAAA
NM_002977.2





63
SCN9A
GAAAGAAGAAACAGAAGAA
NM_002977.2





64
SCN9A
GGAGATAAGACAAGCAGAA
NM_002977.2





65
SCN9A
CTGAATACTAAGAAGGAAA
NM_002977.2





66
SCN9A
GAGAAGAAGCAGAGGCTGA
NM_002977.2





67
SCN9A
GAAAGATGATGATGAAGAA
NM_002977.2





68
SCN9A
TGGGAAACCTGAAGCATAA
NM_002977.2





69
SCN9A
GAACACAGTTGGTTTGAAA
NM_002977.2





70
SCN9A
TGACAGAAGAACAGAAGAA
NM_002977.2





71
SCN9A
AAGAAGAAGCTGAGGCAAT
NM_002977.2





72
SCN9A
TTTCAAAGGCAGAGGAAGA
NM_002977.2





73
SCN9A
CTTGAAGAGTCCAGACAAA
NM_002977.2





74
SCN9A
GCTAAAGAAAGAAGAAACA
NM_002977.2





75
SCN9A
AGAAGAAACAGAAGAAAGA
NM_002977.2





76
SCN9A
GCTGAGAAATTGTCGAAAT
NM_002977.2





77
SCN9A
GAGCAAGCATATTAACAAA
NM_002977.2





78
SCN9A
CATAAAAGATGGAGACAGA
NM_002977.2





79
SCN9A
TAACAAAGCCAGACAAAGA
NM_002977.2





80
SCN9A
AAAGGAAGACAAAGGGAAA
NM_002977.2





81
SCN9A
AAAGGGAGATGCTGAGAAA
NM_002977.2





82
SCN9A
TAACAAACACTGTGGAAGA
NM_002977.2





83
SCN9A
AGTATTGAACAAAGGGAAA
NM_002977.2





84
SCN9A
AGGCGAAGCAGCAGAACAA
NM_002977.2





85
SCN9A
TAGCAGATGTGGAAGGATT
NM_002977.2





86
SCN9A
AAACAAACCTTACGTGAAT
NM_002977.2





87
SCN9A
AAATATGAATGCTGAGGAA
NM_002977.2





88
SCN9A
CCAAAGAAGAAAAGAAAGA
NM_002977.2





89
SCN9A
CTGACAAACTGCATATTTA
NM_002977.2





90
SCN9A
AGGGAGATGCTGAGAAATT
NM_002977.2





91
SCN9A
CATTGAACATGCTGATTAA
NM_002977.2





92
SCN9A
GCATGCAGCTCTTTGGTAA
NM_002977.2





93
SCN9A
AGACAATCTTACAGCAATT
NM_002977.2





94
SCN9A
AAGAAGACCCTGATGCAAA
NM_002977.2





95
SCN9A
GGAAGACAGTGATGGTCAA
NM_002977.2





96
SCN9A
CAGACAAGATCTTCACTTA
NM_002977.2





97
SCN9A
AGCCAGACAAAGAGAAATA
NM_002977.2





98
SCN9A
CTTCGAACTTTCAGAGTAT
NM_002977.2





99
SCN9A
GAGTAGAGCAAGCATATTA
NM_002977.2





100
SCN9A
TGTACTTGCTATAGGAAAT
NM_002977.2





101
SCN9A
GGTCAAGCTATGTGCCTTA
NM_002977.2





102
SCN9A
GAAACAAACCTTACGTGAA
NM_002977.2





103
SCN9A
GATTATGGCTACACGAGCT
NM_002977.2





104
SCN9A
GATGGATTCTCTTCGTTCA
NM_002977.2





105
SCN9A
TGTTTCAGCTCTTCGAACT
NM_002977.2





106
IKBKB
CCGACATTGTGGACTTACA
NM_001556.1





107
IKBKB
GCTTAGATACCTTCATGAA
NM_001556.1





108
IKBKB
GGGAACAAGACCAGAGTTT
NM_001556.1





109
IKBKB
AGATTGACCTGGAGAAGTA
NM_001556.1





110
IKBKB
CTGCTGGCCTGGAGGGAAA
NM_001556.1





111
IKBKB
GCTTAATGAATGAGGATGA
NM_001556.1





112
IKBKB
CAGCAGAAGTACACAGTGA
NM_001556.1





113
IKBKB
GGACATTGTTGTTAGCGAA
NM_001556.1





114
IKBKB
ACTTAAAGCTGGTTCATAT
NM_001556.1





115
IKBKB
TGACAGAGGATGAGAGTCT
NM_001556.1





116
IKBKB
CTGCAGAGCTTGAAGGCCA
NM_001556.1





117
IKBKB
GAGCTGTACAGGAGACTAA
NM_001556.1





118
IKBKB
GAGAAGAAAGTGCGAGTGA
NM_001556.1





119
IKBKB
GGAGAAGTACAGCGAGCAA
NM_001556.1





120
IKBKB
AGAAAGTGCGAGTGATCTA
NM_001556.1





121
IKBKB
GAAAGAGCGCCTTGGGACA
NM_001556.1





122
IKBKB
GCTTCAAGGCCCTGGATGA
NM_001556.1





123
IKBKB
GGTTACAGACGGAAGAAGA
NM_001556.1





124
IKBKB
TGATGAATCTCCTCCGAAA
NM_001556.1





125
IKBKB
AAGTGAAACTCCTGGTAGA
NM_001556.1





126
IKBKB
GGAAACAGGTGAGCAGATT
NM_001556.1





127
IKBKB
GCAAGTTAAATGAGGGCCA
NM_001556.1





128
IKBKB
GAAGAAAGTGCGAGTGATC
NM_001556.1





129
IKBKB
ATGAATGCCTCTCGACTTA
NM_001556.1





130
IKBKB
GGGCCTGGGAAATGAAAGA
NM_001556.1





131
IKBKB
GCGAAGACTTGAATGGAAC
NM_001556.1





132
IKBKB
CCAATAATCTTAACAGTGT
NM_001556.1





133
IKBKB
TTCAAGAGCCCAAGAGGAA
NM_001556.1





134
IKBKB
GGGAAATGGAGCAGGCTGT
NM_001556.1





135
IKBKB
AGACCGACATTGTGGACTT
NM_001556.1





136
IKBKB
TACAGGAGACTAAGGGAAA
NM_001556.1





137
IKBKB
GAAGAGGTGGTGAGCTTAA
NM_001556.1





138
IKBKB
GGGAAATGAAAGAGCGCCT
NM_001556.1





139
IKBKB
ACACAGTGACCGTCGACTA
NM_001556.1





140
IKBKB
ATGAAGAATTCCATGGCTT
NM_001556.1





141
IKBKB
GTTACAGACGGAAGAAGAA
NM_001556.1





142
IKBKB
GGAAGTACCTGAACCAGTT
NM_001556.1





143
IKBKB
TGGGATCACATCAGATAAA
NM_001556.1





144
IKBKB
GAGCTTAATGAATGAGGAT
NM_001556.1





145
IKBKB
CCAAGAAGAGTGAAGAACT
NM_001556.1





146
IKBKB
TGACATTGCCTCTGCGCTT
NM_001556.1





147
IKBKB
TGGCTGAGCGACTGGAGAA
NM_001556.1





148
IKBKB
TTTCAGACGGCAAGTTAAA
NM_001556.1





149
IKBKB
TGGACGACCTAGAGGAGCA
NM_001556.1





150
IKBKB
TAATGAATGAGGATGAGAA
NM_001556.1





151
IKBKB
AGCCAAGAAGAGTGAAGAA
NM_001556.1





152
IKBKB
CAAGAAGAGTGAAGAACTG
NM_001556.1





153
IKBKB
AGAAGAGTGAGGTGGACAT
NM_001556.1





154
IKBKB
AGCGAAGACTTGAATGGAA
NM_001556.1





155
IKBKB
AGGAAACAGGTGAGCAGAT
NM_001556.1





156
IKBKB
CTTAGATACCTTCATGAAA
NM_001556.1





157
RELA
GCATCCAGACCAACAACAA
NM_021975.3





158
RELA
AGCGCATCCAGACCAACAA
NM_021975.3





159
RELA
GTGACAAGGTGCAGAAAGA
NM_021975.3





160
RELA
GGATTGAGGAGAAACGTAA
NM_021975.3





161
RELA
CCCACGAGCTTGTAGGAAA
NM_021975.3





162
RELA
GGAGAAACGTAAAAGGACA
NM_021975.3





163
RELA
GGCGAGAGGAGCACAGATA
NM_021975.3





164
RELA
CTACACAGGACCAGGGACA
NM_021975.3





165
RELA
AAGAGGACATTGAGGTGTA
NM_021975.3





166
RELA
GGAAAGGACTGCCGGGATG
NM_021975.3





167
RELA
TCAAGAGCATCATGAAGAA
NM_021975.3





168
RELA
TGGAGTACCCTGAGGCTAT
NM_021975.3





169
RELA
GAATCCAGTGTGTGAAGAA
NM_021975.3





170
RELA
TCAGTGAGCCCATGGAATT
NM_021975.3





171
RELA
CGTAAAAGGACATATGAGA
NM_021975.3





172
RELA
GGGAAGGAACGCTGTCAGA
NM_021975.3





173
RELA
CCACGAGCTTGTAGGAAAG
NM_021975.3





174
RELA
CTTCCAAGTTCCTATAGAA
NM_021975.3





175
RELA
GCATCCAGACCAACAACAA
NM_021975.3





176
RELA
CTCAAGATCTGCCGAGTGA
NM_021975.3





177
RELA
CGGATTGAGGAGAAACGTA
NM_021975.3





178
RELA
GATTGAGGAGAAACGTAAA
NM_021975.3





179
RELA
GGACATATGAGACCTTCAA
NM_021975.3





180
RELA
TCACCGGATTGAGGAGAAA
NM_021975.3





181
RELA
CAACTGAGCCCATGCTGAT
NM_021975.3





182
RELA
AGGAAAGGACTGCCGGGAT
NM_021975.3





183
RELA
CCAACACTGCCGAGCTCAA
NM_021975.3





184
RELA
GCTGCAGTTTGATGATGAA
NM_021975.3





185
RELA
GACCAGGGACAGTGCGCAT
NM_021975.3





186
RELA
GGGATGAGATCTTCCTACT
NM_021975.3





187
RELA
AGGTGCAGAAAGAGGACAT
NM_021975.3





188
RELA
AGGACATTGAGGTGTATTT
NM_021975.3





189
RELA
GAGAAACGTAAAAGGACAT
NM_021975.3





190
RELA
CATCAAGATCAATGGCTAC
NM_021975.3





191
RELA
CCAAGTTCCTATAGAAGAG
NM_021975.3





192
RELA
AGATCTTCCTACTGTGTGA
NM_021975.3





193
RELA
AGAAAGAGGACATTGAGGT
NM_021975.3





194
RELA
GTCACCGGATTGAGGAGAA
NM_021975.3





195
RELA
ACATATGAGACCTTCAAGA
NM_021975.3





196
RELA
GCTATAACTCGCCTAGTGA
NM_021975.3





197
RELA
TGCAGAAAGAGGACATTGA
NM_021975.3





198
RELA
GAAAGAGGACATTGAGGTG
NM_021975.3





199
RELA
AAGCTGATGTGCACCGACA
NM_021975.3





200
RELA
GATCAATGGCTACACAGGA
NM_021975.3





201
RELA
TGTGTGACAAGGTGCAGAA
NM_021975.3





202
RELA
TTCCAGTACCTGCCAGATA
NM_021975.3





203
RELA
GAGGAGAAACGTAAAAGGA
NM_021975.3





204
RELA
TATGAGACCTTCAAGAGCA
NM_021975.3





205
RELA
ATGAGACCTTCAAGAGCAT
NM_021975.3





206
RELA
AAGAGCATCATGAAGAAGA
NM_021975.3





207
RELA
TGGCAACAGCACAGACCCA
NM_021975.3





208
RELA
CAAGATCAATGGCTACACA
NM_021975.3





209
IKBKG
GGAAGAGCCAACTGTGTGA
NM_003639.3





210
IKBKG
CCAAACAGGAGGTGATCGA
NM_003639.3





211
IKBKG
GGACAAGGCCTCTGTGAAA
NM_003639.3





212
IKBKG
GGAAACTGGTGGAGAGACT
NM_003639.3





213
IKBKG
GGGAGAAGCTGGCCGAGAA
NM_003639.3





214
IKBKG
GCGAGGAGCTTCTGCATTT
NM_003639.3





215
IKBKG
GGATCGAGGACATGAGGAA
NM_003639.3





216
IKBKG
CGGCCAGGATCGAGGACAT
NM_003639.3





217
IKBKG
GAGGAATGCAGCTGGAAGA
NM_003639.3





218
IKBKG
TCGATAAGCTGAAGGAGGA
NM_003639.3





219
IKBKG
TGGAGAAGCTCGATCTGAA
NM_003639.3





220
IKBKG
AAACAGGAGGTGATCGATA
NM_003639.3





221
IKBKG
CCAAACAGGAGGTGATCGA
NM_003639.3





222
IKBKG
AGCAGATGGCTGAGGACAA
NM_003639.3





223
IKBKG
AGAAGCTGGCCGAGAAGAA
NM_003639.3





224
IKBKG
GCTTGGAGGCTGCCACTAA
NM_003639.3





225
IKBKG
TGGCCAAACAGGAGGTGAT
NM_003639.3





226
IKBKG
GGAAGAGCCAACTGTGTGA
NM_003639.3





227
IKBKG
AACAGGAGGTGATCGATAA
NM_003639.3





228
IKBKG
GAATGCAGCTGGAAGATCT
NM_003639.3





229
IKBKG
AGAGGGAGGAGAAGGAGTT
NM_003639.3





230
IKBKG
AGGCGGACTTCCAGGCTGA
NM_003639.3





231
IKBKG
TGGAGCAGCTGCAGAGGGA
NM_003639.3





232
IKBKG
GAGCAGCTGCAGAGGGAGT
NM_003639.3





233
IKBKG
CGTACTGGGCGAAGAGTCT
NM_003639.3





234
IKBKG
GGAGGAGAATCAAGAGCTC
NM_003639.3





235
IKBKG
CCAGCCAGAGGGAGGAGAA
NM_003639.3





236
IKBKG
GCCAGAGGGAGGAGAAGGA
NM_003639.3





237
IKBKG
TGAAGAGGCAGAAGGAGCA
NM_003639.3





238
IKBKG
TGGAAGATCTCAAACAGCA
NM_003639.3





239
IKBKG
CTGAAGAGGCAGAAGGAGC
NM_003639.3





240
IKBKG
AAGAATACGACAACCACAT
NM_003639.3





241
IKBKG
GCAGAGGGAGTACAGCAAA
NM_003639.3





242
IKBKG
CAGCAGATCAGGACGTACT
NM_003639.3





243
IKBKG
AGTGAGCGGAAGCGAGGAA
NM_003639.3





244
IKBKG
GAGCCAACTGTGTGAGATG
NM_003639.3





245
IKBKG
CTGAAGGCCCAGGCGGATA
NM_003639.3





246
IKBKG
CAGAGGGAGTACAGCAAAC
NM_003639.3





247
IKBKG
CAGGAAACTGGTGGAGAGA
NM_003639.3





248
IKBKG
TGAATAGGCACCTCTGGAA
NM_003639.3





249
IKBKG
GAGGCTGCCACTAAGGAAT
NM_003639.3





250
IKBKG
CCCAGTTGCAGGTGGCCTA
NM_003639.3





251
IKBKG
GGGAGTACAGCAAACTGAA
NM_003639.3





252
IKBKG
AGCGCTGCCTGGAGGAGAA
NM_003639.3





253
IKBKG
AATCAAGAGCTCCGAGATG
NM_003639.3





254
IKBKG
CGGCAGAGCAACCAGATTC
NM_003639.3





255
IKBKG
AGAGATGCCAGCAGCAGAT
NM_003639.3





256
IKBKG
AGGCCCAGGCGGATATCTA
NM_003639.3





257
IKBKG
CTGCAGAGGGAGTACAGCA
NM_003639.3





258
IKBKG
TGCAGAGGGAGTACAGCAA
NM_003639.3





259
IKBKG
TGGACACCCTGCAGATACA
NM_003639.3





260
IKBKG
GCACCTGCCTTCAGAACAG
NM_003639.3





261
PLN
AAGTCCAATACCTCACTCGCT
NM_002667.3





262
PLN
AAGCACGTCAAAAGCTACAGA
NM_002667.3





263
PLN
AATTTCTGTCTCATCTTAA
NM_002667.3





264
PLN
GGTCTTCACCAAGTATCAA
NM_002667.3





265
PLN
GGCCATACTCTTACATAAT
NM_002667.3





266
PLN
GGCAAGGAAAATAAAAGAT
NM_002667.3





267
PLN
GCACGTCAAAAGCTACAGA
NM_002667.3





268
PLN
GGCACTGTAGTGAATTATC
NM_002667.3





269
PLN
GCTAGAGTTACCTAGCTTA
NM_002667.3





270
PLN
AAGAAGAGCCTCAACCATT
NM_002667.3





271
PLN
GTCAAAAGCTACAGAATCT
NM_002667.3





272
PLN
CCTCACTCGCTCAGCTATA
NM_002667.3





273
PLN
TCGCTCAGCTATAAGAAGA
NM_002667.3





274
PLN
TGAAATGCCTCAACAAGCA
NM_002667.3





275
PLN
AGCTATAAGAAGAGCCTCA
NM_002667.3





276
PLN
TAATATGTCTCTTGCTGAT
NM_002667.3





277
PLN
CCTCAACAAGCACGTCAAA
NM_002667.3





278
PLN
GGAGAAAGTCCAATACCTC
NM_002667.3





279
PLN
ACAAGCACGTCAAAAGCTA
NM_002667.3





280
PLN
CGTCAAAAGCTACAGAATC
NM_002667.3





281
PLN
ACGTCAAAAGCTACAGAAT
NM_002667.3





282
PLN
GCTACAGAATCTATTTATC
NM_002667.3





283
PLN
GCTATAAGAAGAGCCTCAA
NM_002667.3





284
PLN
ATAAGAAGAGCCTCAACCA
NM_002667.3





285
PLN
TAAGAAGAGCCTCAACCAT
NM_002667.3





286
PLN
GCCTCAACAAGCACGTCAA
NM_002667.3





287
PLN
AGAAGAGCCTCAACCATTG
NM_002667.3





288
PLN
CAATTTCTGTCTCATCTTA
NM_002667.3





289
PLN
TCAACAAGCACGTCAAAAG
NM_002667.3





290
PLN
TTAATATGTCTCTTGCTGA
NM_002667.3





291
PLN
GTCTCTTGCTGATCTGTAT
NM_002667.3





292
PLN
CTTAATATGTCTCTTGCTG
NM_002667.3





293
PLN
TCAGCTATAAGAAGAGCCT
NM_002667.3





294
PLN
CCAATACCTCACTCGCTCA
NM_002667.3





295
PLN
CAAAAGCTACAGAATCTAT
NM_002667.3





296
PLN
CATCTTAATATGTCTCTTG
NM_002667.3





297
PLN
AGAAAGTCCAATACCTCAC
NM_002667.3





298
PLN
CTATAAGAAGAGCCTCAAC
NM_002667.3





299
PLN
ACTCGCTCAGCTATAAGAA
NM_002667.3





300
PLN
TCAAAAGCTACAGAATCTA
NM_002667.3





301
PLN
TATCAATTTCTGTCTCATC
NM_002667.3





302
PLN
TGTCTCTTGCTGATCTGTA
NM_002667.3





303
PLN
AAGCACGTCAAAAGCTACA
NM_002667.3





304
PLN
GCACGTCAAAAGCTACAGA
NM_002667.3





305
PLN
TCAATTTCTGTCTCATCTT
NM_002667.3





306
PLN
TGCCTCAACAAGCACGTCA
NM_002667.3





307
PLN
TCCAATACCTCACTCGCTC
NM_002667.3





308
PLN
CTCACTCGCTCAGCTATAA
NM_002667.3





309
PLN
TACCTCACTCGCTCAGCTA
NM_002667.3





310
PLN
CTGTCTCATCTTAATATGT
NM_002667.3





311
PLN
CTCAACAAGCACGTCAAAA
NM_002667.3





312
PLN
CAACAAGCACGTCAAAAGC
NM_002667.3





313
PLN
TATAAGAAGAGCCTCAACC
NM_002667.3





314
PLN
ATATGTCTCTTGCTGATCT
NM_002667.3





315
PLN
CGCTCAGCTATAAGAAGAG
NM_002667.3





316
PLN
ATCAATTTCTGTCTCATCT
NM_002667.3





317
PLN
TGTCTCATCTTAATATGTC
NM_002667.3





318
PLN
GTCTCATCTTAATATGTCT
NM_002667.3





319
PLN
GTCCAATACCTCACTCGCT
NM_002667.3





320
BIM
TGATGTAAGTTCTGAGTGT
NM_207002.2





321
BIM
CCGAGAAGGTAGACAATTG
NM_207002.2





322
BIM
TGACCGAGAAGGTAGACAA
NM_207002.2





323
BIM
AAAGCAACCTTCTGATGTA
NM_207002.2





324
BIM
ATGTAAGTTCTGAGTGTGA
NM_207002.2





325
BIM
GTTCTGAGTGTGACCGAGA
NM_207002.2





326
BIM
GACCGAGAAGGTAGACAAT
NM_207002.2





327
BIM
GCACCCATGAGTTGTGACA
NM_207002.2





328
BIM
CTACCTCCCTACAGACAGA
NM_207002.2





329
BIM
CCCTACAGACAGAGCCACA
NM_207002.2





330
BIM
GTGTGACCGAGAAGGTAGA
NM_207002.2





331
BIM
AAGCAACCTTCTGATGTAA
NM_207002.2





332
BIM
GAGTGTGACCGAGAAGGTA
NM_207002.2





333
BIM
GCAACCTTCTGATGTAAGT
NM_207002.2





334
BIM
TGACAAATCAACACAAACC
NM_207002.2





335
BIM
GCAAAGCAACCTTCTGATG
NM_207002.2





336
BIM
TGAGTGTGACCGAGAAGGT
NM_207002.2





337
BIM
CAAAGCAACCTTCTGATGT
NM_207002.2





338
BIM
GCCCAGCACCCATGAGTTG
NM_207002.2





339
BIM
GTGACAAATCAACACAAAC
NM_207002.2





340
BIM
CCTACAGACAGAGCCACAA
NM_207002.2





341
BIM
AGTGTGACCGAGAAGGTAG
NM_207002.2





342
BIM
GGCAAAGCAACCTTCTGAT
NM_207002.2





343
BIM
CTCCCTACAGACAGAGCCA
NM_207002.2





344
BIM
CTACAGACAGAGCCACAAG
NM_207002.2





345
BIM
ACACAAACCCCAAGTCCTC
NM_207002.2





346
BIM
GCCAGGCCTTCAACCACTA
NM_207002.2





347
BIM
GAGAAGGTAGACAATTGCA
NM_207002.2





348
BIM
AAATCAACACAAACCCCAA
NM_207002.2





349
BIM
GGTAGACAATTGCAGCCTG
NM_207002.2





350
BIM
CCCTACCTCCCTACAGACA
NM_207002.2





351
BIM
GAGCCCAGCACCCATGAGT
NM_207002.2





352
BIM
CTTGCCAGGCCTTCAACCA
NM_207002.2





353
BIM
AGAAGGTAGACAATTGCAG
NM_207002.2





354
BIM
GAAGGTAGACAATTGCAGC
NM_207002.2





355
BIM
TCTGAGTGTGACCGAGAAG
NM_207002.2





356
BIM
GTGACCGAGAAGGTAGACA
NM_207002.2





357
BIM
AAGTTCTGAGTGTGACCGA
NM_207002.2





358
BIM
TGCCAGGCCTTCAACCACT
NM_207002.2





359
BIM
CGAGAAGGTAGACAATTGC
NM_207002.2





360
BIM
GTAAGTTCTGAGTGTGACC
NM_207002.2





361
BIM
TCTGATGTAAGTTCTGAGT
NM_207002.2





362
BIM
GCCCCTACCTCCCTACAGA
NM_207002.2





363
BIM
ACAGGAGCCCAGCACCCAT
NM_207002.2





364
BIM
ACCGAGAAGGTAGACAATT
NM_207002.2





365
BIM
AGCCCAGCACCCATGAGTT
NM_207002.2





366
BIM
CAAATCAACACAAACCCCA
NM_207002.2





367
BIM
CCTCCTTGCCAGGCCTTCA
NM_207002.2





368
BIM
CTTCTGATGTAAGTTCTGA
NM_207002.2





369
BIM
AGGTAGACAATTGCAGCCT
NM_207002.2









Further non-limiting examples of anti-htt siRNAs are provided in Table 4. It should be noted that in this table, the odd and even numbered siRNA strands are complementary to each other. It should be further noted that the siRNAs in table 4 are targeted to specific SNP variants of htt mRNA. The SNP nucleotide is shown in bold.










TABLE 4





SEQ ID



NO
SEQUENCE







370
5′-aguggaugagggagcaggc-3′





371
5′-gccugcucccucauccacu-3′





372
5′-gcacacaguggaugaggga-3′





373
5′-ucccucauccacugugugc-3′





374
5′-ugaagugcacacaguggau-3′





375
5′-auccacugugugcacuuca-3′





376
5′-cacacaguggaugagggag-3′





377
5′-cucccucauccacugugug-3′





378
5′-gcacacaguagaugaggga-3′





379
5′-ucccucaucuacugugugc-3′





380
5′-ugaagugcacacaguagau-3′





381
5′-aucuacugugugcacuuca-3′





382
5′-aguagaugagggagcaggc-3′





383
5′-gccugcucccucaucuacu-3′





384
5′-cacacaguagaugagggag-3′





385
5′-cucccucaucuacugugug-3′





386
5′-ggcgcagacuuccaaaggc-3′





387
5′-gccuuuggaagucugcgcc-3′





388
5′-cacaagggcgcagacuucc-3′





389
5′-ggaagucugcgcccuugug-3′





390
5′-gcagggcacaagggcgcag-3′





391
5′-cugcgcccuugugcccugc-3′





392
5′-acaagggcgcagacuucca-3′





393
5′-uggaagucugcgcccuugu-3′





394
5′-cacaagggcacagacuucc-3′





395
5′-ggaagucugugcccuugug-3′





396
5′-gcagggcacaagggcacag-3′





397
5′-cugugcccuugugcccugc-3′





398
5′-ggcacagacuuccaaaggc-3′





399
5′-gccuuuggaagucugugcc-3′





400
5′-acaagggcacagacuucca-3′





401
5′-uggaagucugugcccuugu-3′





402
5′-caaugguacagcucuuccu-3′





403
5′-aggaagagcuguaccauug-3′





404
5′-caucccaaugguacagcuc-3′





405
5′-gagcuguaccauugggaug-3′





406
5′-ccaucccaaugguacagcu-3′





407
5′-agcuguaccauugggaugg-3′





408
5′-uuguggccaucccaauggu-3′





409
5′-accauugggauggccacaa-3′





410
5′-caacgguacagcucuuccu-3′





411
5′-aggaagagcuguaccguug-3′





412
5′-caucccaacgguacagcuc-3′





413
5′-gagcuguaccguugggaug-3′





414
5′-ccaucccaacgguacagcu-3′





415
5′-agcuguaccguugggaugg-3′





416
5′-uuguggccaucccaacggu-3′





417
5′-accguugggauggccacaa-3′





418
5′-gucggcaagcagagcuccc-3′





419
5′-gggagcucugcuugccgac-3′





420
5′-agccagucggcaagcagag-3′





421
5′-cucugcuugccgacuggcu-3′





422
5′-cagccagucggcaagcagagc-3′





423
5′-gcucugcuugccgacuggcug-3′





424
5′-gucucacagccagucggca-3′





425
5′-ugccgacuggcugugagac-3′





426
5′-gucagcaagcagagcuccc-3′





427
5′-gggagcucugcuugcugac-3′





428
5′-agccagucagcaagcagag-3′





429
5′-cucugcuugcugacuggcu-3′





430
5′-cagccagucagcaagcagagc-3′





431
5′-gcucugcuugcugacuggcug-3′





432
5′-gucucacagccagucagca-3′





433
5′-ugcugacuggcugugagac-5′





434
5′-cacauacauuagcucaaac-3′





435
5′-guuugagcuaauguaugug-3′





436
5′-cagcgucacauacauuagc-3′





437
5′-gcuaauguaugugacgcug-3′





438
5′-acauacauuagcucaaacu-3′





439
5′-aguuugagcuaauguaugu-3′





440
5′-cauuagcucaaacugguug-3′





441
5′-caaccaguuugagcuaaug-3′





442
5′-cacauacaucagcucaaac-3′





443
5′-guuugagcugauguaugug-3′





444
5′-cagcgucacauacaucagc-3′





445
5′-gcugauguaugugacgcug-3′





446
5′-acauacaucagcucaaacu-3′





447
5′-aguuugagcugauguaugu-3′





448
5′-caucagcucaaacugguug-3′





449
5′-caaccaguuugagcugaug-3′





450
5′-caacaucaaagcaucuuga-3′





451
5′-ucaagaugcuuugauguug-3′





452
5′-ccggccaacaucaaagcau-3′





453
5′-augcuuugauguuggccgg-3′





454
5′-uccggccaacaucaaagca-3′





455
5′-ugcuuugauguuggccgga-3′





456
5′-caaguuuccggccaacauc-3′





457
5′-gauguuggccggaaacuug-3′





458
5′-caaaaucaaagcaucuuga-3′





459
5′-ucaagaugcuuugauuuug-3′





460
5′-ccggccaaaaucaaagcau-3′





461
5′-augcuuugauuuuggccgg-3′





462
5′-uccggccaaaaucaaagca-3′





463
5′-ugcuuugauuuuggccgga-3′





464
5′-caaguuuccggccaaaauc-3′





465
5′-gauuuuggccggaaacuug-3′





466
5′-gaauuacuguccccaucuc-3′





467
5′-gagauggggacaguaauuc-3′





468
5′-gcguugaauuacugucccc-3′





469
5′-ggggacaguaauucaacgc-3′





470
5′-agcguugaauuacuguccc-3′





471
5′-gggacaguaauucaacgcu-3′





472
5′-ucuucuagcguugaauuac-3′





473
5′-guaauucaacgcuagaaga-3′





474
5′-gaaguacuguccccaucuc-3′





475
5′-gagauggggacaguacuuc-3′





476
5′-gcguugaaguacugucccc-3′





477
5′-ggggacaguacuucaacgc-3′





478
5′-agcguugaaguacuguccc-3′





479
5′-gggacaguacuucaacgcu-3′





480
5′-ucuucuagcguugaaguac-3′





481
5′-guacuucaacgcuagaaga-3′





482
5′-uagcguugaauuacugucc-3′





483
5′-ggacaguaauucaacgcua-3′





484
5′-uagcguugacuuacugucc-3′





485
5′-ggacaguaagucaacgcua-3′





486
5′-uagcguugaaguacugucc-3′





487
5′-ggacaguacuucaacgcua-3′





488
5′-uagcguugauguacugucc-3′





489
5′-ggacaguacaucaacgcua-3′





490
5′-cacauacauuggcucaaac-3′





491
5′-guuugagccaauguaugug-3′





492
5′-cacauacaucggcucaaac-3′





493
5′-guuugagccgauguaugug-3′









The exemplary targets provided above are suitable for neurodegenerative diseases (e.g., anti-htt siRNAs, anti-BACE-1 siRNAs, etc), heart diseases (e.g., anti-phospholamban siRNAs), treatment of inflammation and diseases associated with inflammation, such as schiatica (e.g., anti-TNF, anti-IL-1b siRNAs, anti-IKBKG, Anti-relA siRNAs).


The indication for use of anti-BIM siRNA is for polycystic kidney disease. Anti-BIM siRNA (specifically shRNA) has been shown to prevent polycystic kidney disease in mice. Reference: Cell Death and Differentiation (2005) 12, 831-833. doi:10.1038/sj.cdd.4401603. The above reference also defines the siRNA complementary to target sequence: TGATGTAAGTTCTGAGTGTG (SEQ ID NO: 494) as being most efficacious.


Of course, other diseases may also be targeted. A person of ordinary skill in the art possesses sufficient knowledge to select the appropriate gene for the selected disease or a condition.


In some embodiments, and depending on the problem in front of the practitioner, other RNA interference agents may be used. These methods are particularly suitable for delivering RNA to cells which are concentrated in one location within a patient (e.g., a subthalamic nucleus or a tumor, including, without limitations, benign and malignant tumors). For example, these methods may be used to treat localized infections or inflammations, autoimmune diseases, certain viral diseases, particularly those where the pathogen resides in certain cell types (e.g., herpes zoster, where the virus resides in trigeminal nucleus).


The siRNA molecules targeted to desired sequences can be designed based on criteria well known in the art (e.g., Elbashir et al., EMBO J. 20:6877 (2001)). For example, the target segment of the target mRNA preferably should begin with AA (most preferred), TA, GA, or CA; the GC ratio of the siRNA molecule preferably should be 45-55%; the siRNA molecule preferably should not contain three of the same nucleotides in a row; the siRNA molecule preferably should not contain seven mixed G/Cs in a row; the siRNA molecule preferably should comprise two nucleotide overhangs (preferably TT) at each 3′ terminus; the target segment preferably should be in the ORF region of the target mRNA and preferably should be at least 75 by after the initiation ATG and at least 75 by before the stop codon; and the target segment preferably should not contain more than 16-17 contiguous base pairs of homology to other coding sequences.


Based on some or all of these criteria, siRNA molecules targeted to desired sequences can be designed by one of skill in the art using the aforementioned criteria or other known criteria (e.g., Gilmore et al., J. Drug Targeting 12:315 (2004); Reynolds et al., Nature Biotechnol. 22:326 (2004); Ui-Tei et al., Nucleic Acids Res. 32:936 (2004)). Such criteria are available in various web-based program formats useful for designing and optimizing siRNA molecules (e.g., siDESIGN Center at Dharmacon; BLOCK-iT RNAi Designer at Invitrogen; siRNA Selector at Wistar Insitute; siRNA Selection Program at Whitehead Institute; siRNA Design at Integrated DNA Technologies; siRNA Target Finder at Ambion; and siRNA Target Finder at Genscript).


siRNA molecules targeted to desired sequences can be produced in vitro by annealing two complementary single-stranded RNA molecules together (one of which matches at least a portion of a desired nucleic acid sequence) (e.g., U.S. Pat. No. 6,506,559) or through the use of a short hairpin RNA (siRNA) molecule which folds back on itself to produce the requisite double-stranded portion (Yu et al., Proc. Natl. Acad. Sci. USA 99:6047 (2002)). Such single-stranded RNA molecules can be chemically synthesized (e.g., Elbashir et al., Nature 411:494 (2001)) or produced by in vitro transcription using DNA templates (e.g., Yu et al., Proc. Natl. Acad. Sci. USA 99:6047 (2002)). When chemically synthesized, chemical modifications can be introduced into the siRNA molecules to improve biological stability. Such modifications include phosphorothioate linkages, fluorine-derivatized nucleotides, deoxynucleotide overhangs, 2′-O-methylation, 2′-O-allylation, and locked nucleic acid (LNA) substitutions (Dorset and Tuschl, Nat. Rev. Drug Discov. 3:318 (2004); Gilmore et al., J. Drug Targeting 12:315 (2004)).


In other embodiments, the RNA of the instant invention is in a form of an aptamer, a spiegelmer, an antimir, or a combination thereof. Aptamers are nucleic acid structures which can bind to a target molecule in a way which is conceptually similar to antigen-antibody recognition. Aptamers may be selected by random library screening comprising, in different embodiments, more than 1015 different random sequences flanked by pre-determined sequences as to provide easily-identifiable PCR substrate.


Spiegelmers are subset of the aptamers which are created using L-nucleotides rather than naturally occurring D-nucleotides. Spiegelmers, therefore, are the mirror images of aptamers comprising D-nucleotides. The selection of spiegelmers is based on a simple logic: if an aptamer binds a mirror image of the target, then the mirror image of the aptamer (i.e., the spiegelmer) will bind the target itself. Thus, suitable spiegelmers may be selected by screening libraries of aptamers with mirror images of the targets.


Antimirs are short RNA molecules which bind to miRNAs naturally present in the cells. The methods of antimir selection are similar to those of siRNA selection, with the use of miRNA as a target.


In some embodiments, the RNA agents of the instant invention may be administered as vectorless RNA molecules.


In other embodiments, the dsRNA may be included within an RNA vector, which may be a single-stranded or a double-stranded RNA vector. The RNA strand (sense or antisense) which is to be incorporated into the vector, depends on whether the vector carries a positive or negative sense RNA. Suitable positive sense RNA vectors include, without limitations, Sindbis virus/replicons, Semliki Forest virus, Poliovirus, and Kunjin virus. Negative sense RNA viruses include, without limitations, Influenza virus, Rabies virus, Vesicular stomatitis virus, Respiratory syncytial virus, Sendai virus, SV5. The above represents a partial list of positive and negative sense RNA viruses, which have been genetically engineered to express foreign proteins. Some of the constructs give rise to infectious (attenuated) viruses, others form noninfectious replicons, which are restricted to replication (and expression of the foreign gene) in the transfected/infected cell. See, e.g, Palese, Proc Natl Acad Sci USA. 1998 October 27; 95(22): 12750-12752. A person of ordinary skill in the art would appreciate that the vectors which do not result in the infection is generally preferred. See, e.g., Li et al., J. of Virol., 2000, 74(14): 6564-6569.


The methods of preparing vectorless RNA, ssRNA viruses and dsRNA viruses are well-known in the art. For example, vectorless RNA agents may be produced by direct chemical synthesis. The RNA vectors may be produced according to the techniques described, for example, in U.S. Pat. Nos. 6,316,243, 6,544,785, 7,384,774, and 7,276,356.


The amount of the therapeutic of the present invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques, well established in the administration of therapeutics. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and the patient's needs.


The concentration of the naked RNA may comprise, in different embodiments, up to 24 mg/ml, e.g., about 1 mg/ml, or about 2 mg/ml or about 3 mg/ml or about 4 mg/ml or about 5 mg/ml or about 6 mg/ml or about 7 mg/ml or about 8 mg/ml or about 9 mg/ml or about 10 mg/ml or about 11 mg/ml or about 12 mg/ml or about 13 mg/ml or about 14 mg/ml or about 15 mg/ml or about 15 mg/ml or about 16 mg/ml or about 17 mg/ml or about 18 mg/ml or about 19 mg/ml or about 20 mg/ml or about 21 mg/ml or about 22 mg/ml or about 23 mg/ml.


If the RNA is administered within a virus, the dose of the virus may be between about 103 to 1015 infectious units of viral vector per microliter delivered in 1 to 3000 microliters of single injection volume. In different embodiments, the additional amounts of infections units of vector per micro liter would generally contain about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014 infectious units of viral vector delivered in about 10, 50, 100, 200, 500, 1000, or 2000 microliters.


In another embodiment, the RNA of the instant invention may be delivered systemically (in addition to, or instead of the local delivery). Thus, it would pass the electrostimulated area and be taken up by the cells in the target area. Various modes of systemic delivery are known in the art including without limitations, intravascular delivery (including both intravenous and intraarterial delivery), intrathecal delivery, intraventricular delivery, intramuscular delivery, ingestion, intranasal delivery, intraocular delivery, intrapulmonary delivery, etc.


Particularly advantageous in these embodiments would be a formulation which protects the RNA from endo- and exoribonucleases naturally present in the patient's body.


In these embodiments, the composition would be administered in a dose which does not result in a therapeutically effective intake of the RNA by the cell in the non-stimulated area. Preferably, the RNA is administered in sufficiently low dose to avoid or minimize potential side effects, including, without limitation, immune response. At the same time, the dose should be sufficient to provide high enough concentration of the RNA so that the intake of RNA by the cells which are electrically stimulated according to the methods of the instant invention, would result in a therapeutically effective change in the amount of the target mRNA or the target protein.


Also envisioned is an external system that would pass a patient's blood through an electrical stimulator, with the addition of siRNA, in order to treat a septic condition. In one embodiment, anti-BIM siRNA is used as an inhibitor of sepsis. See, e.g., Schwulst et al., Shock. 2008 30(2):127-34, which states that “Treatment with Bim siRNA in vivo has the potential to be an effective therapy in the treatment of sepsis.”


Devices


In another broad aspect, the instant application provides devices suitable for the instant invention.


Generally, the devices of the instant invention comprise at least two electrodes and a catheter having an outlet opening for delivery of RNA. Generally, the outlet opening of the catheter is located between the electrodes. The catheter is fluidly connected to a reservoir comprising a composition comprising the RNA. Thus, for example, in one embodiment, the device comprises a plurality of electrodes; a catheter, comprising a wall and a cavity, wherein the members of said plurality of electrodes are disposed within or on the surface of said wall, a reservoir containing a composition comprising the nucleic acid sequence, said reservoir fluidly connected with said catheter, a pump operably connected to said reservoir, a processor operably connected to the members of said plurality of electrodes and adapted to receive electrical signals from said members and to deliver an electric field to said members. In one embodiment, the processor is adapted to actuate the pump after receiving a signal from the members of the plurality of electrodes. Further, considering that the strength of the electric field is the greatest on a straight line between the electrodes and predictably falls as the distance from that line increases, it is possible to provide a selected array of electrodes located as to provide the electric field of a pre-desired shape.


Other modifications of this basic device are possible. For example, the electrodes do not need to be integral with the catheter walls. Further, the electrodes may be configured in an external array which, in some embodiments would be placed onto the skin of the patient: e.g., an upper torso in the heart area, or a lower torso to provide a suitable electric field for the delivery of siRNA to kidneys, or the cranium for delivery of the RNA to the brain of the patient.


Considering that RNA is easily degradable, it may be advantageous in some embodiments to assure that the reservoir and the channels connecting the outlet opening and reservoir, and the composition are RNAse-free. This goal may be achieved, for example, by coating the surfaces with an RNAse inhibitor and/or by ultrafiltered water. See, e.g., Purad and Mabic, “RNase Undetectable In Water After Ultrafiltration” Biosci, Tech. 11: 26, 28 (2004). Another option of achieving the same result is preparing a DEPC-treated autoclaved water for the composition. During heat treatment, DEPC breaks down to ethanol and CO2, and thus, the DEPC treated water is not toxic.


The devices may be further modified based on the organ which is to be treated (e.g., brain, heart, kidney, spinal cord). It should be further understood that if the use of the devices recited in the instant disclosure requires additional steps (e.g., the location of the predetermined area within a target organ), the methods of the instant invention may also entail optional additional steps, not necessarily limited to the structures of the devices recited in this application.


In one embodiment, the target area is within the central nervous system, e.g., the patient's brain. In this embodiment, the catheter may comprise an intracranial access catheter. The catheter will have a distal tip, which can be placed either in the parenchymal tissue of the brain or within a cerebral ventricle.


Generally, neurons affected with Huntington's disease reside in striatum, neurons affected with Alzheimer's disease reside in nucleus basalis of Meynart and the cerebral cortex, and neurons affected with Parkinson's disease reside in the substantia nigra. Thus, in different embodiments depending on the disease, the device delivers the therapies according to the methods of the instant invention to nucleus basalis of Meynart and the cerebral cortex, striatum, and/or the substantia nigra.


However, the methods of the instant invention are not limited to the target areas recited above. All substructures in central nervous system succeptible to DBS are also candidates for the treatment using the instant methods. For example, DBS targets subthalamic nucleus or globus pallidus in Parkinson's disease. There is a possibility of siRNA therapy in these regions too, e.g. to reduce neuron excitability (one of the mechanisms proposed by which DBS works) and enhance the effect of DBS.


Other applications of the instantly disclosed devices and methods to the treatment of nervous system include treatment of pain, sciatica, neuropathy, inflammation, etc. In these cases, the suitable targets may be inflammatory cytokines, NFKB, TNFX or voltage-gated sodium channels, SCN9A, and other compounds which are known to participate in generation, propagation, sustenance and/or amelioration of pain.


The target area may be located by many methods. For example, for some application, the targeted area may be located by stereotactical or gross anatomical atlases. In other embodiments, when the precise location of the targeted area is crucial, e.g., when the at least partially reversible gene therapy system is delivered into the brain of the patient, other mapping means may be used. Such mapping means include, without limitation, Positron Emission Tomography and Single Photon Emission Computed Tomography (PET and SPECT, respectively), pharmacological Magnetic Resonance Imaging (phMRI), functional MRI (fMRI), and contrast-enhanced computerized tomography (CT) scan.


In another embodiment, Computer-aided atlas-based functional neurosurgery methodology can be used to accurately and precisely inject the deoxyribonucleic acid of the present invention. Such methodologies permit three-dimensional display and real-time manipulation of cerebral structures. Neurosurgical planning with mutually preregistered multiple brain atlases in all three orthogonal orientations is therefore possible and permits increased accuracy of target definition for treatment injection or implantation, reduced time of the surgical procedure by decreasing the number of tracts, and facilitates planning of more sophisticated trajectories. See e.g. Nowinski W. L. et al., Computer-Aided Stereotactic Functional Neurosurgery Enhanced by the Use of the Multiple Brain Atlas Database, IEEE Trans Med Imaging 19(1); 62-69:2000.


Preferably, the pre-determined target area in the brain of the patient is determined on an individual basis, e.g., by real time image guidance, so that the neurosurgeon will see exactly where the catheter is being placed. Suitable systems exist for this particular embodiment, including, without limitation, STEALTH station developed by Surgical Navigation Technologies, a division of Medtronic. This tool incorporates preoperative images, including MRI, CT, and functional imaging studies into the computers in the operating room. A hand held probe linked to the computer can be used to point anywhere on the patients head or brain, with the corresponding area shown with great accuracy on a computer screen. Thus, there is no need to guess at the relationship between an area on or in the brain, inspected by sight and where that corresponds to the patient's preoperative images. Medtronic NT StealthStation® Treon™, further refines the computerized technologies of multi-dimensional imaging and navigation to enable neurosurgeons to precisely plan, re-plan, and visualize a procedure as it proceeds deep within the brain for treating neurological disorders in a living human patient.


As discussed above, the device may provide a plurality of electrodes positioned as to ensure the pre-determined shape of the electric field. In the embodiments where the brain is treated, the electrodes may be positioned as to achieve an electric field in the general shape of a pre-designed structure, e.g., in the shape of striatum, or caudate/putamen, thus further ensuring that the RNA of the instant invention is delivered to the desired brain structure. Similarly, if a ganglion (e.g., a dorsal root ganglion) is selected for the treatment, electrodes may be designed to ensure that the greatest electric field strength is within said ganglion.


In other embodiments, the location of the electrodes is verified after the insertion, e.g., through recording of the electric activity of the brain area surrounding the electrode. Optionally, the electrodes may be stimulated to invoke motor response from the patient to verify correct placement of catheter and then to apply the methods of the instant invention.


In other embodiments, e.g., where the heart is treated, the electrodes may also have the capability of sensing the pulses of naturally occurring electrical activity in the heart. The onset of such naturally occurring pulses would serve as a signal for delivering the coinciding bursts of the electrical activity according to the methods of the instant invention. Thus, in this embodiment, the electrodes would communicate the natural rhythms of the heart to the processor which, in turn, would initiate the delivery of the electrical field therapy to the heart.


In another aspect a kit is provided for practicing the methods according to any of the above-referenced embodiments. Briefly, the kit comprises a plurality of electrodes, a composition comprising RNA, and a processor adapted to actuate an electric stimulation by the members of said plurality of electrodes, to receive a signal from the members of said plurality of electrodes and, to actuate release of at least a portion of said composition comprising RNA within a predetermined time period after receiving said signal from the members of said plurality of electrodes.


Thus, the processor receives the signal from the members of the plurality of electrodes at a predetermined time, preferably, upon the beginning of the stimulation or upon the end of the stimulation. After a pre-determined time period, the processor actuates the release of at least the portion of the composition comprising RNA. The pre-determined period of time may range from, e.g., immediately after the processor receives signal, and up to 24 hours later. Thus, in different embodiments, the RNA is delivered to the cells at least 1 minute, at least 5 minutes, at least 30 minutes, at least 45 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least hours, at least 15 hours, at least 16 hours, at least 17 hours, at least 18 hours, at least 19 hours, at least 20 hours, at least 21 hours, at least 22 hours, at least 23 hours or 24 hours after the processor receives the signal from electrodes.


In selected embodiments, the composition is provided within a reservoir which, preferably, can be connected, or is connected, to a pump, said pump adapted to receive the signal from the processor, thus actuating the release of at least the portion (preferably, having pre-determined volume) of the RNA composition into the patient.


Optionally, a catheter is also provided. The catheter should be connectable to the reservoir, so that the signal from the processor to the pump will result in release of at least the portion of the RNA composition through a distal opening of the catheter.


In certain embodiments, it may be beneficial to combine the members of the plurality of electrodes and the catheter. For example, the electrodes may be positioned within or on the surface of a wall, or walls, of the catheter. In these embodiments, advantageously, one needs to perform only one placement. However, this requirement is not crucial, and multiple placements (e.g., for each electrode and for the catheter) may be performed. Separate catheter and electrodes may also be used if the desired location is such that spatial consideration prevents positioning of the combined device.


Specific embodiments according to the methods of the present invention will now be described in the following examples. The examples are illustrative only, and are not intended to limit the remainder of the disclosure in any way.


Examples
Example 1
Electric Stimulation Leads to an Increased Uptake of RNA but Not of DNA or Small Molecules

HEK-293T cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (10%), penicillin (100 IU/ml) and streptomycin (100 μg/ml) at 37° C. When the cells reached ˜70% confluency, they were electrically stimulated as follows:


DURATION 2 hours,


FREQUENCY 100 Hz,


FIELD STRENGTH 2 V/cm,


PULSE LENGTH 0.3 msec.


Immediately before stimulation, enhanced green fluorescent protein (GFP)-encoding supercoiled plasmid DNA (1 μg/ml) (pEGFP-C1, Clontech), rhodamine-conjugated 18-mer single stranded oligodeoxynucleotide (1 μg/ml) (Midland Certified Reagent Company), Alexa Fluor 660-conjugated short (530 base pairs) expression DNA cassettes (1 μg/ml), trypan blue dye (0.004%), or Alexa Fluor 555 hydrazide tris(triethylammonium salt) (1 μg/ml) (Invitrogen) were added to cells. Forty eight hours after stimulation, the cells were washed with sterile phosphate-buffered saline (pH 7.4) and nucleic acid uptake was estimated using fluorescence microscopy or dye uptake was estimated using bright-field microscopy.


Electrical stimulation did not increase the uptake of DNA or dye molecules in cells.


Example 2
Electrical Stimulation Does Not Affect Cell Viability

HEK-293 T cells were cultured as described in Example 1. Cells were treated with fluorophore-labeled RNA (siGLO Red, 1 μg/ml, Dharmacon). Electrical stimulation was performed as described in Example 1 with increasing electric field strength (0 V/cm; no stimulation group). Cell viability was accessed forty eight later using the MTT assay (performed per manufacturer's instructions; Trevigen Inc., Gaithersburg, Md.).


As shown in FIG. 1, stimulation with the electric fields of the chosen strength did not affect cell viability (FIG. 1).


Example 3
Uptake of RNA is Dependent on the Frequency of Electric Stimulation

HEK-293T cells were cultured as described in Example 1. Cells were treated with fluorophore-labeled RNA (siGLO Red, 1 μg/ml, Dharmacon). Electrical stimulation was performed as described in Example 1 with increasing frequencies (0 Hz; no stimulation group) as shown in Figure. After treatment, fluorophore uptake within cells was estimated using fluorescence microscopy.


This evidence suggests that even though low frequency stimulation (4 Hz) noticeably increased RNA uptake, stimulations with increased frequencies (60 Hz and 100 Hz) provide for a more efficient RNA uptake. These data also suggest that the electrical stimulation according to the methods of the instant invention does not disrupt membrane integrity of the stimulated cells.


Example 4
RNA Intake by Stimulated Cells is Due to a Cell-Based Process

HEK-293 cells were cultured as described above. Upon reaching ˜70% confluence, the cells were stimulated as described in Example 1 at 4° C. or 37° C. for 2 hours, followed by addition of 1 μg/ml of fluorophore-labeled RNA. It was found that the intake of RNA is temperature-dependent. Accordingly, it is likely that the electric stimulation triggered an active cell-based process for RNA intake.


Example 5
RNA Intake by Electrically Stimulated Cells is Attenuated by Inhibitors of Caveolae-Mediated Endocytosis

To further elucidate the mechanism of RNA uptake caused by electrical stimulation, the cells were cultured as in Example 1 and pre-treated for 15 minutes prior to the electrical stimulation with PMA (100 nm), a known inhibitor of caveolae-mediated endocytosis, and sucrose (100 nM), a known inhibitor of clathrin-mediated endocytosis.


As was expected from the prior experiments, electrically stimulated cells demonstrated a marked increase in RNA uptake, compared to non-stimulated cells, as measured by fluorescence microscopy. See FIG. 4A and 4B.


Pre-treatment of PMA decreased the RNA intake (FIG. 4C), suggesting the involvement of caveolae-mediated endocytosis in stimulation-enhanced uptake of RNA.


Pretreatment with sucrose also appeared to attenuate RNA intake, thus suggesting that clathrin mediated endocytosis is also involved in stimulation-enhanced uptake of RNA. However, due to cell loss in this group, it is impossible to draw any dispositive conclusions regarding the role of clathrin-mediated endocytosis.


Example 6
Electric Stimulation Improves Uptake of the RNA in Neuronal, Cardiac, and Kidney Cells in vitro

To further elucidate the parameters of the electric stimulation on the selected cell types, the inventors conducted experiments in multiple cell types in addition to HEK-293T cells. Specifically, C2C12 myoblasts and neuronal Neuro2a and BE(2)-C cells were studied.


These cells were cultured similarly to HEK-293T cells (see Example 1), except that 1:1 ratio of DMEM and Earle's balanced salt solution were used instead of DMEM alone for Neuro2a cells. The results of RNA uptake, estimated by electron microscopy are shown in FIGS. 5A-5D, and are summarized in Table 5.


Electrical field strengths as low as 0.8 V/cm up to 12 V/cm applied for 2 hours at 100 Hz frequency and 0.3 msec pulse width enabled a substantial uptake of siRNA in the HEK-293T cells; the effect visibly reduced when the electrical field strength was reduced to 0.5 V/cm. In contrast, the same electrical parameters when applied for 20 hours were completely ineffective in delivering siRNA in these cells. Besides the duration of the applied electrical stimulation, siRNA uptake was also dependent on the frequency of electrical stimulation, such that frequencies <100 Hz (4 or 60 Hz) further reduced the degree of siRNA uptake in these cells.


The set of electrical parameters that enabled a robust uptake of siRNA in HEK-293T cells were distinct from the parameters required for achieving a similar outcome in C2C12 myoblasts. In the case of myoblasts, a burst-pulse protocol applied for longer duration (20 hours) of time was more effective in delivering siRNA, with 2 V/cm being the most effective and the effect slightly reducing with higher electrical field strengths (6 or 12 V/cm).


A longer duration of electrical stimulation was also more favorable for the delivery of siRNA in BE(2)-C human (predominantly dopaminergic) neuroblastoma cells. Testing the effects of electrical stimulation on siRNA uptake in yet another neuroblastoma cell-line, the mouse (predominantly cholinergic) Neuro2a cells, demonstrated a preference for a relatively higher electrical field strength (28 V/cm) applied for a relatively shorter duration of time (2 hours) to facilitate optimal siRNA uptake.









TABLE 5







Summary of RNA uptake efficiency caused by electric stimulations of different parameters.













siRNA
Electrical
Time of




Cell type
uptake
field strength
stimulation
Frequency
Pulse width



















HEK-293T
++
0.5
V/cm
2
hours
100
Hz
0.3
msec


(kidney)
+++
0.8, 1, 2, 6 or 12
V/cm
2
hours
100
Hz
0.3
msec




2, 6 or 12
V/cm
20
hours
100
Hz
0.3
msec



+
2
V/cm
2
hours
4
Hz
0.3
msec



++
2
V/cm
2
hours
60
Hz
0.3
msec



+++
2
V/cm
2
hours
100
Hz
0.2 or 0.45
msec


C2C12
+
2, 6, or 12
V/cm
2
hours,
100
Hz
0.3
msec


(cardiac)



20
hours




2, 6 or 12
V/cm
2
hours
20
Hz
0.3
msec











(2 bursts of 10





pulses, separated



by 500 msec)

















+++
2
V/cm
20
hours
20
Hz
0.3
msec











(2 bursts of 10





pulses, separated



by 500 msec)

















++
6 or 12
V/cm
20
hours
20
Hz
0.3
msec











(2 bursts of 10





pulses, separated



by 500 msec)
















BE(2)-C
+
2, 6 or 12
V/cm
2
hours
100
Hz
0.3
msec


(neuronal,
+++
2, 6 or 12
V/cm
20
hours
100
Hz
0.3
msec


human)


Neuro2a

2, 6, 12 or 24
V/cm
0.5, 1, 2 or 20
hours
100
Hz
0.3
msec


(neuronal,
+++
28
V/cm
2
hours
100
Hz
0.3
msec


mouse)









Overall, these data demonstrate that the electric stimulation methods of the instant invention may be tailored to achieve optimal degree of siRNA uptake in specific cell types and at the same time the electric stimulation methods of the instant invention are sufficiently flexible to allow variability of different parameters without compromise in the effect of the RNA delivery. More importantly, the electrical stimulation parameters applied in this invention use much lower electrical field strengths (<40 V/cm) than used in electroporation (typically >200 V/cm) for delivering RNA in cells.


Example 7
The Increased Intake of RNA Persists for at Least 24 Hours After the electrical Stimulation

The temporal effect of the electrical stimulation on the intake of the RNA is discussed in this example 7.


The cells were cultured and electrically stimulated as described in Example 1. In one group, the RNA was added immediately after the stimulation, or six hours after the stimulation, or 24 hours after the stimulation. The cells were imaged for the uptake at 48 hours after the electrical stimulation. In this group, electrical stimulation increased the RNA intake in all three subsets of cells, as shown in FIG. 6A., indicating that the siRNA uptake in cells was possible even if the siRNA was added after a 24 hour “lag period” following application of electrical stimulation.


In another group, the RNA was added before performing the stimulation according to Example 1, and then removed 24 hours, or 6 hours or immediately after performing the stimulation. The cells were imaged for the uptake at 48 hours after the electrical stimulation. In this group, only the subset of cells where the RNA was removed 24 hours after the stimulation (but not 6 hours after the stimulation or immediately after the stimulation) demonstrated an increased intake of the RNA, as shown in FIG. 6B.


The presence of a “lag period” between the application of electrical stimulation and siRNA administration in this invention is unexpected when compared with the requirements of using electroporation for delivery of nucleic acids. As reviewed by Escoffre J M et al. 2009 (Escoffre J M, Portet T, Wasungu L, Teissie J, Rols M P, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues, Molecular Biotechnology, 2009, 41: 286-295) and Prud'homme G J et al. 2006 (Prud'homme G J, Glinka Y, Khan A S, Draghia-Akli R, Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases, Current Gene Therapy, 2006, 6:243-273), electroporation-mediated intracellular delivery of nucleic acids relies on the simultaneous presence of the nucleic acid during application of the electroporation parameters that transiently allow the permeation of nucleic acids across the target cell's membrane.


The data in this disclosure demonstrate that the electrical stimulation used herein ensue long-term rather than transient effects, necessary to enable intracellular uptake of RNA; the long-term cellular changes could possibly be the alteration of gene expression pattern in target cells.


Example 8
RNA Delivered After the Stimulation Retains Its Biological Activity

Even though the electrical stimulation increases the intake of the RNA into the cells, the question remains whether this RNA is biologically active. This example proves that the uptaken RNA retains its biological activity.


HEK-293T cells were cultured in eight-well plates as in Example 1 and treated with 300 μsec impulses at 100 Hz and 2 V/cm for two hours. The anti-htt siRNA (GGAGTATTGTGGAACTTAT, SEQ ID NO: 5) at a concentration of 130 nM was added immediately before electrical stimulation.


In a control group the same siRNA at the same concentration was added to non-stimulated cells in a composition with TRANSIT-TKO® (Mirus Bio LLC, Madison, Wis.) according to manufacturer's instructions. Other control groups lacked one of the siRNA, TRANSIT-TKO® or the electric stimulation.


The cells were harvested 48 hours post-stimulation, and htt mRNA was quantified by qRT-PCR.


As shown in FIG. 7, the groups which received the siRNA in combination with TRANSIT-TKO® or with electrical stimulation exhibited significantly lower htt mRNA expression. In the group which received the siRNA in combination with the electrical stimulation, the htt mRNA level was about the same as in the group which received the siRNA in combination with TRANSIT-TKO®.


Accordingly, the siRNA delivered in conjunction with the electrical stimulation according to the instant invention retains its biological function.


Example 9
Electric Stimulation Improves Uptake of RNA in Neuronal Cells in vivo

The next question which needed to be resolved was whether the results obtained in vitro reasonably correlate with the results obtainable in vivo. Thus, in the remaining examples, the in vivo data are discussed.


The device illustrated in FIG. 8 has been prepared and implanted into a brain of Sprague-Dawley rats weighing over 250 gm and over 8 weeks old. FIG. 9A. After the implantation of the device, rats were kept in cages (one rat per cage, at light-dark cycle 12 hr:12 hr, switching at 6 AM and 6 PM having unlimited access to food and water. After the surgery, the rats were left to recover for at least 1 hour in a cage with its floor maintained at 37° C. After the recovery, the rats were in their respective home cages and the device of the instant invention was capped as shown in FIG. 9B.


At the time of the experiment, and 22 hours after electrical stimulation, 4 μl of a solution containing siRNA (siGLO Red, purchased from Dharmacon, Inc. (Lafayette, Colo.)), labeled with fluorophore DY-547 in sterile saline, pH=7.4 at a concentration of 2.5 μg/μl, was injected using a stereotaxically guided syringe with a 33 gauge needle, at a rate of 0.25 pl/min.


The rats were randomly split into the following groups:

    • a) Voltage groups: 0, 2, 6, 10 V/cm (4 groups);
    • b) Within each of the four groups, further treatment according to each of the protocols illustrated in FIGS. 10A and 10B.


Electrical stimulation was conducted with the rats in a conscious state. No gross behavioral abnormalities indicating pain or discomfort were observed during the treatment except that the rats when stimulated in the later half of their light cycle (but not in the first half of their light cycle) at 10 V/cm exhibited a mild periodic movement of their contralateral forelimb.


Three rats per group were used. The parameters of the electrical stimulation (other than voltage) were as follows:

    • a) Frequency: 100 Hz for each group;
    • b) Duration of stimulation: 2 hours for each group;
    • c) Pulse width: 0.3 msec for each group;
    • d) 4 μl of a solution containing siRNA (siGLO Red, purchased from Dharmacon, Inc. (Lafayette, Colo.)), labeled with fluorophore DY-547 in sterile saline, pH=7.4 at a concentration of 2.5 μg/μl was stereotaxically injected. The site was determined as the mid-point of the area between the uninsulated electrodes, with the following coordinates relative to Bregma: anterior-posterior: ˜0.7 mm; medial-lateral: ˜3.2 mm; dorso-ventral: ˜−2.0 mm.


As shown in FIG. 11A, fluorescence imaging of brain sections revealed the intake of the RNA into the cells at five hours after the RNA injection at 2 V/cm, 6 V/cm, and, to a lesser extent, at 10 V/cm.


The intake of the RNA at 20 hours was not as well pronounced, but it was somewhat increased at 2 V/cm, 6 V/cm, and, to a lesser extent, 10 V/cm.


The greater magnification (20×), as shown in FIG. 11C revealed an intense fluorescence signal in both cortex and striatum at 5 hr post-siRNA group and 20 hr post siRNA groups who received electrical stimulation of 2 V/cm.


These data lead to several inferences. First, stimulation at 2-6 V/cm increases the uptake of siRNA that is injected for up to about 22 hours after electrical stimulation in the rat brain, and thus correlates with the results obtained in vitro. In other words, these in vivo results validate the in vitro findings by the inventors that application of low voltage and high frequency electrical stimulation facilitates the cellular uptake of siRNA that is administered after a “lag period” following stimulation.


Second, the facilitation of siRNA uptake was locally confined, dictated by the area of the electrical field. In the disclosed experiments, the local effects were as follows:

    • about 5 mm medio-laterally (inter-electrode distance was about 4.5 mm);
    • about 0.4 mm rostra-caudally (similar to the rostro-caudal distance between the electrodes); and
    • about 3 mm dorso-ventrally (electrode length was about 2 mm)


The electrical stimulation facilitated both the intracellular intake and extracellular distribution of the siRNA. The number of cells positive for the siRNA was increased at five hours post-siRNA injection, but only neuropil appeared positive at 20 hours post siRNA injection.


Example 10
Neurons and Oligodendrocytes are Brain Cells Susceptible to Pre-Treatment with Electric Stimulation

The inventors have further demonstrated that most of the cells visualized with the fluorophore were also visualized with NeuN and MBP (see FIG. 12), thus demonstrating that neurons and oligodendrocytes are the main cells types in the brain which are susceptible to electric stimulation treatment. Particularly, dopaminergic neurons (as determined by staining with DARPP32) also stained with fluorophore (data not shown).


Accordingly, neurons, particularly dopaminergic neurons, and oligodendrocytes are suitable targets for delivery of siRNA according to the instant methods.


Example 11
Electric Field Stimulation Improves RNA Delivery to Dorsal and Ventral Gray Horn Neurons

The facilitated cellular uptake of siRNA following electrical stimulation was evaluated in spinal cord tissue. The rat spared nerve injury (SNI) model was used in these studies. The SNI model is a peripheral injury model involving ligation (or ligation and transection) of the common peroneal and tibial branches of the sciatic nerve (Decosterd and Woolf, 2000, Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 87: 149-58).


Spinal cord stimulation (SCS) was applied using an SCS lead similar to that described in Maeda et al., (2008; Low frequencies, but not high frequencies of bi-polar spinal cord stimulation reduce cutaneous and muscle hyperalgesia induced by nerve injury. Pain, 138: 143-52) following a post-surgical healing period of at least 14 days. This implant placed the SCS lead at the T10-T12 spinal level. The stimulation parameters tested included frequencies of 4, 60, 100 or 250 Hz at a pulse width of 250 μsec at a voltage of 85% of the motor threshold for minutes. Fluorescently labeled siGLO siRNA (Thermo Scientific) was continuously infused into the intrathecal (IT) space using an Alzet osmotic pump (Alzet Model 2001). siGLO siRNA was infused at 1 μl/hour at a concentration of 1 mg/ml; yielding a daily dose of 24 μg of siRNA. IT catheter and pump placement was achieved by advancing the distal end of a 28G rat intrathecal catheter (Alzet part #0007740) approximately 10 cm along the dorsal aspect of the subarachnoid space to terminate in the lumbar region at T10-T12, in the same proximity as the stimulation lead. The proximal end of the catheter, attached to the primed osmotic minipump, was implanted subcutaneously in the dorsal back via the same incision. On the day prior to IT catheter and pump implant, the animals were electrically stimulated using the parameters described above. The animals were then subsequently electrically stimulated on Days 3 and 5 post-catheter/pump implant. The animals were euthanized on Day 7 post-implant and the spinal cord was harvested for subsequent evaluation of the fluorescently tagged siGLO siRNA using fluorescent microscopy.


Analysis to date indicated enhanced uptake of siGLO siRNA within the gray matter of the spinal cord following electrical stimulation (FIG. 13A, B). Neuronal uptake of the siGLO siRNA is evident in proximity to the SCS lead. Cellular uptake of the siGLO siRNA was observed in both the dorsal and ventral gray horns of the cord. These positive neurons have been seen using stimulation frequencies of either 4 or 60 Hz. As shown in FIG. 13C, siGLO siRNA-positive neurons were not seen in spinal cords from animals did not receive electrical stimulation.


All publications cited in the specification, both patent publications and non-patent publications, are indicative of the level of skill of those skilled in the art to which this invention pertains. All these publications are herein fully incorporated by reference to the same extent as if each individual publication were specifically and individually indicated as being incorporated by reference.


Other suitable modifications and adaptations to the methods and applications described herein are suitable and may be made without departing from the scope-of the invention or any embodiment thereof. While the invention has been described in connection with certain embodiments, it is not intended to limit the invention to the particular forms set forth, but on the contrary, it is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.

Claims
  • 1. A method of increasing an uptake of an ribonucleic acid sequence by a cell, said cell being selected from the group consisting of cardiac cells, skeletal muscle cells, kidney cells, neurons and glial cells, the method comprising: a) applying a plurality of pulses of an electric field to the cell for a time period between about two and about 24 hours;b) within 24 hours of the step a), administering the ribonucleic acid sequence to the cellwherein: the electric field has strength of between about 0.5 V/cm and about 40 V/cm, calculated according to Formula I: E=V/d
  • 2. The method of claim 1, wherein the frequency of said pulse is below 400 Hz.
  • 3. The method of claim 1, wherein the duration of each member of the plurality of pulses is between about 100 μs and about 500 μs.
  • 4. The method of claim 1 wherein the members of the plurality of pulses are uniform.
  • 5. The method of claim 1 wherein the members of the plurality of pulses are not uniform.
  • 6. The method of claim 1, wherein said ribonucleic acid sequence is a siRNA sequence, a shRNA sequence, an aptamer, a spiegelmer, an antimir, or a combination thereof.
  • 7. The method of claim 6, wherein said ribonucleic acid sequence comprises at least one modified nucleotide.
  • 8. The method of claim 6, wherein said ribonucleic acid sequence is a siRNA or a shRNA.
  • 9. The method of claim 1, wherein said siRNA sequence or said shRNA sequence comprises a sense and an antisense strand, each having length between about 19 and about 30 nucleotides.
  • 10. The method of claim 1, wherein i) said cell is a neuron or a glial cell,ii) the strength is between about 0.5 V/cm and about 10 V/cm, andiii) the time period is between about 2 hours and about 22 hours.
  • 11. The method of claim 10, wherein the strength is between about 1 V/cm and about 6 V/cm.
  • 12. The method of claim 1 wherein i) said cell is a neuron or a glial cell located within a nervous system of a patient,ii) the patient is undergoing or is a suitable candidate for a deep brain stimulation or a spinal cord stimulation or a transcutaneous electric nerve stimulation, andiii) the parameters of the electric stimulation are suitable for the deep brain stimulation, the spinal cord stimulation or the transcutaneous electric nerve stimulation.
  • 13. The method of claim 10 further comprising steps of locating a pre-determined area in a patient, said predetermined area being selected from a brain, a spinal cord, and a peripheral nerve of the patient; andplacing a plurality of electrodes into said pre-determined area prior to applying the plurality of pulses.
  • 14. The method of claim 13, wherein the placement of the electrodes results in a pre-determined shape of the electric field.
  • 15. The method of claim 10, wherein the nucleic acid is administered to the pre-determined area through a catheter.
  • 16. The method of claim 15, further comprising a step of verifying the placement of the catheter.
  • 17. The method of claim 10, further comprising a step of verification of the placement of the electrodes.
  • 18. The method of claim 1, wherein the cell is a heart cell, and wherein the strength is between about 2 V/cm and about 12 V/cm, and wherein said the members of the plurality of pulses are administered as bursts having frequency of about ten pulses, said bursts separated by about 500 ms, and wherein the time period is about 20 hours.
  • 19. The method of claim 1, further comprising the step of determining a heart rate of a patient, and wherein i) the cell is a heart cell,ii) the strength is between about 2 V/cm and about 12 V/cm,iii) the time period is about 20 hours, and wherein said the members of the plurality of pulses, andiv) the frequency of said bursts is about identical to the heart rate of the patient.
  • 20. The method of claim 19, wherein an onset of a heart beat initiates the application of the burst of pulses of the electric field.
  • 21. The method of claim 18, wherein the siRNA or the shRNA inhibits expression of phospholamban.
  • 22. The method of claim 1, wherein the cell is a kidney cell, and wherein the strength is between about 0.5 and about 40 V/cm and the time period is between about one and about 12 hours.
  • 23. The method of claim 22, wherein the time period is about two hours.
  • 24. The method of claim 22, wherein the siRNA or the shRNA inhibits expression of BIM.
  • 25. The method of claim 1, wherein the ribonucleic acid sequence is administered in a composition comprising an imaging agent, the method further comprising: determining a distribution of the composition.
  • 26. The method of claim 18, wherein i) said plurality of pulses of an electric field are applied to a pre-determined area within a heart or a kidney of a patient through a plurality of electrodes,ii) said plurality of electrodes are positioned relative to each other as to provide an electric field of a pre-determined shape.
  • 27. The method of claim 1, wherein step (b) is initiated at least 1 minute, at least 5 minutes, at least 30 minutes, at least 45 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours, at least 16 hours, at least 17 hours, at least 18 hours, at least 19 hours, at least hours, at least 21 hours, at least 22 hours, at least 23 hours or 24 hours after the initiation of step (a).
  • 28. A device for delivering a nucleic acid sequence to a cell within a patient, the device comprising: a plurality of electrodes;a catheter, the catheter comprising a wall and a cavity;a reservoir containing a composition comprising the RNA, said reservoir fluidly connected with said catheter, wherein said composition is RNAse-free;a pump operably connected to said reservoir;a processor operably connected to the members of said plurality of electrodes and adapted to receive electrical signals from said members and to deliver an electric field to said members.
  • 29. The device of claim 28, wherein said composition further comprises an imaging agent.
  • 30. The device of claim 28, wherein said nucleic acid sequence comprises or encodes a shRNA or a siRNA, said shRNA or said siRNA comprising an antisense having a length between about 19 and about 30 nucleotides.
  • 31. The device of claim 28, wherein the processor is adapted to actuate the pump after receiving a signal from the members of the plurality of electrodes.
  • 32. The device of claim 28 wherein the members of the plurality of electrodes are positioned to achieve a pre-determined shape of the electric field.
  • 33. The device of claim 32, wherein said pre-determined shape is designed to substantially correspond to a distribution of the composition comprising the nucleic acid sequence in a pre-determined location within a patient.
  • 34. The device of claim 28, wherein the reservoir and the catheter are RNAse-free.
  • 35. The device of claim 28, wherein the composition comprises an RNAse inhibitor.
  • 36. The device of claim 28, wherein the plurality of electrodes are configured to deliver a deep brain stimulation, a spinal cord stimulation or a transcutaneous electric nerve stimulation to the patient.
  • 37. The device of claim 36, wherein the deep brain stimulation has the field strength of about 2 V/cm to about 4 V/cm, the frequency of about 100 Hz to about 185 Hz, and pulse width of between about 90 μs and about 180 μs.
  • 38. The device of claim 32, wherein a) the members of the plurality of electrodes sense the rhythmic electric activity of a predetermined organ within the patient's body, said pre-determined organ comprising the cell,b) the onset of said rhythmic electric activity initiates delivery of an electric stimulus to the pre-determined organ, the electric stimulus comprising a plurality of bursts, having an electric field strength between about 2 V/cm and about 12 V/cm, and the frequency about identical to the frequency of said rhythms of electric activity.
  • 39. The device according to claim 28, wherein the members of said plurality of electrodes are disposed within or on the surface of said wall.
  • 40. A medical system comprising: a plurality of electrodes;a catheter, the catheter comprising a wall and a cavity, wherein the members of said plurality of electrodes are disposed within or on the surface of said wall;a reservoir containing a composition comprising the RNA, said reservoir fluidly connected with said catheter;a pump operably connected to said reservoir;a processor operably connected to the members of said plurality of electrodes and adapted to receive electrical signals from said members and to deliver an electric field to said members; anda patient-specific intraoperative image-guided mapping means.
  • 41. A kit comprising: a) a plurality of electrodes;b) a composition comprising RNA;c) a processor adapted to: i) actuate an electric stimulation by the members of said plurality of electrodes;ii) receive a signal from the members of said plurality of electrodes and,iii) within a predetermined time period after receiving said signal from the members of said plurality of electrodes, to actuate release of at least a portion of said composition comprising RNA.
  • 42. The kit of claim 41, wherein said composition containing ribonucleic acid sequence is within a reservoir operably connectable to a pump, and wherein the processor actuates release of at least a portion of said composition comprising ribonucleic acid sequence by sending a signal to the pump.
  • 43. The kit of claim 41, wherein the processor is programmed actuate said electric stimulation of no greater than about 40 V/cm.
  • 44. The kit of claim 41, wherein said predetermined period is between about one hour and about 24 hours.
  • 45. The kit of claim 41, further comprising a means for positioning the members of said plurality of electrodes and said catheter in a desired location, wherein said location is electrically stimulatable by members of said plurality of electrodes.
  • 46. The kit of claim 41, further comprising a catheter fluidly connectable to the reservoir, said catheter having a wall and a distal opening, wherein at least the portion of said composition comprising ribonucleic acid sequence is releasable through said distal opening.
  • 47. The kit of claim 46, wherein the members of said plurality of electrodes are disposed within or on the surface of a wall of the catheter.
  • 48. The kit of claim 46, comprising a means for positioning the members of said plurality of electrodes and said catheter in a pre-determined location, wherein said pre-determined location is electrically stimulatable by members of said plurality of electrodes and wherein at least the portion of composition comprising RNA reaches the pre-determined location after being released from the distal opening.
  • 49. The kit of claim 41, wherein said release of at least a portion of said composition comprising RNA is actuated at least 1 minute, at least 5 minutes, at least 30 minutes, at least 45 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least hours, at least 15 hours, at least 16 hours, at least 17 hours, at least 18 hours, at least 19 hours, at least 20 hours, at least 21 hours, at least 22 hours, at least 23 hours or 24 hours after actuating of the electric stimulation by the members of said plurality of electrodes.
RELATIONSHIP TO PRIOR APPLICATIONS

The instant invention is a continuation-in-part application of U.S. patent application Ser. No. 12/468,685 filed on May 19, 2009 and incorporated herein by reference.

Continuation in Parts (1)
Number Date Country
Parent 12468685 May 2009 US
Child 12782274 US