Claims
- 1. Apparatus for determining the characteristics of a generally rectangular bank note or the like having a pair of end edges and a pair of side edges, scanning means including a plurality of sensor means, said scanning means being operable for sensing the characteristics of a bank note at a plurality of points within a segmental surface area thereof arranged in rows parallel to one of said pair of edges and columns parallel to the other of said pair of edges, reference means for establishing threshold signal levels corresponding to thresholds between acceptable and unacceptable characteristics at points within a certain segmental rectangular surface area of the bank note, comparison means for comparing signals produced by said scanning means with signal levels established by said reference means to generate an output signal when an unacceptable bank note is scanned, and means for controlling said reference means and said scanning means to select for scanning a predetermined segmental area of the bank note.
- 2. In apparatus as defined in claim 1, said sensor means being arranged in a row parallel to one of said pair of edges, and said scanning means being arranged to effect relative movement of said sensor means and said bank note in a direction transverse to said row of sensor means so as to establish a plurality of columns.
- 3. In apparatus as defined in claim 2, X timing pulse generating means operable during relative movement of said sensor means and said bank note to develop periodic X timing pulses, and output signal generating means operative in response to said X timing pulses and arranged for developing an output signal corresponding to signals developed by said row of sensor means.
- 4. In apparatus as defined in claim 3, shift register means for storing signals developed by said sensor means, and means for applying higher frequency Y timing pulses to said shift register means to develop a serial signal forming said output signal.
- 5. In apparatus as defined in claim 4, Y control means for controlling the timing and duration of said serial signal in relation to said X timing pulses to control the position and dimension of said segmental surface area in relation to the other of said pair of edges of the bank note.
- 6. In apparatus as defined in claim 3, X control means for controlling the operation of said output signal generating means in relation to the movement of said photocell means in relation to one edge of said one of said pairs of edges of the bank note to control the position and dimension of said segmental surface area in relation thereto.
- 7. In apparatus as defined in claim 6, said X control means comprising counter means for counting the number of X timing pulses after relative movement of said sensor means past said one edge of said one of said pairs of edges of the bank note, and gate means controlled by said counter means.
- 8. In apparatus as defined in claim 5, said serial output generating means comprising a pulse generator for generating said higher frequency Y timing pulses, and said Y control means comprising counter means for counting said Y timing pulses, and gate means controlled by said counter means.
- 9. In apparatus as defined in claim 4, means operable in synchronism with said X timing pulse generating means and in response to signals from said sensor means to develop a first signal corresponding to one edge of the other of said pair of edges and a second signal corresponding to the other edge of said other of said pairs of edges, and counter means for registering the number of said Y timing pulses between said first and second signals to indicate a dimension of the bank note.
- 10. In apparatus as defined in claim 2, X pulse generating means, and counter means responsive to a first signal developed by said sensor means at one edge of said one of said pairs of edges and a second signal developed at the other edge of one of said pair of edges for counting the number of X pulses to indicate a dimension of the bank note.
- 11. In apparatus as defined in claim 1, said reference means comprising storage means for storing digital signals corresponding to the coordinants of said certain segmental rectangular surface area of the bank note and to the threshold signal levels corresponding to points therewithin.
- 12. In apparatus as defined in claim 11, said scanning means comprising means for developing a serial digital output signal in response to the scanning of said bank note, said reference means further comprising means for reading out said stored digital signals to develop a serial reference signal, and said comparison means comprising an AND circuit for responding to said serial digital output signal from said scanning means and to said serial reference signal to develop said output signal.
- 13. In apparatus as defined in claim 12, multiplexer means associated with said scanning means and said reference means for applying signals to said comparison means.
- 14. A method for determining the characteristics of generally rectangular bank notes or the like having a pair of end edges and a pair of side edges, comprising the steps of: storing reference threshold signal levels which correspond to thresholds between acceptable and unacceptable characteristics at points within a certain segmental rectangular surface area of a bank note, said points being arranged in rows parallel to one of said pair of edges of a bank note and columns in parallel to the other of said pair of edges thereof, sensing the characteristics of a bank note under test at a plurality of points within a segmental surface area thereof and arranged in rows and columns corresponding to the rows and columns represented by the stored threshold signal levels, and comparing the stored signals with the signals developed during scanning to develop an output signal when an unacceptable bank note is scanned, the segmental rectangular surface area represented by storing of signals and the corresponding scanned rectangular surface area being controlled and correlated according to the characteristics of the type of bank note being tested.
- 15. Method for the determination of the condition and/or the authenticity of sheet material, particularly bank notes, including the steps of scanning the sheet material along several tracks to generate electrical signals, comparing the amplitudes of said electrical signals with predetermined threshold levels to generate an indicating signal when a certain deviation occurs, the improvement comprising: scanning the whole area of the sheet material in tracks arranged side-by-side while increasing the sensitivity of the scanning in at least one partial area included with said whole area and defined by coordinates according to size and location, each partial area as well as the remaining overall area being scanned with respect to one and the same physical characteristic.
- 16. Method according to claim 15, characterized in that said scanning of said bank note includes the steps of positioning a light source to pass light through the bank note and to be modulated by the bank note, and positioning photosensitive diodes in a direction rectangular to the direction of transport of the bank note to receive the modulated light.
- 17. Method according to claim 16, characterized in so positioning said diodes that the output signal of a diode of the row of diodes is set to "logic 1" if said diode is covered by the material of a bank note and that said signal is set to "logic 0" if the diode is not covered by the bank note or a defect portion of the bank note is scanned.
- 18. Method according to claim 16, characterized in generating an X-timing pulse to control scanning of the overall area of a bank note in accordance with the length and width of said X-timing pulse with said control therein synchronized with the transport speed of the bank note, applying said pulse to increment of counter beginning with the entry of the leading edge of the bank note into the row of diodes and lasting as long as the bank note covers the diodes, operating during said X-timing pulse and during the period of time in which the row of diodes is covered by the bank note to parallel buffer the signals of all the diodes are parallel, and also characterized in generating a Y-timing pulse having a length which equals the length of the X-timing pulse divided by the number of diodes arranged in a row, and applying said Y-timing pulse to control the serial read out of all of the buffered diode signals during the time period of one X-timing pulse and to develop a serial diode signal.
- 19. Method according to claim 18, characterized in operating after the bank note has passed the row of diodes to compare the accumulated amount of the X-timing pulse counter with a minimum and maximum threshold in order to determine the length of the bank note.
- 20. Method according to claim 18, characterized in counting the Y-timing pulses as long as the serial diode signal, combined with the Y-timing pulse, is set to "logic "1" and comparing the accumulated count of the Y-timing pulses starting from O during the period of one X-timing pulse with a minimum and maximum threshold in order to determine the width of a bank note.
- 21. Method according to claim 20, characterized in comparing the number of measurements of the widths of the bank note which are within certain defined limits with a certain determined threshold.
- 22. Method according to claim 18, characterized in separately counting the X-timing pulses and the Y-timing pulses, setting an X-signal pattern and a Y-signal pattern from "logic 0", to "logic 1", when the counts of said X-timing pulses and Y-timing pulses reach certain amounts which correspond to the coordinates of the corners of selected partial areas, and setting a combined signal to "logic 1" when both said signal patterns are set to "logic 1".
- 23. Method according to claim 22, characterized in combining the X-signal pattern and the Y-signal pattern with a third signal which depending on the X-timing pulse and the Y-timing pulse oppresses the generation of partial areas within certain portions of the bank note.
- 24. Method according to claim 22, chracterized in storing reference signals for the coordinates of the selected partial areas.
- 25. Method according to claim 22, characterized in combining the combined X- and Y-signal patterns, the Y-timing pulse and the negated serial diode signal for the determination of defect portions within selected partial areas counting the resulting signal pulses, and comparing the number of said resulting signal pulses with a corresponding threshold.
- 26. Method according to claim 25, characterized in setting the parameters of the partial areas in accordance with the characteristics of the subject to be examined.
- 27. Method according to claim 26, characterized in setting said parameters in accordance with the size of the subject.
- 28. Method according to claim 26, characterized in setting said parameters in accordance with the optical characteristics of the subject.
- 29. Apparatus for determining the condition and/or the authenticity of a sheet of material, for example a bank note, and for use with an examination unit including scanning means scanning the sheet along several tracks, said scanning means comprising diodes arranged in a row transverse to a transport direction of the sheet, and a comparator for comparing the electrical signals generated by said scanning means with suitable thresholds, said apparatus being arranged for controlling the scanning of the sheet and generating the corresponding signals and comprising; an X-timing pulse generator for generating X-timing pulses synchronized with the transport speed of the sheet, a shift register arranged to be loaded with the signals of all of said diodes in parallel during the time of one of said X-timing pulses, a Y-timing pulse generator for generating Y-timing pulses, each having a time period corresponding to the time period of an X-timing pulse divided by the number of said diodes, and means responsive to said Y-timing pulses for controlling the serial readout of all diode signals from said shift register during the time period of an X-timing pulse and for developing a serial diode signal.
- 30. In apparatus according to claim 29, an X-timing pulse counter arranged to be incremented after the leading edge of the sheet has passed said row of diodes for a time period in which the sheet is covering the row of diodes, and a comparator operative after the passing of a sheet for comparing the count of said X-timing pulse counter with minimum and maximum thresholds for determination of the length of the sheet.
- 31. In apparatus according to claim 30 an Y-timing pulse counter, gate means controlled by said serial diode signal for applying said Y-timing pulses to said Y-timing pulse counter, and a further comparator arranged for comparing the count of the Y-timing pulse counter accumulated during the time period of an X-timing pulse from O with minimum and maximum thresholds for determination of the width of a sheet.
- 32. In apparatus according to claim 31, means for accumulating the positive results of all width determinations, and a comparator for comparing the accumulated count with a further threshold after the scanning is finished.
- 33. In apparatus according to claim 29, a X-timing pulse counter, a programmable memory unit connected to said X-timing pulse counter and arranged to be loaded with the X-coordinates of selected partial areas of the sheet and also arranged to provide at its exit an X-signal pattern which is set to "logic 1" within the selected area of coordinates, a Y-timing pulse counter, a programmable memory unit connected to said Y-timing pulse counter and arranged to be loaded with the Y-coordinates of selected partial areas and also arranged to provide at its exit an Y-signal pattern which is set to "logic 1" within the selected area of coordinates, and a first AND-gate responsive to said X-signal pattern and said Y-signal pattern.
- 34. In apparatus according to claim 32 a second AND-gate for determination of faulty positions within the selected partial areas, the inputs of said second AND-gate being loaded with the output of X-signal said first AND-gate, with said Y-timing pulses and with said negated serial diode signal, a faulty position counter connected to the output of said second AND-gate, and a comparator arranged to compare the count accumulated within said partial area with a certain threshold.
- 35. In apparatus according to claim 32, a multiplexer responsive to said X-signal pattern and said Y-signal pattern and arranged to transmit signals through to said first AND-gate depending on the size of the sheet to be examined.
- 36. In apparatus according to claim 32, a unit connected to said first AND-gate and arranged for selecting sections into which the sheet material is divided, said unit being arranged for generating a signal pattern controlled by the Y-timing pulse which is set to "logic 1" within the area of the Y-coordinates of the selected sections and which is set to "logic 0" outside of said areas.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2824849 |
Jun 1978 |
DEX |
|
Parent Case Info
This is a continuation of application Ser. No. 45,802, filed June 5, 1979, now abandoned.
US Referenced Citations (9)
Continuations (1)
|
Number |
Date |
Country |
Parent |
45802 |
Jun 1979 |
|