1. Field of the Invention
The present invention generally relates to battery chargers, and more specifically, to a method and system for charging a battery.
2. Discussion of Related Art
Battery chargers for recharging batteries are generally well known. In general, the battery charger reverses the chemical discharge of stored electrical energy in the battery that is being charged. The recharging processes typically involves putting a current through the battery in such a way that electrical energy is then chemically stored in the battery.
In a flow battery system, for example, a battery cell may include two electrodes, each immersed in an electrolyte. The two electrolytes are separated by a membrane. The battery is discharged when current flows between the terminals and a charged ion is transported across the membrane. The electrolytes are flowed through the battery so that the amount of stored energy is not determined by the size of the cell itself. The battery is charged when a current is supplied between the terminals and the charged ion is transported back across the membrane, charging the two separated electrolytes in the cell. The electrical energy is thereby stored by appropriately charging the two electrolytes.
Battery charging processes typically depend on the energy storage capacity of the battery, the internal resistance of the battery, and other factors. The energy storage capacity of the battery determines the amount of charge required to fully charge the battery while the internal resistance, which will cause heating, determines the maximum current that can be supplied to the battery without overheating and damaging the battery. Further, the voltage across the battery cell may be limited during charging in order that the battery cell is not damaged by overcharging.
Flow batteries can be tailored for particular electrical storage needs. Therefore, each battery may have different charging requirements. There is a need for battery chargers that are easily configurable to the battery system in which they are employed.
In accordance with embodiments of the present invention, a modular battery charger system is presented. Embodiments of a battery charger according to the present invention can include a plurality of power modules coupled to a backplane, each of the plurality of power modules providing an electrical indication of type of power module to the backplane, the power modules of each type providing an electrical function associated with charging a battery consistent with the type of power module; and a controller that determines the number of power modules of a particular type and supplies control signals that allocate to each of the power modules of the particular type a portion of the electrical function.
A method of charging a battery according to the present invention can include determining a number of charging modules that are coupled to a backplane; determining a charging current; adjusting a current output of each of the number of charging modules to supply the charging current; and applying the charging current to a battery.
These and other embodiments of the present invention are further described below with reference to the following figures.
In the figures, elements having the same designation have the same or substantially similar function. The figures are illustrative only and relative sizes and distances depicted in the figures are for convenience of illustration and have no further meaning.
In some embodiments of the invention, power modules 102 are each formed on a circuit board and then inserted into one of a plurality of slots (not shown in the figure) in backplane 110. As such, backplane 110 can include an array of slots that receives power modules 102. Power modules 102 may have multi-pin (alternatively referred to as terminals) edge connectors through which electrical connections are made with backplane 110.
Modular battery charger 100 may be conveniently configured to charge a particular battery 112 by insuring that particular numbers of power modules 102 of particular types are inserted into backplane 110. As such, modular battery charger 100 may include any number of power modules 102.
Battery 112 may receive electrical energy from one or more of power modules 102 through backplane 110. In some embodiments, modular battery charger 100 may be coupled to more than one battery. Further, battery 112 can be any type of battery. Battery charger 100 may, for example, be a flow type battery. In general, battery 100 may be any device that stores electrical energy in any form, for example as chemical energy, mechanical energy, or directly as electrical energy.
Each of power modules 102 shown in
Some embodiments of modular battery charging system 100 can be utilized to improve reliability, maintainability, and flexibility of battery charging system 100. Each of power modules 102 performs one or more electrical functions associated with charging battery 112, monitoring the charge on battery 112, or supplying power to back-plane 110 and others of modules 102. As indicated above, power modules 102 can include rectifier modules, charger modules, buck-boost modules, sensor-interface modules, and controller modules. Power modules 102 can include other types of modules as well. As such, an embodiment of modular battery charging system 100 can be tailored to meet the needs of any particular battery 112 to be charged.
To provide redundancy, multiple power modules of any given power module type may be utilized in a particular modular battery charging system. For example, power modules 102 may include multiple charger modules to ensure that the modular battery charging system continues to be functional even if one or more of the charger modules fails. Redundancy may be provided by either operating only one operational power modules among the multiple power modules of the same power module type at a time or by simultaneously operating multiple operational power modules of a particular power module type. For example, multiple charger modules may be operating simultaneously to provide, in sum, a total output charging current to charge battery 112. Each charger module among the power modules 102 of modular battery charging system 100 provides a part of the total output charging current. As such, an electrical function of providing the total charging current is shared among the multiple active charger modules.
In some embodiments of flow battery systems, when power module 200 functions as a rectifier, it receives a fixed input voltage and outputs a fixed output voltage, for example 50V, on B bus 206. In some embodiments, power module 200 acting as a rectifier can provide as much as 60 A of current. When power module 200 functions as a rectifier, connections are made between backplane 110 and P bus 202, N bus 204, Reference bus 210, and B bus 206.
In some embodiments, when power module 200 functions as a charger, a fixed AC input voltage is supplied between P bus 202 and N bus 204. A fixed output voltage is supplied to C bus 208 in response to control signals from backplane 110. The output voltage can have a range of voltages. In some embodiments, for example, the output voltage on C bus 208 can range from about 30 V to about 70 V. The output current supplied to C bus 208 is variable depending on the status of charging system 100. When power module 200 functions as a charger, connections are made between backplane 110 and P bus 202, N bus 204, Reference bus 210, and C bus 208.
As is discussed above, a difference between a rectifier and a charger includes the connection to B bus 206 or C bus 208. Another difference is the settings of output voltage and current supplied by power module 200. In other words, some embodiments of power module 200 can be configured as a rectifier by connecting to B bus 206 and appropriately adjusting the voltage and current settings and can be configured as a charger by connecting to C bus 208 and appropriately adjusting the voltage and current settings.
Utilizing pad 300 as shown in
As further shown in
As shown in
The voltage Fixed_V can be generated using fixed resistors and is proportional to the voltage on B bus 206. The voltage Fixed_I can also be generated by fixed resistors and is proportional to the maximum current output on B bus 206. The voltage Cntr_V is generated by a controller board and utilized to control a charging power module. The voltage Cntr_I is proportional to the output current generated by the controller board and is utilized to determine the charging current to be supplied by power module 200 if power module 200 is configured as a charging module.
The signal Cntr_I, which as shown in
Power modules 102 can be electrically coupled to backplane 110 through an edge connector on power module 102 that mates with a compatible backplane connector on backplane 110. In some embodiments, two pins on the backplane connector are dedicated to each type of power module 102. For example, two pins are dedicated to buck boost modules, different two pins are dedicated to rectifier modules, and yet another two pins are designated for charger modules. The presence or absence of a particular type of power module 102 can be determined by monitoring the dedicated bus lines coupled to the dedicated pins associated with that type of power module 102. Each active power module 102 can provide a signal on the dedicated pins associated with its type. In some embodiments of the present invention, each of power modules 102 couples a resistor of predetermined value across the appropriate pair of pins to indicate its presence. As such, a resistive connection between the two pins dedicated for a particular type of power module indicates to a controller the presence of that type of module. For example, a charger can be indicated by the existence of a resistor between two particular pins on the backplane connector. The number of chargers present is then indicated by the number of parallel resistors present between those two pins on the backplane connector.
Similarly, as shown in
As discussed above, provision of an electrical function can be shared among multiple power modules 102 in the modular battery charging system 100. Some embodiments of the present invention automatically configure each power module to provide one or more of an output voltage and an output current according to the current power requirements. For example, because provision of the total charging current to be supplied to battery 112 can be shared among the multiple charger modules, a portion of the charging current provided by each charger module can be determined. Further, power modules 102, regardless of power module type, may be inserted in any of the available slots on the backplane. Some embodiments of the present invention can identify a power module inserted in a slot.
As discussed above, a predefined set of electrical properties asserted on one or more terminals of each power modules 102 is sensed to determine the type of that power module. Subsequently, a number of operational power modules corresponding to a particular type of power module 102 is determined, and based on the number of operational power modules, each power module corresponding to the power module type is configured to perform a portion of the charging task performed by that type of power module 102. In some embodiments, all of the duties for a particular module type can be allocated to one module. In other embodiments, the duties of a particular module type can be distributed across all active modules of that type.
The electrical energy received by battery 112 is based on a power requirement for modular battery system 100. The power requirement corresponds to a charging voltage and a charging current provided to battery 112. Each of the charging voltage and the charging current is determined by factors which include, but are not limited to, rate of charging, and charge capacity of battery 112. Other factors that may effect the charging voltage and charging current include the number of battery cells in battery 112 and the rate of generation of hydrogen during the charging process.
Each of power modules 102 may be simultaneously operational. Additionally, each of power modules 102 configured as a charging module may provide a corresponding output current which, in sum, constitutes the charging current received by battery 112. In other words, each of charging modules of the power modules 102 may be configured to provide a fraction of the charging current.
As shown in
Power lines 904 may be coupled to an external power source 928 such as a power grid or generator. Power lines 904, for example, can be coupled to P bus 202 and N bus 204 as shown in
Internal power lines 906 provide power for controller 902 and for power modules 102. Internal power lines 906, for example, may be coupled to B bus 206 and reference bus 210 shown in
Charging current lines 908 provide the charging current used to charge battery 112. Charging current lines 908, for example, can be coupled to C bus 208 shown in
Module identification lines 910 are utilized to identify the number of types of power modules 102 that are coupled to backplane lines 916. As discussed above, each type of power module 102 provides an electrical signal on one or more of module identification lines 910. As shown in the embodiment illustrated in
Control lines 912 are utilized to control aspects of power modules 102. For example, the Cntrl_V and Cntrl_I signals shown in
As shown in
Similarly, a charging module detector 918 is coupled to module identification lines 910 and detects the number of power modules 102 that are configured as charging modules. A charging module configuration 920 is coupled to control lines 912 to control the current output of the power modules 102 configured as charging modules in response to the number of charging modules and signals from battery charge state monitor 922. A battery charge state monitor 922 is coupled to charging current lines 908 in order to monitor the current and voltage supplied to battery 110. Charging module configuration 920 controls the current supplied by charging modules, with each of the charging modules providing a portion of the current, in order to control the charging of battery 110.
A buck-boost module detector 924 is coupled to module identification lines 910 and determines the number of buck-boost voltage modules included in power modules 102. A buck-boost module control 926 receives the number of buck-boost modules from buck-boost module detector 924, monitors the voltage of current lines 908, and controls the buck-boost modules in order to share control of current lines 908, which can be utilized in both charging and discharging battery 112. The buck boost module can be made bidirectional and then can control the charging using the above technique.
For each type of power module 102, the total load required to fulfill the charging duty can be shared between the number of modules present. For example, the current required to charge battery 110 can be split between the number of available charging modules. As another example, the voltage and current supplied to internal power lines 906 can be split between the number of rectifying modules included in power modules 102.
As illustrated in
B-bus voltage control 916, charging module control 920, and buck-boost module control 926 may utilize any type of feedback loop, including analog or digital loops (eg: RS232, I2C, SPI, or other forms of control). Further, controller 902 may include processors where B-bus voltage control 916, charging module control 920, and buck-boost module control 926 are implemented in software, hardware, or a combination of software and hardware.
The embodiments described above are illustrative of the invention only and are not intended to be limiting. Those skilled in the art will recognize variations from the embodiments described above, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3540934 | Boeke | Nov 1970 | A |
3996064 | Thaller | Dec 1976 | A |
4133941 | Sheibley | Jan 1979 | A |
4159366 | Thaller | Jun 1979 | A |
4309372 | Sheibley | Jan 1982 | A |
4312735 | Grimes et al. | Jan 1982 | A |
4414090 | D'Agostino et al. | Nov 1983 | A |
4454649 | Jalan et al. | Jun 1984 | A |
4468441 | D'Agostino et al. | Aug 1984 | A |
4485154 | Remick et al. | Nov 1984 | A |
4496637 | Shimada et al. | Jan 1985 | A |
4543302 | Gahn et al. | Sep 1985 | A |
4732827 | Kaneko et al. | Mar 1988 | A |
4784924 | Savinell et al. | Nov 1988 | A |
4814241 | Nagashima et al. | Mar 1989 | A |
4828666 | Iizuka et al. | May 1989 | A |
4874483 | Wakabayashi et al. | Oct 1989 | A |
4882241 | Heinzel | Nov 1989 | A |
4894294 | Ashizawa et al. | Jan 1990 | A |
4929325 | Bowen et al. | May 1990 | A |
4945019 | Bowen et al. | Jul 1990 | A |
4948681 | Zagrodnik et al. | Aug 1990 | A |
4956244 | Shimizu et al. | Sep 1990 | A |
5061578 | Kozuma et al. | Oct 1991 | A |
5119011 | Lambert | Jun 1992 | A |
5162168 | Downing et al. | Nov 1992 | A |
5188911 | Downing et al. | Feb 1993 | A |
5258241 | Ledjeff et al. | Nov 1993 | A |
5366824 | Nozaki et al. | Nov 1994 | A |
5366827 | Belanger et al. | Nov 1994 | A |
5648184 | Inoue et al. | Jul 1997 | A |
5656390 | Kageyama et al. | Aug 1997 | A |
5665212 | Zhong et al. | Sep 1997 | A |
5759711 | Miyabayashi et al. | Jun 1998 | A |
5847566 | Marritt et al. | Dec 1998 | A |
5851694 | Miyabayashi et al. | Dec 1998 | A |
5949219 | Weiss | Sep 1999 | A |
6005183 | Akai et al. | Dec 1999 | A |
6037749 | Parsonage | Mar 2000 | A |
6040075 | Adcock et al. | Mar 2000 | A |
6086643 | Clark et al. | Jul 2000 | A |
6236582 | Jalaleddine | May 2001 | B1 |
6461772 | Miyake et al. | Oct 2002 | B1 |
6475661 | Pellegri et al. | Nov 2002 | B1 |
6507169 | Holtom et al. | Jan 2003 | B1 |
6509119 | Kobayashi et al. | Jan 2003 | B1 |
6524452 | Clark et al. | Feb 2003 | B1 |
6555267 | Broman et al. | Apr 2003 | B1 |
6562514 | Kazacos et al. | May 2003 | B1 |
6692862 | Zocchi | Feb 2004 | B1 |
6759158 | Tomazic | Jul 2004 | B2 |
6761945 | Adachi et al. | Jul 2004 | B1 |
6764789 | Sekiguchi et al. | Jul 2004 | B1 |
6787259 | Colborn et al. | Sep 2004 | B2 |
6905797 | Broman et al. | Jun 2005 | B2 |
6940255 | Loch | Sep 2005 | B2 |
6986966 | Clarke et al. | Jan 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7061205 | Shigematsu et al. | Jun 2006 | B2 |
7078123 | Kazacos et al. | Jul 2006 | B2 |
7181183 | Hennessy et al. | Feb 2007 | B1 |
7184903 | Williams et al. | Feb 2007 | B1 |
7199550 | Tsutsui et al. | Apr 2007 | B2 |
7220515 | Ito et al. | May 2007 | B2 |
7227275 | Hennessy et al. | Jun 2007 | B2 |
20030008203 | Winter | Jan 2003 | A1 |
20040070370 | Emura | Apr 2004 | A1 |
20040168818 | Layden et al. | Sep 2004 | A1 |
20040170893 | Nakaishi et al. | Sep 2004 | A1 |
20040202915 | Nakaishi et al. | Oct 2004 | A1 |
20040241544 | Nakaishi et al. | Dec 2004 | A1 |
20050074653 | Broman et al. | Apr 2005 | A1 |
20050156431 | Hennessy | Jul 2005 | A1 |
20050156432 | Hennessy | Jul 2005 | A1 |
20050158615 | Samuel et al. | Jul 2005 | A1 |
20050164075 | Kumamoto et al. | Jul 2005 | A1 |
20050181273 | Deguchi et al. | Aug 2005 | A1 |
20050260473 | Wang | Nov 2005 | A1 |
20060014054 | Sugawara | Jan 2006 | A1 |
20060092588 | Realmuto et al. | May 2006 | A1 |
20070072067 | Symons et al. | Mar 2007 | A1 |
20070080666 | Ritter et al. | Apr 2007 | A1 |
20070111089 | Swan | May 2007 | A1 |
20080081247 | Nakaishi et al. | Apr 2008 | A1 |
20080193828 | Sahu | Aug 2008 | A1 |
20090218984 | Parakulam | Sep 2009 | A1 |
20100003586 | Sahu | Jan 2010 | A1 |
20100090651 | Sahu | Apr 2010 | A1 |
20100092757 | Nair et al. | Apr 2010 | A1 |
20100092807 | Sahu | Apr 2010 | A1 |
20100092813 | Sahu | Apr 2010 | A1 |
20100092843 | Conway | Apr 2010 | A1 |
20100094468 | Sahu | Apr 2010 | A1 |
20100136455 | Winter | Jun 2010 | A1 |
20100143781 | Keshavarz | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
102006007206 | Oct 2006 | DE |
0 696 831 | Feb 1996 | EP |
1 462 813 | Sep 2004 | EP |
60047373 | Mar 1985 | JP |
60070672 | Apr 1985 | JP |
60115174 | Jun 1985 | JP |
1060967 | Mar 1989 | JP |
1320776 | Dec 1989 | JP |
2027667 | Jan 1990 | JP |
2027668 | Jan 1990 | JP |
3017963 | Jan 1991 | JP |
8007913 | Jan 1996 | JP |
10012260 | Jan 1998 | JP |
10208766 | Aug 1998 | JP |
11329474 | Nov 1999 | JP |
2000058099 | Feb 2000 | JP |
2000200619 | Jul 2000 | JP |
2002015762 | Jan 2002 | JP |
2002175822 | Jun 2002 | JP |
2002289233 | Oct 2002 | JP |
2002367661 | Dec 2002 | JP |
2003173812 | Jun 2003 | JP |
2005142056 | Jun 2005 | JP |
2005228622 | Aug 2005 | JP |
2005228633 | Aug 2005 | JP |
2005322447 | Nov 2005 | JP |
2006107988 | Apr 2006 | JP |
2006114360 | Apr 2006 | JP |
2006147306 | Jun 2006 | JP |
2006147376 | Jun 2006 | JP |
2006313691 | Nov 2006 | JP |
2006351346 | Dec 2006 | JP |
2007087829 | Apr 2007 | JP |
8905528 | Jun 1989 | WO |
9003666 | Apr 1990 | WO |
WO 0017991 | Mar 2000 | WO |
03005476 | Jan 2003 | WO |
2004079849 | Sep 2004 | WO |
2006135958 | Dec 2006 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 12/217,059 mailed Aug. 23, 2010. |
Office Action for U.S. Appl. No. 12/577,137 mailed Sep. 7, 2010. |
Final Office Action for U.S. Appl. No. 12/577,127 mailed Aug. 19, 2010. |
Office Action for U.S. Appl. No. 11/674,101 mailed Apr. 9, 2010. |
Search Report for PCT Application No. PCT/US2008/53601. |
Written Opinion for PCT Application No. PCT/US2008/53601. |
IPRP for PCT Application No. PCT/US2008/53601. |
Search Report for PCT Application No. PCT/US2009/060279. |
PCT International Search Report and the Written Opinion mailed Jun. 26, 2009, in related International Application No. PCT/US2009/001303. |
Number | Date | Country | |
---|---|---|---|
20090218984 A1 | Sep 2009 | US |