Method and reagent for the induction of graft tolerance and reversal of immune responses

Abstract
The present invention relates to nucleic acid molecules which block synthesis and/or expression of an mRNA encoding B7-1, B7-2, B7-3 and/or CD40.
Description


BACKGROUND OF THE INVENTION

[0002] This invention relates to methods for the induction of graft tolerance, treatment of autoimmune diseases, inflammatory disorders and allergies in particular, by inhibition of B7-1, B7-2, B7-3 and CD40.


[0003] The following is a discussion of relevant art, none of which is admitted to be prior art to the present invention.


[0004] An adaptive immune response requires activation, clonal expansion, and differentiation of a class of cells termed T lymphocytes (T cells). T cell activation is a multi-step process requiring several signalling events between the T cell and an antigen presenting cell. The ensuing discussion details signals that are exchanged between T cells and antigen presenting B cells. Similar pathways are thought to occur between T cells and other antigen presenting cells such as monocytes or follicular dendritic cells.


[0005] T cell activation is initiated when the T-cell receptor (TCR) binds to a specific antigen that is associated with the MHC proteins on the surface of an antigen presenting cell. This primary stimulus activates the T cell and induces expression of CD40 ligand (CD40L) on the surface of the T cell. CD40L then interacts with its cognate receptor, CD40, which is constitutively expressed on the surface of B cells; CD40 transduces the signal leading to B cell activation. B cell activations result in the expression of B7-1, B7-2 and/or B7-3, which in turn interacts with constitutively expressed CD28 on the surface of T cells. The interaction generates a secondary co-stimulatory signal that is required to fully activate the T cell. Complete T cell activation via the T cell receptor and CD28 leads to cytokine secretion, clonal expansion, and differentiation. If the T cell receptor is engaged, absence of this secondary co-stimulus mediated by CD28, then the T cell is inactivated, either by clonal anergy (non-responsiveness or reduced reactivity of the immune system to specific antigen(s)) or clonal deletion (Jenkins et al., 1987 Proc. Natl. Acad. Sci. USA 84, 5409). Thus, engagement of the TCR without a concommitant costimulatory signal results in a state of tolerance toward the specific antigen recognized by the T cell. This co-stimulatory signal can be mediated by the binding of B7-1 or B7-2 or B7-3, present on activated antigen-presenting cells, to CD28, a receptor that is constitutively expressed on the surface of the T cell (Marshall et al., 1993 J Clin Immun 13, 165-174; Linsley, et al., 1991 J Exp Med 173, 721; Koulova et al., 1991 J Exp Med 173, 759; Harding et al., 1992 Nature 356, 607).


[0006] Several homologs of B7 (now known as B7-1; Cohen, 1993 Science 262, 844) are expressed in activated B cells (Freeman et al., 1993 Science 262, 907; Lenschow et al., 1993 Proc Natl Acad Sci USA 90, 11054; Azuma et al., 1993 Nature 366, 76; Hathcock et al., 1993 Science 262, 905; Freeman et al., 1993 Science 262, 909). B7-1 and B7-3 are only expressed on the surface of a subset of B cells after 48 hours of contact with T cells. In contrast, B7-2 mRNA is constitutively expressed by unstimulated B cells and increases 4-fold within 4 hours of activation (Freeman et al., 1993 Science 262, 909; Boussiotis et al., 1993 Proc Natl Acad Sci USA 90, 11059). Since T cells commit to either the anergy or the activation pathway within 12-24 hours of the initial TCR signal, it is thought that B7-2 is the molecule responsible for the primary costimulatory signal. B7-1 and B7-3 may provide a subsequent signal necessary for clonal expansion. Antibodies to B7-2 completely block T cell proliferation in a mixed lymphocyte reaction (Azuma et al., 1993 supra), supporting the central role of B7-2 in T cell activation. These experiments indicate that inhibition of B7-2 expression (for example with a ribozyme) would likely induce anergy. Similarly, inhibition of CD40 expression by a ribozyme would prevent B7-2 upregulation and could induce tolerance to specific antigens.


[0007] B7 (B7-1) is a 60 KD modified trans-membrane glycoprotein usually present on the surface of antigen presenting cells (APC). B7 has two ligands—CD28 and CTLA4. Interaction of B7-1 with CD28 and/or CTLA4 causes activation of T cell responses (Janeway and Bottomly, 1994 Cell 76, 275).


[0008] B7-2 is a 70 KD (34 KD unmodified) trans-membrane glycoprotein found on the surface of APCs. B7-2 encodes a 323 amino-acid protein which is 26% identical to human B7-1 protein. Like B7-1, CD28 and CTLA4 are selectively bound by B7-2. B7-2, unlike B7-1, is expressed on the surface of unstimulated B cells (Freeman et al., 1993 supra).


[0009] CD40 is a 45-50 KD surface glycoprotein found on the surface of late pre-B cells in bone marrow, mature B cells, bone marrow-derived dendritic cells and follicular dendritic cells (Clark and Ledbetter, 1994 Nature 367, 425).


[0010] Successful organ transplantation currently requires suppression of the recipient's immune system in order to prevent graft rejection and maintain good graft function. The available therapies, including cyclosporin A, FK506 and various monoclonal antibodies, all have serious side effects (Caine, 1992 Transplantation Proceedings 24, 1260; Fuleihan et al., 1994 J. Clin. Invest. 93, 1315; Van Gool et al., 1994 Blood 83, 176). In addition, existing therapies result in general immune suppression, leaving the patient susceptible to a variety of opportunistic infections. The ability to induce a state of long-term, antigen-specific tolerance to the donor tissue would revolutionize the field of organ and tissue transplantation. Since organ graft rejection is mediated by T cell effector function, the goal is to block specifically the activation of the subset of T cells that recognize donor antigens. A limitation in the field of transplantation is the supply of donor organs (Nowak 1994 Science 266, 1148). The ability to induce donor-specific tolerance would substantially increase the chances of successful allographs, xenographs, thereby greatly increasing the donor pool.


[0011] Such transplantation includes grafting of tissues and/or organ ie., implantation or transplantation of tissue and/or organs, from the body of an individual to a different place within the same or different individual. Transplantation also involve grafting of tissues and/or organs from one area of the body to another. Transplantation of tissues and/or organs between genetically dissimilar animals of the same species is termed as allogeneic transplantation. Transplantation of animal organs into humans is termed xenotransplants (for a review see Nowak, 1994 Science 266, 1148).


[0012] One therapy currently being developed that has similar potential to induce antigen-specific tolerance is treatment with a CTLA4-Ig fusion protein. “CTLA4” is a homologue of CD28 that binds B7-1 and B7-2 with high affinity. The engineered, soluble fusion protein, CTLA4-Ig, binds B7-1, thereby blocking its interaction with CD28. The results of CTLA4-Ig treatment in animal studies are mixed. CTLA4-Ig treatment significantly enhanced survival rates and ameliorated the symptoms of graft-versus host disease in a murine bone marrow tranplant model (Blazer et al., 1994 Blood 83, 3815). CTLA4-Ig induced long-term (>110 days) donor-specific tolerance in pancreatic islet xenographs (Lenschow et al., 1992 Science 257, 789). Conversely, in another study CTLA4-Ig treatment delayed but did not ultimately prevent cardiac allograft rejection (Turka, et al., 1992 Proc Natl Acad Sci U S A 89, 11102). Mice immunized with sheep erythrocytes in the presence of CTLA4-Ig failed to mount a primary immune response (Linsley, et al., 1992 Science 257, 792). A secondary immunization did elicit some response, however, indicating incomplete tolerance. Interestingly, identical results were obtained when CTLA4-Ig was administered 2 days after primary immunization, leading the authors to conclude that CTLA4-Ig blocked amplification rather than initiation of the immune response. Since CTLA4-Ig has been shown to dissociate more rapidly from B7-2 compared with B7-1, this may explain the failure to induce long term tolerance in this model (Linsley et al., 1994 Immunity 1, 793).


[0013] CTLA4:Ig has recently been shown to ameliorate symptoms of spontaneous autoimmune disease in lupus-prone mice (Finck et al., 1994 Science 265, 1225).


[0014] Linsley et al., WO 92/00092 describe B7 antigen as a ligand for CD28 receptor on T cells. The application states that-


[0015] “The B7 antigen, or its fragments or derivatives are reacted with CD28 positive T cells to regulate T cell interactions with other cells . . . B7 antigen or CD28 receptor may be used to inhibit interaction of cells associated with these molecules, thereby regulating T cell responses.”


[0016] De Boer and Conroy, WO 94/01547 describe the use of anti-B7 and anti-CD40 antibodies to treat allograft transplant rejection, graft versus host disease and rhematoid arthritis. The application states that-


[0017] “ . . . anti-B7 and anti-CD40 antibodies . . . can be used to prevent or treat an antibody-mediated or immune system disease in a patient.”


[0018] Since signalling via CD40 precedes induction of B-7, blocking the CD40-CD40L interaction would also have the potential to produce tolerance. According to one report, simultaneous treatment of mice with antibodies to CD40L and sheep red blood cells produced antigen-specific tolerance for up to 3 weeks following cessation of treatment (Foy et al., 1993 J Exp Med 178, 1567). Anti-CD40L also produces antigen specific tolerance in a pancreatic islet transplant model (R. Noelle, personal communication). Targeted inhibition of CD40 expression in B cells in addition to B7 would therefore afford double protection against activation of T cells.


[0019] Therapeutic agents used to prevent rejection of a transplanted organ are all cytotoxic compounds or antibodies designed to suppress the cell-mediated immune system. The side effects of these agents are those of immunosuppression and infections. The primary approved agents are azathioprine, corticosteroids, cyclosporine; the antibodies are antilymphocyte or antithymocyte globulins. All of these are given to individuals who have been as closely matched as possible to their donors by both major and minor histocompatibility typing. Since the principal problem in transplantation is an antigenic mismatch and the resulting need for cytotoxic therapy, any therapeutic improvement which decreases the local immune response without general immunosuppression should capture the transplant market.


[0020] Cyclosporine: At the end of the 1970's and early 1980's the introduction of cyclosporine revolutionized the transplantation field. It is a potent immunosuppressant which can inhibit immunocompetent lymphocytes specifically and reversibly. Its primary mechanism of action appears to be inhibition of the production and release of interleukin-2 by T helper cells. In addition it also interferes with the release of interleukin-1 by macrophages, as well as proliferation of B lymphocytes. It was approved by the FDA in 1983 and by 1989 was almost universally given to transplant recipients. At first it was believed that the toxicity and side effects from cyclosporine were minimal and it was hailed as a “wonder drug.” Numerous side effects have been progressively cited, including the appearance of lymphomas, especially in the gastrointestinal tract; acute and chronic nephrotoxicity; hypertension; hepatotoxicity; hirsutism; anemia; neurotoxicity; endocrine and neurological complications; and gastrointestinal distress. It is now widely acknowledged that the non-specific side effects of the drug demand caution and close monitoring of its use. One-year survival rates for cadaver kidney transplants treated with cyclosporine is 80%, much better than the 50-60% rates without the drug. The one-year survival is almost 90% for transplants with related donors and the use of cyclosporine.


[0021] Azathioprine: In addition to cyclosporine, azathioprine is used for transplant patients. Azathioprine is one of the mercaptopurine class of drugs and inhibits nucleic acid synthesis. Patients are maintained indefinitely on daily doses of 1 mg/kg or less, with a dosage adjusted in accordance with the white cell count. The drug may cause depression of bone marrow elements and may cause jaundice.


[0022] Corticosteroids: Prednisone, used in almost all transplant recipients, is usually given in association with azathioprine and cyclosporine. The dosage must be regulated carefully so as so prevent complications such as infection, development of cushingoid features, and hypertension. Usually the initial maintenance prednisone dosage is 0.5 mg/kg/d. This dosage is usually further decreased in the outpatient clinic until maintenance levels of about 10 mg/d for adults are obtained. The exact site of action of corticosteroids on the immune response is not known.


[0023] Antithymoblast or Antilymphocyte Globulin (ALG) and Antithymocyte Globulin (ATG): These are important adjunctive immunosuppressants. They are effective, particularly in induction of immunosuppressive therapy and in the treatment of corticosteroid-resistant rejection. Both ALG and ATG can be made by immunizing horses, rabbits, or sheep; the main source is horses. Lymphocytes from human peripheral blood, spleen, lymph nodes, or thymus serve as the immunogen.


[0024] Tacrolimus: On Apr. 13, 1994 the Food and Drug Administration approved another drug to help prevent the rejection of organ transplants. The drug, tacrolimus, was approved only for use in liver transplant patients. An alternative to cyclosporine, the macrolide immunosuppressant tacrolimus is a powerful and selective anti-T-lymphocyte agent that was discovered in 1984. Tacrolimus, isolated from the fungus Streptomyces tsukubaensis, possesses immunodepressant properties similar to but more potent than cyclosporine. It inhibits both cell-mediated and humoral immune responses. Like cyclosporine, tacrolimus demonstrates considerable interindividual variation in its pharmacokinetic profile. Most clinical studies with tacrolimus have neither been published in their entirety nor subjected to extensive peer review; there is also a paucity of published randomized investigations of tacrolimus vs. cyclosporine, particularly in renal transplantation. Despite these drawbacks, tacrolimus has shown notable efficacy as a rescue or primary immunosuppressant therapy when combined with corticosteroids. The potential for reductional withdrawal of corticosteroid therapy with tacrolimus appears to be a distinct advantage compared with the cyclosporine. This benefit may be enhanced by reduced incidence of infectious complications, hypertension and hypercholesterolemia reported by some investigators. In other respects, the tolerability profile of tacrolimus appears to be broadly similar to that of cyclosporine.


[0025] In addition to induction of graft tolerance, T cell anergy can be used to reverse autoimmune diseases. Autoimmune diseases represent a broad category of conditions. A few examples include insulin-dependent diabetes mellitus (IDDM), multiple schlerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), myasthenia gravis (MG), and psoriasis. These seemingly disparate diseases all share the common feature of inappropriate immune response to specific self-antigens. Finck et al. supra have reported that CTLA4Ig treatment of mice blocked auto-antibody production in a mice model of SLE. In fact, this effect was observed even when the CTLA4Ig treatment was initiated during the advanced stages of the disease, suggesting that the autoimmune response was a reversible process.


[0026] Chappel., WO 94/11011 describes methods to treat autoimmune diseases by inducing tolerance to cells, tissues and organs. The application states that-


[0027] “Cells genetically engineered with DNA encoding a plurality of antigens of a cell, tissue, or organ to which tolerance is to be induced. The cells are free of co-stimulatory antigens, such as B7 antigen,. Such cells induce T-cell anergy against the proteins encoded by the DNA, and may be administered to a patient in order to prevent the onset of or to treat an autoimmune disease, or to induce tolerance to a tissue or organ prior to transplantation.”


[0028] Allergic reactions represent an immediate hypersensitivity response to environmental antigens, typically mediated by IgE antibodies. The ability to induce antigen-specific tolerance provides a powerful avenue to alleviate allergies by exposure to the antigen in conjunction with down-regulation of B7-1, B7-2, B7-3 or CD40.


[0029] The specific roles of B7-1, B7-2 and B7-3 in T cell activation remains to be determined. Some studies suggest that their functions are essentially redundant (Hathcock et al 1994 J Exp. Med. 180, 631), or that the differences observed in the kinetics of expression might simply indicate that B7-2 is important in the initiation of the co-stimulatory signal, while B7-1 plays a role in the amplification of that signal. Other studies point to more specific functions. For example, Kuchroo et al., 1995 Cell 80, 707, have reported that blocking B7-1 expression may favor a Th2 response, while blocking B7-2 expression favors a Th1 response. These two helper T cell subpopulations play distinct roles in the immune response and inflammatory disease. Th1 cells are strongly correlated with auto-immune disease. Allergic responses are typically triggered by Th2 response. Therefore, the decision to target B7-1, B7-2, CD40 or a combination of the above will depend to the particular disease application.



SUMMARY OF THE INVENTION

[0030] The invention features novel nucleic acid-based techniques [e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5 A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups (Cook et al., U.S. Pat. No. 5,359,051)] and methods for their use to induce graft tolerance, to treat autoimmune diseases such as lupus, rheumatoid arthritis, multiple sclerosis and to treatment of allergies.


[0031] In a preferred embodiment, the invention features use of one or more of the nucleic acid-based techniques to induce graft tolerance by inhibiting the synthesis of B7-1, B7-2, B7-3 and CD40 proteins.


[0032] Those in the art will recognize the other potential targets, for e.g., ICAM-1, VCAM-1, β1 integrin (VLA4) are also suitable for treatment with the nucleic acid-based techniques described in the present invention.


[0033] By “inhibit” is meant that the activity of B7-1, B7-2, B7-3 and/or CD40 or level of mRNAs encoded by B7-1, B7-2, B7-3 and/or CD40 is reduced below that observed in the absence of the nucleic acid. In one embodiment, inhibition with ribozymes preferably is below that level observed in the presence of an enzymatically inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA.


[0034] By “enzymatic RNA molecule” it is meant an RNA molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave RNA in that target. That is, the enzymatic RNA molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. This complementarity functions to allow sufficient hybridization of the enzymatic RNA molecule to the target RNA to allow the cleavage to occur. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention. By “equivalent” RNA to B7-1, B7-2, B7-3 and/or CD40 is meant to include those naturally occurring RNA molecules associated with graft rejection in various animals, including human, mice, rats, rabbits, primates and pigs.


[0035] By “antisense nucleic acid” is meant a non-enzymatic nucleic acid molecule that binds to another RNA (target RNA) by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review see Stein and Cheng, 1993 Science 261, 1004).


[0036] By “2-5 A antisense chimera” is meant, an antisense oligonucleotide containing a 5′ phosphorylated 2′-5′-linked adenylate residues. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5 A-dependent ribonuclease which in turn cleaves the target RNA (Torrence et al., 1993 Proc. Natl. Acad. Sci. USA 90, 1300).


[0037] By “triplex DNA” is meant an oligonucleotide that can bind to a double-stranded DNA in a sequence-specific manner to form a triple-strand helix. Triple-helix formation has been shown to inhibit transcription of the targeted gene (Duval-Valentin et al., 1992 Proc. Natl. Acad. Sci. USA 89, 504).


[0038] By “gene” is meant a nucleic acid that encodes an RNA.


[0039] By “complementarity” is meant a nucleic acid that can form hydrogen bond(s) with other RNA sequence by either traditional Watson-Crick or other non-traditional types (for example, Hoogsteen type) of base-paired interactions.


[0040] Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.


[0041] The enzymatic nature of a ribozyme is advantageous over other technologies, since the concentration of ribozyme necessary to affect a therapeutic treatment is lower. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme.


[0042] Ribozymes that cleave the specified sites in B7-1, B7-2, B7-3 and/or CD40 mRNAs represent a novel therapeutic approach to induce graft tolerance and treat autoimmune diseases, allergies and other inflammatory conditions. Applicant indicates that ribozymes are able to inhibit the activity of B7-1, B7-2, B7-3 and/or CD40 and that the catalytic activity of the ribozymes is required for their inhibitory effect. Those of ordinary skill in the art, will find that it is clear from the examples described that other ribozymes that cleave these sites in B7-1, B7-2, B7-3 and/or CD40 mRNAs may be readily designed and are within the invention.


[0043] In preferred embodiments of this invention, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA. Examples of such hammerhead motifs are described by Rossi et al., 1992, Aids Research and Human Retroviruses 8, 183, of hairpin motifs by Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, and Hampel et al., 1990 Nucleic Acids Res. 18, 299, and an example of the hepatitis delta virus motif is described by Perrotta and Been, 1992 Biochemistry 31, 16; of the RNaseP motif by Guerrier-Takada et al., 1983 Cell 35, 849, Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799) and of the Group I intron by Cech et al., U.S. Pat. No. 4,987,071. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.


[0044] In a preferred embodiment the invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target mRNAs encoding B7-1, B7-2, B7-3 and/or CD40 proteins such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the ribozymes can be expressed from DNA/RNA vectors that are delivered to specific cells.


[0045] Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small enzymatic nucleic acid motifs (e.g., of the hammerhead or the hairpin structure) are used for exogenous delivery. The simple structure of these molecules increases the ability of the enzymatic nucleic acid to invade targeted regions of the mRNA structure. However, these catalytic RNA molecules can also be expressed within cells from eukaryotic promoters (e.g., Scanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet et al., 1992 Antisense Res. Dev., 2, 3-15; Dropulic et al., 1992 J. Virol, 66, 1432-41; Weerasinghe et al., 1991 J. Virol, 65, 5531-4; Ojwang et al., 1992 Proc. Natl. Acad. Sci. USA 89, 10802-6; Chen et al., 1992 Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science 247, 1222-1225). Those skilled in the art realize that any ribozyme can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Draper et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa et al., 1992 Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993 Nucleic Acids Res.. 21, 3249-55; Chowrira et al., 1994 J. Biol. Chem. 269, 25856).


[0046] Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the levels of B7-1, B7-2, B7-3 and/or CD40 activity in a cell or tissue. By “related” is meant that the inhibition of B7-1, B7-2, B7-3 and/or CD40 mRNAs and thus reduction in the level respective protein activity will relieve to some extent the symptoms of the disease or condition.


[0047] Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in Tables II, IV, VI, VIII, X, XII, XIV, XV, XVI, XVII, XVIII and XIX. Examples of such ribozymes are shown in Tables III, V, VI, VII, IX, XI, XIII, XIV, XV, XVI, XVII, XVIII and XIX. Examples of such ribozymes consist essentially of sequences defined in these Tables. By “consists essentially of” is meant that the active ribozyme contains an enzymatic center equivalent to those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.


[0048] In another aspect of the invention, ribozymes that cleave target molecules and inhibit B7-1, B7-2, B7-3 and/or CD40 activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the ribozymes are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes. Such vectors might be repeatedly administered as necessary. Once expressed, the ribozymes cleave the target mRNA. Delivery of ribozyme expressing vectors could be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell.


[0049] By “vectors” is meant any nucleic acid- and/or viral-based technique used to deliver a desired nucleic acid.


[0050] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0051] The drawings will first briefly be described.


[0052] Drawings


[0053]
FIG. 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art. Stem II can be ≧2 base-pair long.


[0054]
FIG. 2

a
is a diagrammatic representation of the hammerhead ribozyme domain known in the art; FIG. 2b is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, Nature, 327, 596-600) into a substrate and enzyme portion; FIG. 2c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, Nature, 334, 585-591) into two portions; and FIG. 2d is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989, Nucl. Acids. Res., 17, 1371-1371) into two portions.


[0055]
FIG. 3 is a diagramatic representation of the general structure of a hairpin ribozyme. Helix 2 (H2) is provided with a least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3-20 bases, i.e., m is from 1-20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (i.e., r is ≧1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (e.g., 4-20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N′ independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (i.e., o and p is each independently from 0 to any number, e.g., 20) as long as some base-pairing is maintained. Essential bases are shown as specific bases in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, i.e., without a connecting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. “q” is ≧2 bases. The connecting loop can also be replaced with a non-nucleotide linker molecule. H, refers to bases A, U or C. Y refers to pyrimidine bases.


[0056]
FIG. 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art.


[0057]
FIG. 5 is a representation of the general structure of the self-cleaving VS RNA ribozyme domain.


[0058]
FIG. 6 is a schematic representation of an RNAseH accessibility assay. Specifically, the left side of FIG. 6 is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA. Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of FIG. 6 is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target RNA; the bands unique to each lane represent the cleaved products.







[0059] Ribozymes


[0060] Ribozymes of this invention block to some extent B7-1, B7-2, B7-3 and/or CD40 production and can be used to treat disease or diagnose such disease. Ribozymes will be delivered to cells in culture, to cells or tissues in animal models of transplantation, autoimmune diseases and/or allergies and to human cells or tissues ex vivo or in viva. Ribozyme cleavage of B7-1, B7-2 and/or CD40 encoded mRNAs in these systems may alleviate disease symptoms.


[0061] Target Sites


[0062] Targets for useful ribozymes can be determined as disclosed in Draper et al., “Method and reagent for treatment of arthritic conditions U.S. Ser. No. 08/152,487, filed Nov. 12, 1993, and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described.


[0063] The sequence of human and mouse B7-1, B7-2, B7-3 and/or CD40 mRNAs were screened for optimal ribozyme target sites using a computer folding algorithm. Hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables II, IV, VII, VII, X, XII, XIV, XV, XVI, XVII, XVIII and XIX (All sequences are 5′ to 3′ in the tables) The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. While mouse and human sequences can be screened and ribozymes thereafter designed, the human targeted sequences are of most utility. However, as discussed in Stinchcomb et al., “Method and Composition for Treatment of Restenosis and Cancer Using Ribozymes,” filed May 18, 1994, U.S. Ser. No. 08/245,466, mouse targeted ribozymes may be useful to test efficacy of action of the ribozyme prior to testing in humans. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme.


[0064] Hammerhead or hairpin ribozymes were designed that could bind and were individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.


[0065] Referring to FIG. 6, mRNA is screened for accessible cleavage sites by the method described generally in McSwiggen, U.S. patent application Ser. No. 07/883,849 filed on May 1, 1992, entitled “Assay for ribozyme target site”, hereby incorporated by reference herein. Briefly, DNA oligonucleotides representing potential hammerhead or hairpin ribozyme cleavage sites were synthesized. A polymerase chain reaction is used to generate substrates for T7 RNA polymerase transcription from human and mouse B7-1, B7-2 and CD40 cDNA clones. Labeled RNA transcripts are synthesized in vitro from the templates. The oligonucleotides and the labeled transcripts were annealed, RNAseH was added and the mixtures were incubated for the designated times at 37° C. Reactions are stopped and RNA separated on sequencing polyacrylamide gels. The percentage of the substrate cleaved is determined by autoradiographic quantitation using a Phosphorimaging system. From these data, hammerhead or hairpin ribozyme sites are chosen as the most accessible.


[0066] Ribozymes of the hammerhead or hairpin motif are designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes are chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman et al., 1987 J. Am. Chem. Soc., 109, 7845 and in Scaringe et al., 1990 Nucleic Acids Res., 18, 5433 and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. The average stepwise coupling yields were >98%. Inactive ribozymes were synthesized by substituting a U for G5 and a U for A14 (numbering from Hertel et al., 1992 Nucleic Acids Res., 20, 3252). Hairpin ribozymes were synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira and Burke, 1992 Nucleic Acids Res., 20, 2835-2840). Ribozymes were also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). All ribozymes are modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H (for a review see Usman and Cedergren, 1992 TIBS 17, 34). Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Usman et al., Synthesis, deprotection, analysis and purification of RNA and ribozymes, filed May, 18, 1994, U.S. Ser. No. 08/245,736 the totality of which is hereby incorporated herein by reference) and are resuspended in water.


[0067] The sequences of the ribozymes that are chemically synthesized, useful in this study, are shown in Tables III, V, VI, VII, IX, XI, XIII, XIV, XV, XVI, XVII, XVIII and XIX. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. For example, stem-loop II sequence of hammerhead ribozymes listed in Tables III and V (5′-GGCCGAAAGGCC-3′) can be altered (substitution, deletion, and/or insertion) to contain any sequences provided a minimum of two base-paired stem structure can form. Similarly, stem-loop IV sequence of hairpin ribozymes listed in Tables VI and VII (5′-CACGUUGUG-3′) can be altered (substitution, deletion, and/or insertion) to contain any sequence, provided a minimum of two base-paired stem structure can form. The sequences listed in Tables III, V, VI, VII, IX, XI, XII, XIV, XV, XVI, XVII, XVIII and XIX may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes are equivalent to the ribozymes described specifically in the Tables.


[0068] Optimizing Ribozyme Activity


[0069] Ribozyme activity can be optimized as described by Stinchcomb et al., supra. The details will not be repeated here, but include altering the length of the ribozyme binding arms (stems I and III, see FIG. 2c), or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al, International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991 Science 253, 314; Usman and Cedergren, 1992 Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162, as well as Usman, N. et al. U.S. patent application Ser. No. 07/829,729, and Sproat, European Patent Application 92110298.4 which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules). Modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements are desired. (All these publications are hereby incorporated by reference herein.),


[0070] Sullivan, et al., supra, describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan et al., supra and Draper et al., supra which have been incorporated by reference herein.


[0071] In another preferred embodiment, the ribozyme is administered to the site of B7-1, B7-2, B7-3 and/or CD40 expression (APC) in an appropriate liposomal vesicle. APCs isolated from donor (for example) are treated with the ribozyme preparation (or other nucleic acid therapeutics) ex vivo and the treated cells are infused into recipient. Alternatively, cells, tissues or organs are directly treated with nucleic acids of the present invention prior to transplantation into a recipient.


[0072] Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA or RNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990 Proc. Natl. Acad. Sci. U S A, 87, 6743-7; Gao and Huang 1993 Nucleic Acids Res., 21, 2867-72; Lieber et al., 1993 Methods Enzymol., 217, 47-66; Zhou et al., 1990 Mol. Cell. Biol., 10, 4529-37). Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992 Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992 Proc. Natl. Acad. Sci. U S A, 89, 10802-6; Chen et al., 1992 Nucleic Acids Res., 20, 4581-9; Yu et al., 1993 Proc. Natl. Acad. Sci. U S A, 90, 6340-4; L'Huillier et al., 1992 EMBO J. 11, 4411-8; Lisziewicz et al., 1993 Proc. Natl. Acad. Sci. U. S. A., 90, 8000-4). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors).


[0073] In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves mRNAs encoded by B7-1, B7-2, B7-3 and/or CD40 are inserted into a plasmid DNA vector or an adenovirus or adeno-associated virus DNA viral vector or a retroviral RNA vector. Viral vectors have been used to transfer genes and lead to either transient or long term gene expression (Zabner et al., 1993 Cell 75, 207; Carter, 1992 Curr. Opi. Biotech. 3, 533). The adenovirus vector is delivered as recombinant adenoviral particles. The DNA may be delivered alone or complexed with vehicles (as described for RNA above). The recombinant adenovirus or AAV particles are locally administered to the site of treatment, e.g. through incubation or inhalation in vivo or by direct application to cells or tissues ex vivo.


[0074] B7-1, B7-2, B7-3 and CD40 are attractive ribozyme targets by several criteria. The molecular mechanism of T cell activation is well-established. Efficacy can be tested in well-defined and predictive animal models. The clinical end-point of graft rejection is clear. Since delivery would be ex vivo, treatment of the correct cell population would be assured. Finally, the disease condition is serious and current therapies are inadequate. Whereas protein-based therapies would induce anergy against all antigens encountered during the several week treatment period, ex vivo ribozyme therapy provides a direct and elegant approach to truly donor-specific anergy.


[0075] Similarly, autoimmune diseases and allergies can be prevented or treated by reversing the devastating course of immune response to self-antigens. Specifically, nucleic acids of this inventions can dampen the response to naturally occuring antigens.


EXAMPLE 1


B7-1, B7-2, B7-3 and/or CD40 Hammerhead Ribozymes

[0076] By engineering ribozyme motifs we have designed several ribozymes directed against B7-1, B7-2, B7-3 and/or CD40 encoded mRNA sequences. These ribozymes were synthesized with modifications that improve their nuclease resistance. The ability of ribozymes to cleave target sequences in vitro was evaluated.


[0077] Several common human cell lines are available that can be induced to express endogenous B7-1, B7-2, B7-3 and/or CD40. Alternatively, murine splenic cells can be isolated and induced, to express B7-1 or B7-2, with IL-4 or recombinant CD40 ligand. B7-1 and B7-2 can be detected easily with monoclonal antibodies. Use of appropriate flourescent reagents and flourescence-activated cell-sorting (FACS) will permit direct quantitation of surface B7-1 and B7-2 on a cell-by-cell basis. Active ribozymes are expected to directly reduce B7-1 or B7-2 expression. Ribozymes targeted to CD40 would prevent induction of B7-2 by CD40 ligand.


[0078] Several animal models of transplantation are available -Mouse, rat, Porcine model (Fodor et al., 1994, Proc. Natl. Acad. Sci. USA 91, 11153); or Baboon (reviewed by Nowak, 1994 Science 266, 1148). B7-1, B7-2, B7-3 and/or CD40 protein levels can be measured clinically or experimentally by FACS analysis. B7-1, B7-2, B7-3 and/or CD40 encoded mRNA levels will be assessed by Northern analysis, RNase-protection, primer extension analysis and/or quantitative RT-PCR. Ribozymes that block the induction of B7-1, B7-2, B7-3 and/or CD40 activity and/or B7-1, B7-2, B7-3 and/or CD40 protein encoding mRNAs by more than 20% in vitro will be identified.


[0079] Several animals models of autoimmune disorders are available—allergic encephalomyelitis (EAE) in Lewis rats (Carlson et al., 1993 Ann. N.Y. Acad. Sci. 685, 86); animal models of multiple sclerosis (Wekerle et al., 1994 Ann. Neurol. 36, s47) and rheumatoid arthritis (van Laar et al., 1994 Chem. Immunol. 58, 206).


[0080] Several animal models of allergy are available and are reviewed by Kemeny and Diaz-Sanchez, 1990, Clin. Exp. Immunol. 82, 423 and Pretolani et al., 1994 Ann. N.Y. Acad. Sci. 725, 247).


[0081] RNA ribozymes and/or genes encoding them will be delivered by either free delivery, liposome delivery, cationic lipid delivery, adeno-associated virus vector delivery, adenovirus vector delivery, retrovirus vector delivery or plasmid vector delivery in these animal model experiments (see above). One dose of a ribozyme vector that constitutively expresses the ribozyme or one or more doses of a stable anti-B7-1, B7-2, B7-3 and/or CD40 ribozymes or a transiently expressing ribozyme vector to donor APC, followed by infusion into the recipient may reduce the incidence of graft rejection. Alternatively, graft tissues may be treated as described above prior to transplantation.


[0082] Diagnostic Uses


[0083] Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of B7-1, B7-2, B7-3 and/or CD40 RNA in a cell. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this invention, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNAs associated with B7-1, B7-2, B7-3 and/or CD40 related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.


[0084] In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species. The cleavage products from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis will require two ribozymes, two substrates and one unknown sample which will be combined into six reactions. The presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., B7-1, B7-2, B7-3 and/or CD40) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.


[0085] Other embodiments are within the following claims.
1TABLE ICharacteristics of RibozymesGroup I IntronsSize: ˜200 to >1000 nucleotides.Requires a U in the target sequence immediately 5′ of the cleavagesite.Binds 4-6 nucleotides at 5′ side of cleavage site.Over 75 known members of this class. Found in Tetrahymenathermophila rRNA, fungal mitochondria, chloroplasts, phage T4,blue-green algae, and others.RNAseP RNA (M1 RNA)Size: ˜290 to 400 nucleotides.RNA portion of a ribonucleoprotein enzyme. Cleaves tRNAprecursors to form mature tRNA.Roughly 10 known members of this group all are bacterial in origin.Hammerhead RibozymeSize: ˜13 to 40 nucleotides.Requires the target sequence UH immediately 5′ of the cleavagesite.Binds a variable number nucleotides on both sides of the cleavagesite.14 known members of this class. Found in a number of plantpathogens (virusoids) that use RNA as the infectious agent (FIG. 1)Hairpin RibozymeSize: ˜50 nucleotides.Requires the target sequence GUC immediately 3′ of the cleavagesite.Binds 4-6 nucleotides at 5′ side of the cleavage site and a variablenumber to the 3′ side of the cleavage site.Only 3 known member of this class. Found in three plant pathogen(satellite RNAs of the tobacco ringspot virus, arabis mosaic virusand chicory yellow mottle virus) which uses RNA as the infectiousagent (FIG. 3).Hepatitis Delta Virus (HDV) RibozymeSize: 50-60 nucleotides (at present).Cleavage of target RNAs recently demonstrated.Sequence requirements not fully determined.Binding sites and structural requirements not fully determined,although no sequences 5′ of cleavage site are required.Only 1 known member of this class. Found in human HDV (FIG. 4).Neurospora VS RNA RibozymeSize: ˜144 nucleotides (at present)Cleavage of target RNAs recently demonstrated.Sequence requirements not fully determined.Binding sites and structural requirements not fully determined. Only1 known member of this class. Found in Neurospora VS RNA(FIG. 5).


[0086]

2





TABLE II










Human B7-1 Hammerhead Ribozyme Sequences










SEQ



nt. ID
HH Target


Position
NO
Sequence












8
1
AAACCCU C UGUAAAG





12
2
CCUCUGU A AAGUAAC





17
3
GUAAAGU A ACAGAAG





26
4
CAGAAGU U AGAAGGG





27
5
AGAAGUU A GAAGGGG





41
6
GAAAUGU C GCCUCUC





46
7
GUCGCCU C UCUGAAG





48
8
CGCCUCU C UGAAGAU





56
9
UGAAGAU U ACCCAAA





57
10
GAAGAUU A CCCAAAG





75
11
AAGUGAU U UGUCAUU





76
12
AGUGAUU U GUCAUUG





79
13
GAUUUGU C AUUGCUU





82
14
UUGUCAU U GCUUUAU





86
15
CAUUGCU U UAUAGAC





87
16
AUUGCUU U AUAGACU





88
17
UUGCUUU A UAGACUG





90
18
GCUUUAU A GACUGUA





97
19
AGACUGU A AGAAGAG





110
20
AGAACAU C UCAGAAG





112
21
AACAUCU C AGAAGUG





124
22
GUGGAGU C UUACCCU





126
23
GGAGUCU U ACCCUGA





127
24
GAGUCUU A CCCUGAA





137
25
CUGAAAU C AAAGGAU





145
26
AAAGGAU U UAAAGAA





146
27
AAGGAUU U AAAGAAA





147
28
AGGAUUU A AAGAAAA





163
29
GUGGAAU U UUUCUUC





164
30
UGGAAUU U UUCUUCA





165
31
GGAAUUU U UCUUCAG





166
32
GAAUUUU U CUUCAGC





167
33
AAUUUUU C UUCAGCA





169
34
UUUUUCU U CAGCAAG





170
35
UUUUCUU C AGCAAGC





187
36
UGAAACU A AAUCCAC





191
37
ACUAAAU C CACAACC





200
38
ACAACCU U UGGAGAC





201
39
CAACCUU U GGAGACC





221
40
ACACCCU C CAAUCUC





226
41
CUCCAAU C UCUGUGU





228
42
CCAAUCU C UGUGUGU





441
43
UUCAGCU C UUGGUGC





443
44
CAGCUCU U GGUGCUG





457
45
GGCUGGU C UUUCUCA





459
46
CUGGUCU U UCUCACU





460
47
UGGUCUU U CUCACUU





461
48
GGUCUUU C UCACUUC





463
49
UCUUUCU C ACUUCUG





467
50
UCUCACU U CUGUUCA





468
51
CUCACUU C UGUUCAG





472
52
CUUCUGU U CAGGUGU





473
53
UUCUGUU C AGGUGUU





480
54
CAGGUGU U AUCCACG





481
55
AGGUGUU A UCCACGU





483
56
GUGUUAU C CACGUGA





521
57
ACGCUGU C CUGUGGU





529
58
CUGUGGU C ACAAUGU





537
59
ACAAUGU U UCUGUUG





538
60
CAAUGUU U CUGUUGA





539
61
AAUGUUU C UGUUGAA





543
62
UUUCUGU U GAAGAGC





562
63
ACAAACU C GCAUCUA





567
64
CUCGCAU C UACUGGC





569
65
CGCAUCU A CUGGCAA





601
66
GCUGACU A UGAUGUC





608
67
AUGAUGU C UGGGGAC





622
68
CAUGAAU A UAUGGCC





624
69
UGAAUAU A UGGCCCG





635
70
CCCGAGU A CAAGAAC





651
71
GGACCAU C UUUGAUA





653
72
ACCAUCU U UGAUAUC





654
73
CCAUCUU U GAUAUCA





658
74
CUUUGAU A UCACUAA





660
75
UUGAUAU C ACUAAUA





664
76
UAUCACU A AUAACCU





667
77
CACUAAU A ACCUCUC





672
78
AUAACCU C UCCAUUG





674
79
AACCUCU C CAUUGUG





678
80
UCUCCAU U GUGAUCC





684
81
UUGUGAU C CUGGCUC





691
82
CCUGGCU C UGCGCCC





701
83
CGCCCAU C UGACGAG





716
84
GGCACAU A CGAGUGU





726
85
AGUGUGU U GUUCUGA





729
86
GUGUUGU U CUGAAGU





730
87
UGUUGUU C UGAAGUA





737
86
CUGAAGU A UGAAAAA





751
89
AGACGCU U UCAAGCG





752
90
GACGCUU U CAAGCGG





753
91
ACGCUUU C AAGCGGG





1016
92
CACAGCU U CAUGUGU





1017
93
ACAGCUU C AUGUGUC





1024
94
CAUGUGU C UCAUCAA





1026
95
UGUGUCU C AUCAAGU





1029
96
GUCUCAU C AAGUAUG





1034
97
AUCAAGU A UGGACAU





1042
98
UGGACAU U UAAGAGU





1043
99
GGACAUU U AAGAGUG





1044
100
GACAUUU A AGAGUGA





1054
101
AGUGAAU C AGACCUU





1061
102
CAGACCU U CAACUGG





1062
103
AGACCUU C AACUGGA





1072
104
CUGGAAU A CAACCAA





1090
105
AGAGCAU U UUCCUGA





1091
106
GAGCAUU U UCCUGAU





1092
107
AGCAUUU U CCUGAUA





1093
108
GCAUUUU C CUGAUAA





1099
109
UCCUGAU A ACCUGCU





1107
110
ACCUGCU C CCAUCCU





1112
111
CUCCCAU C CUGGGCC





1122
112
GGGCCAU U ACCUUAA





1123
113
GGCCAUU A CCUUAAU





1127
114
AUUACCU U AAUCUCA





1128
115
UUACCUU A AUCUCAG





1131
116
CCUUAAU C UCAGUAA





1133
117
UUAAUCU C AGUAAAU





1137
118
UCUCAGU A AAUGGAA





1146
119
AUGGAAU U UUUGUGA





1147
120
UGGAAUU U UUGUGAU





1148
121
GGAAUUU U UGUGAUA





1149
122
GAAUUUU U GUGAUAU





1155
123
UUGUGAU A UGCUGCC





1169
124
CUGACCU A CUGCUUU





1175
125
UACUGCU U UGCCCCA





1176
126
ACUGCUU U GCCCCAA





1214
127
GAGAGAU U GAGAAGG





1230
128
AAAGUGU A CGCCCUG





1239
129
GCCCUGU A UAACAGU





1241
130
CCUGUAU A ACAGUGU





1249
131
ACAGUGU C CGCAGAA





1275
132
AAAAGAU C UGAAGGU





1283
133
UGAAGGU A GCCUCCG





1288
134
GUAGCCU C CGUCAUC





1292
135
CCUCCGU C AUCUCUU





1295
136
CCGUCAU C UCUUCUG





1297
137
GUCAUCU C UUCUGGG





1299
138
CAUCUCU U CUGGGAU





1300
139
AUCUCUU C UGGGAUA





1307
140
CUGGGAU A CAUGGAU





1487
141
CCAUGUU U CCAUUCU





1488
142
CAUGUUU C CAUUCUG





1492
143
UUUCCAU U CUGCCAU





1493
144
UUCCAUU C UGCCAUC





1500
145
CUGCCAU C UUGAAUU





1502
146
GCCAUCU U GAAUUGU





1507
147
CUUGAAU U GUCUUGU





1510
148
GAAUUGU C UUGUCAG





1512
149
AUUGUCU U GUCAGCC





1515
150
GUCUUGU C AGCCAAU





1523
151
AGCCAAU U CAUUAUC





1524
152
GCCAAUU C AUUAUCU





1527
153
AAUUCAU U AUCUAUU





1528
154
AUUCAUU A UCUAUUA





1530
155
UCAUUAU C UAUUAAA





1532
156
AUUAUCU A UUAAACA





1534
157
UAUCUAU U AAACACU





1535
158
AUCUAUU A AACACUA





1542
159
AAACACU A AUUUGAG





236
160
UGUGUGU U UUGUAAA





237
161
GUGUGUU U UGUAAAC





238
162
UGUGUUU U GUAAACA





241
163
GUUUUGU A AACAUCA





247
164
UAAACAU C ACUGGAG





258
165
GGAGGGU C UUCUACG





260
166
AGGGUCU U CUAGGUG





261
167
GGGUCUU C UACGUGA





263
168
GUCUUCU A CGUGAGC





274
169
GAGCAAU U GGAUUGU





279
170
AUUGGAU U GUCAUCA





282
171
GGAUUGU C AUCAGCC





285
172
UUGUCAU C AGCCCUG





298
173
UGCCUGU U UUGCACC





299
174
GCCUGUU U UGCACCU





300
175
CCUGUUU U GCACCUG





322
176
CCCUGGU C UUACUUG





324
177
CUGGUCU U ACUUGGG





325
178
UGGUCUU A CUUGGGU





328
179
UCUUACU U GGGUCCA





333
180
CUUGGGU C CAAAUUG





339
181
UCCAAAU U GUUGGCU





342
182
AAAUUGU U GGCUUUC





347
183
GUUGGCU U UCACUUU





348
184
UUGGCUU U CACUUUU





349
185
UGGCUUU C ACUUUUG





353
186
UUUCACU U UUGACCC





354
187
UUCACUU U UGACCCU





355
188
UCACUUU U GACCCUA





362
189
UGACCCU A AGCAUCU





368
190
UAAGCAU C UGAAGCC





404
191
GGAACAU C ACCAUCC





410
192
UCACCAU C CAAGUGU





418
193
CAAGUGU C CAUACCU





422
194
UGUCCAU A CCUCAAU





426
195
CAUACCU C AAUUUCU





430
196
CCUCAAU U UCUUUCA





431
197
CUCAAUU U CUUUCAG





432
198
UCAAUUU C UUUCAGC





434
199
AAUUUCU U UCAGCUC





435
200
AUUUCUU U CAGCUCU





436
201
UUUCUUU C AGCUCUU





782
202
GUGACGU U AUCAGUC





783
203
UGACGUU A UCAGUCA





785
204
ACGUUAU C AGUCAAA





789
205
UAUCAGU C AAAGCUG





800
206
GCUGACU U CCCUACA





801
207
CUGACUU C CCUACAC





805
208
CUUCCCU A CACCUAG





811
209
UACACCU A GUAUAUC





814
210
ACCUAGU A UAUCUGA





816
211
CUAGUAU A UCUGACU





818
212
AGUAUAU C UGACUUU





824
213
UCUGACU U UGAAAUU





825
214
CUGACUU U GAAAUUC





831
215
UUGAAAU U CCAACUU





832
216
UGAAAUU C CAACUUC





838
217
UCCAACU U CUAAUAU





839
218
CCAACUU C UAAUAUU





841
219
AACUUCU A AUAUUAG





844
220
UUCUAAU A UUAGAAG





846
221
CUAAUAU U AGAAGGA





847
222
UAAUAUU A GAAGGAU





855
223
GAAGGAU A AUUUGCU





858
224
GGAUAAU U UGCUCAA





859
225
GAUAAUU U GCUCAAC





863
226
AUUUGCU C AACCUCU





869
227
UCAACCU C UGGAGGU





877
228
UGGAGGU U UUCCAGA





878
229
GGAGGUU U UCCAGAG





879
230
GAGGUUU U CCAGAGC





880
231
AGGUUUU C CAGAGCC





889
232
AGAGCCU C ACCUCUC





894
233
CUCACCU C UCCUGGU





896
234
CACCUCU C CUGGUUG





902
235
UCCUGGU U GGAAAAU





920
236
GAAGAAU U AAAUGCC





921
237
AAGAAUU A AAUGCCA





930
238
AUGCCAU C AACACAA





942
239
CAACAGU U UCCCAAG





943
240
AACAGUU U CCCAAGA





944
241
ACAGUUU C CCAAGAU





952
242
CCAAGAU C CUGAAAC





966
243
CUGAGCU C UAUGCUG





968
244
GAGCUCU A UGCUGUU





975
245
AUGCUGU U AGCAGCA





976
246
UGCUGUU A GCAGCAA





991
247
ACUGGAU U UCAAUAU





992
248
CUGGAUU U CAAUAUG





993
249
UGGAUUU C AAUAUGA





997
250
UUUCAAU A UGACAAC





1315
251
CAUGGAU C GUGGGGA





1324
252
UGGGGAU C AUGAGGC





1334
253
GAGGCAU U CUUCCCU





1335
254
AGGCAUU C UUCCCUU





1337
255
GCAUUCU U CCCUUAA





1338
256
CAUUCUU C CCUUAAC





1342
257
CUUCCCU U AACAAAU





1343
258
UUCCCUU A ACAAAUU





1350
259
AACAAAU U UAAGCUG





1351
260
ACAAAUU U AAGCUGU





1352
261
CAAAUUU A AGCUGUU





1359
262
AAGCUGU U UUACCCA





1360
263
AGCUGUU U UACCCAC





1361
264
GCUGUUU U ACCCACU





1362
265
CUGUUUU A CCCACUA





1369
266
ACCCACU A CCUCACC





1373
267
ACUACCU C ACCUUCU





1378
268
CUCACCU U CUUAAAA





1379
269
UCACCUU C UUAAAAA





1381
270
ACCUUCU U AAAAACC





1382
271
CCUUCUU A AAAACCU





1390
272
AAAACCU C UUUCAGA





1392
273
AACCUCU U UCAGAUU





1393
274
ACCUCUU U CAGAUUA





1394
275
CCUCUUU C AGAUUAA





1399
276
UUCAGAU U AAGCUGA





1400
277
UCAGAUU A AGCUGAA





1412
278
GAACAGU U ACAAGAU





1413
279
AACAGUU A CAAGAUG





1429
280
CUGGCAU C CCUCUCC





1433
281
CAUCCCU C UCCUUUC





1435
282
UCCCUCU C CUUUCUC





1438
283
CUCUCCU U UCUCCCC





1439
284
UCUCCUU U CUCCCCA





1440
285
CUCCUUU C UCCCCAU





1442
286
CCUUUCU C CCCAUAU





1448
287
UCCCCAU A UGCAAUU





1455
288
AUGCAAU U UGCUUAA





1456
289
UGCAAUU U GCUUAAU





1460
290
AUUUGCU U AAUGUAA





1461
291
UUUGCUU A AUGUAAC





1466
292
UUAAUGU A ACCUCUU





1471
293
GUAACCU C UUCUUUU





1473
294
AACCUCU U CUUUUGC





1474
295
ACCUCUU C UUUUGCC





1476
296
CUCUUCU U UUGCCAU





1477
297
UCUUCUU U UGCCAUG





1478
298
CUUCUUU U GCCAUGU





1486
299
GCCAUGU U UCCAUUC










[0087]

3





TABLE III










Human B7-1 Hammerhead Ribozyme Sequences









nt.
SEQ



Posi-
ID


tion
NO
HH Ribozyme Sequence












8
1057
CUUUACA CUGAUGAGGCCGAAAGGCCGAA AGGGUUU





12
1058
GUUACUU CUGAUGAGGCCGAAAGGCCGAA ACAGAGG





17
1059
CUUCUGU CUGAUGAGGCCGAAAGGCCGAA ACUUUAC





26
1060
CCCUUCU CUGAUGAGGCCGAAAGGCCGAA ACUUCUG





27
1061
CCCCUUC CUGAUGAGGCCGAAAGGCCGAA AACUUCU





41
1062
GAGAGGC CUGAUGAGGCCGAAAGGCCGAA ACAUUUC





46
1063
CUUCAGA CUGAUGAGGCCGAAAGGCCGAA AGGCGAC





48
1064
AUCUUCA CUGAUGAGGCCGAAAGGCCGAA AGAGGCG





56
1065
UUUGGGU CUGAUGAGGCCGAAAGGCCGAA AUCUUCA





57
1066
CUUUGGG CUGAUGAGGCCGAAAGGCCGAA AAUCUUC





75
1067
AAUGACA CUGAUGAGGCCGAAAGGCCGAA AUCACUU





76
1068
CAAUGAC CUGAUGAGGCCGAAAGGCCGAA AAUCACU





79
1069
AAGCAAU CUGAUGAGGCCGAAAGGCCGAA ACAAAUC





82
1070
AUAAAGC CUGAUGAGGCCGAAAGGCCGAA AUGACAA





86
1071
GUCUAUA CUGAUGAGGCCGAAAGGCCGAA AGCAAUG





87
1072
AGUCUAU CUGAUGAGGCCGAAAGGCCGAA AAGCAAU





88
1073
CAGUCUA CUGAUGAGGCCGAAAGGCCGAA AAAGCAA





90
1074
UACAGUC CUGAUGAGGCCGAAAGGCCGAA AUAAAGC





97
1075
CUCUUCU CUGAUGAGGCCGAAAGGCCGAA ACAGUCU





110
1076
CUUCUGA CUGAUGAGGCCGAAAGGCCGAA AUGUUCU





112
1077
CACUUCU CUGAUGAGGCCGAAAGGCCGAA AGAUGUU





124
1078
AGGGUAA CUGAUGAGGCCGAAAGGCCGAA ACUCCAC





126
1079
UCAGGGU CUGAUGAGGCCGAAAGGCCGAA AGACUCC





127
1080
UUCAGGG CUGAUGAGGCCGAAAGGCCGAA AAGACUC





137
1081
AUCCUUU CUGAUGAGGCCGAAAGGCCGAA AUUUCAG





145
1082
UUCUUUA CUGAUGAGGCCGAAAGGCCGAA AUCCUUU





146
1083
UUUCUUU CUGAUGAGGCCGAAAGGCCGAA AAUCCUU





147
1084
UUUUCUU CUGAUGAGGCCGAAAGGCCGAA AAAUCCU





163
1085
GAAGAAA CUGAUGAGGCCGAAAGGCCGAA AUUCCAC





164
1086
UGAAGAA CUGAUGAGGCCGAAAGGCCGAA AAUUCCA





165
1087
CUGAAGA CUGAUGAGGCCGAAAGGCCGAA AAAUUCC





166
1088
GCUGAAG CUGAUGAGGCCGAAAGGCCGAA AAAAUUC





167
1089
UGCUGAA CUGAUGAGGCCGAAAGGCCGAA AAAAAUU





169
1090
CUUGCUG CUGAUGAGGCCGAAAGGCCGAA AGAAAAA





170
1091
GCUUGCU CUGAUGAGGCCGAAAGGCCGAA AAGAAAA





187
1092
GUGGAUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCA





191
1093
GGUUGUG CUGAUGAGGCCGAAAGGCCGAA AUUUAGU





200
1094
GUCUCCA CUGAUGAGGCCGAAAGGCCGAA AGGUUGU





201
1095
GGUCUCC CUGAUGAGGCCGAAAGGCCGAA AAGGUUG





221
1096
GAGAUUG CUGAUGAGGCCGAAAGGCCGAA AGGGUGU





226
1097
ACACAGA CUGAUGAGGCCGAAAGGCCGAA AUUGGAG





228
1098
ACACACA CUGAUGAGGCCGAAAGGCCGAA AGAUUGG





236
1099
UUUACAA CUGAUGAGGCCGAAAGGCCGAA ACACACA





237
1100
GUUUACA CUGAUGAGGCCGAAAGGCCGAA AACACAC





238
1101
UGUUUAC CUGAUGAGGCCGAAAGGCCGAA AAACACA





241
1102
UGAUGUU CUGAUGAGGCCGAAAGGCCGAA ACAAAAC





247
1103
CUCCAGU CUGAUGAGGCCGAAAGGCCGAA AUGUUUA





258
1104
CGUAGAA CUGAUGAGGCCGAAAGGCCGAA ACCCUCC





260
1105
CACGUAG CUGAUGAGGCCGAAAGGCCGAA AGACCCU





261
1106
UCACGUA CUGAUGAGGCCGAAAGGCCGAA AAGACCC





263
1107
GCUCACG CUGAUGAGGCCGAAAGGCCGAA AGAAGAC





274
1108
ACAAUCC CUGAUGAGGCCGAAAGGCCGAA AUUGCUC





279
1109
UGAUGAC CUGAUGAGGCCGAAAGGCCGAA AUCCAAU





282
1110
GGCUGAU CUGAUGAGGCCGAAAGGCCGAA ACAAUCC





285
1111
CAGGGCU CUGAUGAGGCCGAAAGGCCGAA AUGACAA





298
1112
GGUGCAA CUGAUGAGGCCGAAAGGCCGAA ACAGGCA





299
1113
AGGUGCA CUGAUGAGGCCGAAAGGCCGAA AACAGGC





300
1114
CAGGUGC CUGAUGAGGCCGAAAGGCCGAA AAACAGG





322
1115
CAAGUAA CUGAUGAGGCCGAAAGGCCGAA ACCAGGG





324
1116
CCCAAGU CUGAUGAGGCCGAAAGGCCGAA AGACCAG





325
1117
ACCCAAG CUGAUGAGGCCGAAAGGCCGAA AAGACCA





328
1118
UGGACCC CUGAUGAGGCCGAAAGGCCGAA AGUAAGA





333
1119
CAAUUUG CUGAUGAGGCCGAAAGGCCGAA ACCCAAG





339
1120
AGCCAAC CUGAUGAGGCCGAAAGGCCGAA AUUUGGA





342
1121
GAAAGCC CUGAUGAGGCCGAAAGGCCGAA ACAAUUU





347
1122
AAAGUGA CUGAUGAGGCCGAAAGGCCGAA AGCCAAC





348
1123
AAAAGUG CUGAUGAGGCCGAAAGGCCGAA AAGCCAA





349
1124
CAAAAGU CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





353
1125
GGGUCAA CUGAUGAGGCCGAAAGGCCGAA AGUGAAA





354
1126
AGGGUCA CUGAUGAGGCCGAAAGGCCGAA AAGUGAA





355
1127
UAGGGUC CUGAUGAGGCCGAAAGGCCGAA AAAGUGA





362
1128
AGAUGCU CUGAUGAGGCCGAAAGGCCGAA AGGGUCA





368
1129
GGCUUCA CUGAUGAGGCCGAAAGGCCGAA AUGCUUA





404
1130
GGAUGGU CUGAUGAGGCCGAAAGGCCGAA AUGUUCC





410
1131
ACACUUG CUGAUGAGGCCGAAAGGCCGAA AUGGUGA





418
1132
AGGUAUG CUGAUGAGGCCGAAAGGCCGAA ACACUUG





422
1133
AUUGAGG CUGAUGAGGCCGAAAGGCCGAA AUGGACA





426
1134
AGAAAUU CUGAUGAGGCCGAAAGGCCGAA AGGUAUG





430
1135
UGAAAGA CUGAUGAGGCCGAAAGGCCGAA AUUGAGG





431
1136
CUGAAAG CUGAUGAGGCCGAAAGGCCGAA AAUUGAG





432
1137
GCUGAAA CUGAUGAGGCCGAAAGGCCGAA AAAUUGA





434
1138
GAGCUGA CUGAUGAGGCCGAAAGGCCGAA AGAAAUU





435
1139
AGAGCUG CUGAUGAGGCCGAAAGGCCGAA AAGAAAU





436
1140
AAGAGCU CUGAUGAGGCCGAAAGGCCGAA AAAGAAA





441
1141
GCACCAA CUGAUGAGGCCGAAAGGCCGAA AGCUGAA





443
1142
CAGCACC CUGAUGAGGCCGAAAGGCCGAA AGAGCUG





457
1143
UGAGAAA CUGAUGAGGCCGAAAGGCCGAA ACCAGCC





459
1144
AGUGAGA CUGAUGAGGCCGAAAGGCCGAA AGACCAG





460
1145
AAGUGAG CUGAUGAGGCCGAAAGGCCGAA AAGACCA





461
1146
GAAGUGA CUGAUGAGGCCGAAAGGCCGAA AAAGACC





463
1147
CAGAAGU CUGAUGAGGCCGAAAGGCCGAA AGAAAGA





467
1148
UGAACAG CUGAUGAGGCCGAAAGGCCGAA AGUGAGA





468
1149
CUGAACA CUGAUGAGGCCGAAAGGCCGAA AAGUGAG





472
1150
ACACCUG CUGAUGAGGCCGAAAGGCCGAA ACAGAAG





473
1151
AACACCU CUGAUGAGGCCGAAAGGCCGAA AACAGAA





480
1152
CGUGGAU CUGAUGAGGCCGAAAGGCCGAA ACACCUG





481
1153
ACGUGGA CUGAUGAGGCCGAAAGGCCGAA AACACCU





483
1154
UCAGGUG CUGAUGAGGCCGAAAGGCCGAA AUAACAC





521
1155
ACCACAG CUGAUGAGGCCGAAAGGCCGAA ACAGCGU





529
1156
ACAUUGU CUGAUGAGGCCGAAAGGCCGAA ACCACAG





537
1157
CAACAGA CUGAUGAGGCCGAAAGGCCGAA ACAUUGU





538
1158
UCAACAG CUGAUGAGGCCGAAAGGCCGAA AACAUUG





539
1159
UUCAACA CUGAUGAGGCCGAAAGGCCGAA AAACAUU





543
1160
GCUCUUC CUGAUGAGGCCGAAAGGCCGAA ACAGAAA





562
1161
UAGAUGC CUGAUGAGGCCGAAAGGCCGAA AGUUUGU





567
1162
GCCAGUA CUGAUGAGGCCGAAAGGCCGAA AUGCGAG





569
1163
UUGCCAG CUGAUGAGGCCGAAAGGCCGAA AGAUGCG





601
1164
GACAUCA CUGAUGAGGCCGAAAGGCCGAA AGUCAGC





608
1165
GUCCCCA CUGAUGAGGCCGAAAGGCCGAA ACAUCAU





622
1166
GGCCAUA CUGAUGAGGCCGAAAGGCCGAA AUUCAUG





624
1167
CGGGCCA CUGAUGAGGCCGAAAGGCCGAA AUAUUCA





635
1168
GUUCUUG CUGAUGAGGCCGAAAGGCCGAA ACUCGGG





651
1169
UAUCAAA CUGAUGAGGCCGAAAGGCCGAA AUGGUCC





653
1170
GAUAUCA CUGAUGAGGCCGAAAGGCCGAA AGAUGGU





654
1171
UGAUAUC CUGAUGAGGCCGAAAGGCCGAA AAGAUGG





658
1172
UUAGUGA CUGAUGAGGCCGAAAGGCCGAA AUCAAAG





660
1173
UAUUAGU CUGAUGAGGCCGAAAGGCCGAA AUAUCAA





664
1174
AGGUUAU CUGAUGAGGCCGAAAGGCCGAA AGUGAUA





667
1175
GAGAGGU CUGAUGAGGCCGAAAGGCCGAA AUUAGUG





672
1176
CAAUGGA CUGAUGAGGCCGAAAGGCCGAA AGGUUAU





674
1177
CACAAUG CUGAUGAGGCCGAAAGGCCGAA AGAGGUU





678
1178
GGAUCAC CUGAUGAGGCCGAAAGGCCGAA AUGGAGA





684
1179
GAGCCAG CUGAUGAGGCCGAAAGGCCGAA AUCACAA





691
1180
GGGCGCA CUGAUGAGGCCGAAAGGCCGAA AGCCAGG





701
1181
CUCGUCA CUGAUGAGGCCGAAAGGCCGAA AUGGGCG





716
1182
ACACUCG CUGAUGAGGCCGAAAGGCCGAA AUGUGCC





726
1183
UCAGAAC CUGAUGAGGCCGAAAGGCCGAA ACACACU





729
1184
ACUUCAG CUGAUGAGGCCGAAAGGCCGAA ACAACAC





730
1185
UACUUCA CUGAUGAGGCCGAAAGGCCGAA AACAACA





737
1186
UUUUUCA CUGAUGAGGCCGAAAGGCCGAA ACUUCAG





751
1187
CGCUUGA CUGAUGAGGCCGAAAGGCCGAA AGCGUCU





752
1188
CCGCUUG CUGAUGAGGCCGAAAGGCCGAA AAGCGUC





753
1189
CCCGCUU CUGAUGAGGCCGAAAGGCCGAA AAAGCGU





782
1190
GACUGAU CUGAUGAGGCCGAAAGGCCGAA ACGUCAC





783
1191
UGACUGA CUGAUGAGGCCGAAAGGCCGAA AACGUCA





785
1192
UUUGACU CUGAUGAGCCCGAAAGGCCGAA AUAACGU





789
1193
CAGCUUU CUGAUGAGGCCGAAAGGCCGAA ACUGAUA





800
1194
UGUAGGG CUGAUGAGGCCGAAAGGCCGAA AGUCAGC





801
1195
GUGUAGG CUGAUGAGGCCGAAAGGCCGAA AAGUCAG





805
1196
CUAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGGAAG





811
1197
GAUAUAC CUGAUGAGGCCGAAAGGCCGAA AGGUGUA





814
1198
UCAGAUA CUGAUGAGGCCGAAAGGCCGAA ACUAGGU





816
1199
AGUCAGA CUGAUGAGGCCGAAAGGCCGAA AUACUAG





818
1200
AAAGUCA CUGAUGAGGCCGAAAGGCCGAA AUAUACU





824
1201
AAUUUCA CUGAUGAGGCCGAAAGGCCGAA AGUCAGA





825
1202
GAAUUUC CUGAUGAGGCCGAAAGGCCGAA AAGUCAG





831
1203
AAGUUGG CUGAUGAGGCCGAAAGGCCGAA AUUUCAA





832
1204
GAAGUUG CUGAUGAGGCCGAAAGGCCGAA AAUUUCA





838
1205
AUAUUAG CUGAUGAGGCCGAAAGGCCGAA AGUUGGA





839
1206
AAUAUUA CUGAUGAGGCCGAAAGGCCGAA AAGUUGG





841
1207
CUAAUAU CUGAUGAGGCCGAAAGGCCGAA AGAAGUU





844
1208
CUUCUAA CUGAUGAGGCCGAAAGGCCGAA AUUAGAA





846
1209
UCCUUCU CUGAUGAGGCCGAAAGGCCGAA AUAUUAG





847
1210
AUCCUUC CUGAUGAGGCCGAAAGGCCGAA AAUAUUA





855
1211
AGCAAAU CUGAUGAGGCCGAAAGGCCGAA AUCCUUC





858
1212
UUGAGCA CUGAUGAGGCCGAAAGGCCGAA AUUAUCC





859
1213
GUUGAGC CUGAUGAGGCCGAAAGGCCGAA AAUUAUC





863
1214
AGAGGUU CUGAUGAGGCCGAAAGGCCGAA AGCAAAU





869
1215
ACCUCCA CUGAUGAGGCCGAAAGGCCGAA AGGUUGA





877
1216
UCUGGAA CUGAUGAGGCCGAAAGGCCGAA ACCUCCA





878
1217
CUCUGGA CUGAUGAGGCCGAAAGGCCGAA AACCUCC





879
1218
GCUCUGG CUGAUGAGGCCGAAAGGCCGAA AAACCUC





880
1219
GGCUCUG CUGAUGAGGCCGAAAGGCCGAA AAAACCU





889
1220
GAGAGGU CUGAUGAGGCCGAAAGGCCGAA AGGCUCU





894
1221
ACCAGGA CUGAUGAGGCCGAAAGGCCGAA AGGUGAG





896
1222
CAACCAG CUGAUGAGGCCGAAAGGCCGAA AGAGGUG





902
1223
AUUUUCC CUGAUGAGGCCGAAAGGCCGAA ACCAGGA





920
1224
GGCAUUU CUGAUGAGGCCGAAAGGCCGAA AUUCUUC





921
1225
UGGCAUU CUGAUGAGGCCGAAAGGCCGAA AAUUCUU





930
1226
UUGUGUU CUGAUGAGGCCGAAAGGCCGAA AUGGCAU





942
1227
CUUGGGA CUGAUGAGGCCGAAAGGCCGAA ACUGUUG





943
1228
UCUUGGG CUGAUGAGGCCGAAAGGCCGAA AACUGUU





944
1229
AUCUUGG CUGAUGAGGCCGAAAGGCCGAA AAACUGU





952
1230
GUUUCAG CUGAUGAGGCCGAAAGGCCGAA AUCUUGG





966
1231
CAGCAUA CUGAUGAGGCCGAAAGGCCGAA AGCUCAG





968
1232
AACAGCA CUGAUGAGGCCGAAAGGCCGAA AGAGCUC





975
1233
UGCUGCU CUGAUGAGGCCGAAAGGCCGAA ACAGCAU





976
1234
UUGCUGC CUGAUGAGGCCGAAAGGCCGAA AACAGCA





991
1235
AUAUUGA CUGAUGAGGCCGAAAGGCCGAA AUCCAGU





992
1236
CAUAUUG CUGAUGAGGCCGAAAGGCCGAA AAUCCAG





993
1237
UCAUAUU CUGAUGAGGCCGAAAGGCCGAA AAAUCCA





997
1238
GUUGUCA CUGAUGAGGCCGAAAGGCCGAA AUUGAAA





1016
1239
ACACAUG CUGAUGAGGCCGAAAGGCCGAA AGCUGUG





1017
1240
GACACAU CUGAUGAGGCCGAAAGGCCGAA AAGCUGU





1024
1241
UUGAUGA CUGAUGAGGCCGAAAGGCCGAA ACACAUG





1026
1242
ACUUGAU CUGAUGAGGCCGAAAGGCCGAA AGACACA





1029
1243
CAUACUU CUGAUGAGGCCGAAAGGCCGAA AUGAGAC





1034
1244
AUGUCCA CUGAUGAGGCCGAAAGGCCGAA ACUUGAU





1042
1245
ACUCUUA CUGAUGAGGCCGAAAGGCCGAA AUGUCCA





1043
1246
CACUCUU CUGAUGAGGCCGAAAGGCCGAA AAUGUCC





1044
1247
UCACUCU CUGAUGAGGCCGAAAGGCCGAA AAAUGUC





1054
1248
AAGGUCU CUGAUGAGGCCGAAAGGCCGAA AUUCACU





1061
1249
CCAGUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUG





1062
1250
UCCAGUU CUGAUGAGGCCGAAAGGCCGAA AAGGUCU





1072
1251
UUGGUUG CUGAUGAGGCCGAAAGGCCGAA AUUCCAG





1090
1252
UCAGGAA CUGAUGAGGCCGAAAGGCCGAA AUGCUCU





1091
1253
AUCAGGA CUGAUGAGGCCGAAAGGCCGAA AAUGCUC





1092
1254
UAUCAGG CUGAUGAGGCCGAAAGGCCGAA AAAUGCU





1093
1255
UUAUCAG CUGAUGAGGCCGAAAGGCCGAA AAAAUGC





1099
1256
AGCAGGU CUGAUGAGGCCGAAAGGCCGAA AUCAGGA





1107
1257
AGGAUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGGU





1112
1258
GGCCCAG CUGAUGAGGCCGAAAGGCCGAA AUGGGAG





1122
1259
UUAAGGU CUGAUGAGGCCGAAAGGCCGAA AUGGCCC





1123
1260
AUUAAGG CUGAUGAGGCCGAAAGGCCGAA AAUGGCC





1127
1261
UGAGAUU CUGAUGAGGCCGAAAGGCCGAA AGGUAAU





1128
1262
CUGAGAU CUGAUGAGGCCGAAAGGCCGAA AAGGUAA





1131
1263
UUACUGA CUGAUGAGGCCGAAAGGCCGAA AUUAAGG





1133
1264
AUUUACU CUGAUGAGGCCGAAAGGCCGAA AGAUUAA





1137
1265
UUCCAUU CUGAUGAGGCCGAAAGGCCGAA ACUGAGA





1146
1266
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUUCCAU





1147
1267
AUCACAA CUGAUGAGGCCGAAAGGCCGAA AAUUCCA





1148
1268
UAUCACA CUGAUGAGGCCGAAAGGCCGAA AAAUUCC





1149
1269
AUAUCAC CUGAUGAGGCCGAAAGGCCGAA AAAAUUC





1155
1270
GGCAGCA CUGAUGAGGCCGAAAGGCCGAA AUCACAA





1169
1271
AAAGCAG CUGAUGAGGCCGAAAGGCCGAA AGGUCAG





1175
1272
UGGGGCA CUGAUGAGGCCGAAAGGCCGAA AGCAGUA





1176
1273
UUGGGGC CUGAUGAGGCCGAAAGGCCGAA AAGCAGU





1214
1274
CCUUCUC CUGAUGAGGCCGAAAGGCCGAA AUCUCUC





1230
1275
CAGGGCG CUGAUGAGGCCGAAAGGCCGAA ACACUUU





1239
1276
ACUGUUA CUGAUGAGGCCGAAAGGCCGAA ACAGGGC





1241
1277
ACACUGU CUGAUGAGGCCGAAAGGCCGAA AUACAGG





1249
1278
UUCUGCG CUGAUGAGGCCGAAAGGCCGAA ACACUGU





1275
1279
ACCUUCA CUGAUGAGGCCGAAAGGCCGAA AUCUUUU





1283
1280
CGGAGGC CUGAUGAGGCCGAAAGGCCGAA ACCUUCA





1288
1281
GAUGACG CUGAUGAGGCCGAAAGGCCGAA AGGCUAC





1292
1282
AAGAGAU CUGAUGAGGCCGAAAGGCCGAA ACGGAGG





1295
1283
CAGAAGA CUGAUGAGGCCGAAAGGCCGAA AUGACGG





1297
1284
CCCAGAA CUGAUGAGGCCGAAAGGCCGAA AGAUGAC





1299
1285
AUCCCAG CUGAUGAGGCCGAAAGGCCGAA AGAGAUG





1300
1286
UAUCCCA CUGAUGAGGCCGAAAGGCCGAA AAGAGAU





1307
1287
AUCCAUG CUGAUGAGGCCGAAAGGCCGAA AUCCCAG





1315
1288
UCCCCAC CUGAUGAGGCCGAAAGGCCGAA AUCCAUG





1324
1289
GCCUCAU CUGAUGAGGCCGAAAGGCCGAA AUCCCCA





1334
1290
AGGGAAG CUGAUGAGGCCGAAAGGCCGAA AUGCCUC





1335
1291
AAGGGAA CUGAUGAGGCCGAAAGGCCGAA AAUGCCU





1337
1292
UUAAGGG CUGAUGAGGCCGAAAGGCCGAA AGAAUGC





1338
1293
GUUAAGG CUGAUGAGGCCGAAAGGCCGAA AAGAAUG





1342
1294
AUUUGUU CUGAUGAGGCCGAAAGGCCGAA AGGGAAG





1343
1295
AAUUUGU CUGAUGAGGCCGAAAGGCCGAA AAGGGAA





1350
1296
CAGCUUA CUGAUGAGGCCGAAAGGCCGAA AUUUGUU





1351
1297
ACAGCUU CUGAUGAGGCCGAAAGGCCGAA AAUUUGU





1352
1298
AACAGCU CUGAUGAGGCCGAAAGGCCGAA AAAUUUG





1359
1299
UGGGUAA CUGAUGAGGCCGAAAGGCCGAA ACAGCUU





1360
1300
GUGGGUA CUGAUGAGGCCGAAAGGCCGAA AACAGCU





1361
1301
AGUGGGU CUGAUGAGGCCGAAAGGCCGAA AAACAGC





1362
1302
UAGUGGG CUGAUGAGGCCGAAAGGCCGAA AAAACAG





1369
1303
GGUGAGG CUGAUGAGGCCGAAAGGCCGAA AGUGGGU





1373
1304
AGAAGGU CUGAUGAGGCCGAAAGGCCGAA AGGUAGU





1378
1305
UUUUAAG CUGAUGAGGCCGAAAGGCCGAA AGGUGAG





1379
1306
UUUUUAA CUGAUGAGGCCGAAAGGCCGAA AAGGUGA





1381
1307
GGUUUUU CUGAUGAGGCCGAAAGGCCGAA AGAAGGU





1382
1308
AGGUUUU CUGAUGAGGCCGAAAGGCCGAA AAGAAGG





1390
1309
UCUGAAA CUGAUGAGGCCGAAAGGCCGAA AGGUUUU





1392
1310
AAUCUGA CUGAUGAGGCCGAAAGGCCGAA AGAGGUU





1393
1311
UAAUCUG CUGAUGAGGCCGAAAGGCCGAA AAGAGGU





1394
1312
UUAAUCU CUGAUGAGGCCGAAAGGCCGAA AAAGAGG





1399
1313
UCAGCUU CUGAUGAGGCCGAAAGGCCGAA AUCUGAA





1400
1314
UUCAGCU CUGAUGAGGCCGAAAGGCCGAA AAUCUGA





1412
1315
AUCUUGU CUGAUGAGGCCGAAAGGCCGAA ACUGUUC





1413
1316
CAUCUUG CUGAUGAGGCCGAAAGGCCGAA AACUGUU





1429
1317
GGAGAGG CUGAUGAGGCCGAAAGGCCGAA AUGCCAG





1433
1318
GAAAGGA CUGAUGAGGCCGAAAGGCCGAA AGGGAUG





1435
1319
GAGAAAG CUGAUGAGGCCGAAAGGCCGAA AGAGGGA





1438
1320
GGGGAGA CUGAUGAGGCCGAAAGGCCGAA AGGAGAG





1439
1321
UGGGGAG CUGAUGAGGCCGAAAGGCCGAA AAGGAGA





1440
1322
AUGGGGA CUGAUGAGGCCGAAAGGCCGAA AAAGGAG





1442
1323
AUAUGGG CUGAUGAGGCCGAAAGGCCGAA AGAAAGG





1448
1324
AAUUGCA CUGAUGAGGCCGAAAGGCCGAA AUGGGGA





1455
1325
UUAAGCA CUGAUGAGGCCGAAAGGCCGAA AUUGCAU





1456
1326
AUUAAGC CUGAUGAGGCCGAAAGGCCGAA AAUUGCA





1460
1327
UUACAUU CUGAUGAGGCCGAAAGGCCGAA AGCAAAU





1461
1328
GUUACAU CUGAUGAGGCCGAAAGGCCGAA AAGCAAA





1466
1329
AAGAGGU CUGAUGAGGCCGAAAGGCCGAA ACAUUAA





1471
1330
AAAAGAA CUGAUGAGGCCGAAAGGCCGAA AGGUUAC





1473
1331
GCAAAAG CUGAUGAGGCCGAAAGGCCGAA AGAGGUU





1474
1332
GGCAAAA CUGAUGAGGCCGAAAGGCCGAA AAGAGGU





1476
1333
AUGGCAA CUGAUGAGGCCGAAAGGCCGAA AGAAGAG





1477
1334
CAUGGCA CUGAUGAGGCCGAAAGGCCGAA AAGAAGA





1478
1335
ACAUGGC CUGAUGAGGCCGAAAGGCCGAA AAAGAAG





1486
1336
GAAUGGA CUGAUGAGGCCGAAAGGCCGAA ACAUGGC





1487
1337
AGAAUGG CUGAUGAGGCCGAAAGGCCGAA AACAUGG





1488
1338
CAGAAUG CUGAUGAGGCCGAAAGGCCGAA AAACAUG





1492
1339
AUGGCAG CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





1493
1340
GAUGGCA CUGAUGAGGCCGAAAGGCCGAA AAUGGAA





1500
1341
AAUUCAA CUGAUGAGGCCGAAAGGCCGAA AUGGCAG





1502
1342
ACAAUUC CUGAUGAGGCCGAAAGGCCGAA AGAUGGC





1507
1343
ACAAGAC CUGAUGAGGCCGAAAGGCCGAA AUUCAAG





1510
1344
CUGACAA CUGAUGAGGCCGAAAGGCCGAA ACAAUUC





1512
1345
GGCUGAC CUGAUGAGGCCGAAAGGCCGAA AGACAAU





1515
1346
AUUGGCU CUGAUGAGGCCGAAAGGCCGAA ACAAGAC





1523
1347
GAUAAUG CUGAUGAGGCCGAAAGGCCGAA AUUGGCU





1524
1348
AGAUAAU CUGAUGAGGCCGAAAGGCCGAA AAUUGGC





1527
1349
AAUAGAU CUGAUGAGGCCGAAAGGCCGAA AUGAAUU





1528
1350
UAAUAGA CUGAUGAGGCCGAAAGGCCGAA AAUGAAU





1530
1351
UUUAAUA CUGAUGAGGCCGAAAGGCCGAA AUAAUGA





1532
1352
UGUUUAA CUGAUGAGGCCGAAAGGCCGAA AGAUAAU





1534
1353
AGUGUUU CUGAUGAGGCCGAAAGGCCGAA AUAGAUA





1535
1354
UAGUGUU CUGAUGAGGCCGAAAGGCCGAA AAUAGAU





1542
1355
CUCAAAU CUGAUGAGGCCGAAAGGCCGAA AGUGUUU










[0088]

4





TABLE IV










Mouse B7-1 Hammerhead Ribozyme Target Sequences









nt.
SEQ ID
HH Target


Position
NO
Sequence












8
300
GaGUuUU a UACcUcA





10
301
guUuuAU A CCUCAAU





10
301
GUuUUaU a CCUCAAU





14
302
uAUaCCU c aAUAGAC





18
303
CcucAAU A gaCUCUu





18
303
CCUCaaU a gaCUCUU





18
303
CcUcAAU a GaCUcuU





23
304
AuaGaCU c uUACuaG





25
305
AGACuCU U aCuAGuu





26
306
GACuCUU a CuAGuuu





29
307
UCUUACU a GuuUCuc





29
307
UcUuACU a gUuuCuC





29
307
UCUUaCU a guUUCUc





29
307
UCuuaCU a gUUUCUC





34
308
CUaGUuU c UCUuuuU





34
308
CUAGUuU c UCUuuuU





34
308
cUAgUuU c uCuUuUU





40
309
ucuCUuU U UCAGgUU





41
310
cUCUuUU u caGGuUg





41
310
cuCUuUU U CAGgUUg





42
311
uCUuUUU C AGgUUgu





56
312
UGAAACU c AAcCuuC





56
312
UGAAAcU C aAcCUUC





62
313
uCAACCU U caaAGAC





62
313
UCaAcCU U CaAAgAc





62
313
UCAACCU u caaAGac





63
314
CAACCUU c aaAGACa





73
315
aGAcAcU c UGuUCcA





77
316
acUCUgU u cCAuUUC





78
317
CUCUGUU C CauUUCU





83
318
UucCAuU U CUGUggA





93
319
GUggACU A AuAGgAu





93
319
gUgGacU a AUAGgaU





93
319
gUGgAcU a AuAGGAU





96
320
GAcuAAU a GGAUcaU





96
320
gacuAAU a gGAuCaU





101
321
AUaGGAU c aUCuUuA





104
322
GGAuCAU C uuuAgCa





104
322
GGAuCAU C UUUagcA





106
323
AuCAUCU U UagcAUC





107
324
UcAuCuU u AGCAUCU





107
324
uCaUCUU u AgcAuCU





241
325
AAAgcAU C UGAAGcU





249
326
UGAAgcU A UGGCuuG





264
327
CAAuUgU c AGuUGaU





287
328
CAcCaCU c CUcaagU





295
329
CUCaAgU u UCcaUGU





295
329
cuCAaGU U UCCAUgu





296
330
uCAAgUU u ccAUgUc





297
331
CAAGUuU C CAUguCc





297
331
CAaGuuU c cAUGuCC





314
332
GGCUcaU u cUUCUCu





314
332
GgcuCAU U CUUCuCU





315
333
GcuCAUU c UuCUcuU





315
333
gcuCAUU C UUCuCUU





317
334
uCAUUCU U CuCUUug





318
335
CAUUCUU C uCUUugu





318
335
CAUuCuU C UCuUUgu





320
336
uUCUUCU c uUUGuGC





320
336
UUCuuCU C UUuGUGC





322
337
CuuCUCU U uGUGCUG





322
337
CUucuCU u UgUGCUG





323
338
UUcuCUU u gUGcugC





336
339
gcUGAUU c GUCuUUC





341
340
uUCGuCU u UCacAAG





341
340
UUCgucU u UcAcAAG





342
341
UcGUCUU U CaCAagU





343
342
cgucUuU C AcAAGUG





343
342
cGuCuUU c AcaAGUG





352
343
caAGUGU C uuCAGAu





355
344
gUgUcUU C AGaUGUU





382
345
UCcaAGU c AgUGaAA





408
346
gCUGCcU U GCCguuA





414
347
UUGccgU U aCAACUc





414
347
UUgCCgU u ACAAcUc





421
348
UaCAAcU c uCcUcAU





426
349
CUCuCCU c aUgAAgA





439
350
GaUGAgU C UGAaGaC





452
351
acCGaAU C UACUGGC





454
352
CGaAUCU A CUGGCAA





484
353
GuGCUgU C UGucaUU





484
353
GUgCUGU c UguCAuU





488
354
ugUcUGU C AUUGCUg





503
355
gGAAacU A aAAGuGu





503
355
ggAAAcU a AAagUGU





520
356
CCCGAGU A uAAGAAC





535
357
cGGAcUU U aUaUGAc





536
358
GGAcUUU a UaUGAcA





538
359
AcUuUAU a UGACaac





553
360
acuACCU a cUCUcUU





553
360
AcUaCcU a cUCUcUU





760
361
gGGgGUU u cCCAaag





760
361
GGgGGUU U cCCAaAG





761
362
GgGGUUU c CCAaAGC





771
363
aAAgccU C GCuUCUC





771
363
AaAGCCU C gCuUCUC





776
364
CUCgCUU C UcUUggu





776
364
CUCgCuU C UCuUGGU





778
365
CgCuUCU C uUGGUUG





784
366
UCuUGGU U GGAAAAU





803
367
GAGaaUU A CCugGcA





803
367
gAGAAUU A ccUGgCA





803
367
gagAaUU a CCUGgcA





812
368
cUGgCAU c AAuACgA





812
368
CUGGCAU C aAuaCgA





816
369
caUCAAU A cGACAAu





816
369
cAUCaAU a cgACAaU





824
370
CgACAaU U UCCCAgG





825
371
gACAaUU U CCCAgGA





826
372
ACAaUUU C CCAgGAU





834
373
CCAgGAU C CUGAAuC





841
374
CcUGaaU C ugAAUUG





841
374
cCUGAaU c UGAAuUg





850
375
gAAuUGU A CaCCaUu





869
376
gccAaCU a gAUuUCA





869
376
GCCAaCU a GAuUUca





869
376
GCCAAcU a gaUuUCa





873
377
acUaGAU u UCAaUAc





873
377
ACUaGAU U UCAAUAc





874
378
CUaGAUU U CAAUAcG





875
379
UaGAUUU C AAUAcGA





885
380
UAcgACU C gcAACCa





899
381
ACACCaU u aAgUgUC





899
381
ACAcCaU u aAGUGUC





906
382
UaaGUGU c UcaUuAA





906
382
uAaGUGU C UCAUuAA





908
383
aGUGUCU C AUuAAaU





911
384
GUCUCAU u AAaUAUG





916
385
AUuAaaU a UGGaGAu





916
385
AUuAAaU A UGGAgAU





943
386
gAGgaCU U CAcCUGG





944
387
AGgaCUU C ACCUGGg





1001
388
UGCUcUU u GggGCAg





1034
389
CAGucGU c gUCauCG





1037
390
UcGUCgU C AuCguUG





1043
391
uCAUCgU U GucAUCA





1046
392
ucgUUGU c AuCAUCA





1049
393
uUguCaU c AuCAAAU





1060
394
aAAUGcU U CUGUaag





1060
394
AAaUgCU u cUgUaAG





1475
395
gCCUAGU c UuaCUGc





1477
396
CUaGUCU U ACUgcaa





1487
397
ugCAaCU U gAUaUGU





1491
398
ACuUGAU a UGUCAUg





1491
398
aCUUgaU a UGuCAUG





1505
399
gUUUGgU U ggUGUcu





1530
400
uGCCcUU U uCUgAAg





1531
401
GCccUUU u CUGAagA





1532
402
CcCuUuU C UGAAGAg





1532
402
CcCuuuU C UGAaGAG





1644
403
CUaUGGU u gggAUGU





1652
404
ggGAuGU a AaAAcGG





1652
404
GgGAugU a aAaAcGG





1670
405
aUaAUAU a AaUAuUA





1674
406
uAuAAAU a UuAaaUa





1676
407
UaAaUAU u aAaUAAA





1677
408
AAauAUU a AAuaAAA





1677
408
AaaUAUU A AAuAaaA





1694
409
AGagUaU u gAGcAAA





108
410
CaUcUUU a GCAuCUG





108
410
CAUcUUU a gcaUCUG





131
411
aUGCCAU C caGgcUU





142
412
gCUuCUU u uUCuaCA





142
412
gCuUCUU U UUcUaCa





143
413
CUuCUUU u UCuaCAU





143
413
CuUcUuU u uCuAcAU





143
413
CUUCUUU U uCuAcaU





143
413
cUUCuUU u UCUAcau





144
414
UuCuUuU U cUaCAuC





144
414
UuCuuuU u cUAcAUC





144
414
UUCuuUU u cuaCAUC





147
415
uUUUuCU a cAuCUCU





153
416
uAcAuCU C ugUUUCU





165
417
uCUCgAU U UuUgUgA





165
417
uCUcgAU u UuuGUgA





165
417
ucucgAU U UUUGUGA





166
418
CUCgAUU U uUgUgAG





167
419
uCgAUuU U UGUGaGc





167
419
ucGauUU U UGUgAgC





167
419
UCgAUUU u UgUgAGC





168
420
cGAUUuU u gUgAGCC





168
420
cgAUUUU U GUGAgcc





197
421
GCUccAU u GgCUCUA





202
422
aUUGGCU c UagaUuc





208
423
UCuAgAU U ccUGGCU





216
424
CCUGGCU u UcCcCau





217
425
cUGGCUU U CcCcaUc





217
425
cUgGCuU u CccCAUC





217
425
CUGGCuU u CCcCauC





218
426
UGGcuUU C ccCaUCA





218
426
UGGCUUU C cCcaUca





218
426
UGgCUUU c cCcaUCA





218
426
ugGcUUU c CCCAucA





224
427
UCcCCAU c aUGuUCu





224
427
UccCCAU c aUGuucU





230
428
UCAugUU C UccAAAg





232
429
AuGUUcU C CAaAGCa





232
429
AUGuUcU c caaAGCA





232
429
AugUUCU c cAAAgCa





241
325
AAAGcAU c UgAAGcu





241
325
aAAGCAU C UGAAGCu





556
430
ACCUACU c uCUuAuC





556
430
AcCuAcU c ucUUAUC





560
431
AcUcUCU U aUCAuCC





561
432
cUCuCUU a UcAuCCU





561
432
cuCUcuU a uCAUCCU





561
432
CUCUCuU a UCauCCu





566
433
UUaUcAU C CUGGgcC





566
433
uUauCAU C CUGGGCC





581
434
UGGuCcU U UcAGAcc





583
435
gucCUUU C AgaCcGG





583
435
GuCcUUU c AGAcCGg





598
436
GGCACAU A CagcUGU





608
437
gcUGUGU c GUUCaaA





611
438
GUGUcgU u CAaaaGA





611
438
GUGUcGU U CaaAAGa





612
439
UGUcGUU C aaAAGaA





641
440
aUGaAGU u aaACaCU





649
441
AAAcaCU U GGCUUUa





649
441
AaaCAcU U gGCUUuA





655
442
UUggcuU u AGUAAAg





656
443
UGgcUUU a GUAAAgu





659
444
CuUuaGU A AAGUugu





664
445
GUaAaGU U gUCcaUC





667
446
AaGUUgU C caUCAAA





671
447
UgUCcaU C AAAGCUG





682
448
gCUgAcU u CuCuACC





682
448
GCUGACU U CuCUACc





682
448
GCUGacU U cuCuACc





683
449
CUGACUU C uCUACcC





683
449
CUGACUU c ucuAccC





685
450
gACUuCU c UaCCCCc





685
450
gaCUucU c UACCCcC





687
451
CUUCuCU A CcCCcAa





698
452
ccAACAU a ACUGagu





698
452
CCaacAU A ACuGaGU





718
453
AAcCCaU c UGcAgAc





718
453
aaCCCAU C UGCAgac





729
454
AGACacU A AaAgGAu





729
454
agAcAcU A aAAGGAU





729
454
agACAcU a AaAgGAU





737
455
aAAGGAU u AccUGCU





737
455
aAAGgAU U AccUGCu





737
455
aaagGAU u ACCUGCU





745
456
aCCUGcU U UGCuuCc





745
456
accUGcU u UGCUuCC





759
457
cGggGgU U uCCCAAA





759
457
cGgGGGU u UcCcAaa





759
457
cGGgGGU U UcCCAaA





760
361
GggGgUU u CCCAAAG





1060
394
aAAUgcU u cUGUaAG





1060
394
AAAugCU u cUgUaAG





1061
458
AAUGcUU C UGUaagc





1080
459
AagcugU u UCAGAAG





1080
459
AAGCUGU U UcAgaag





1081
460
AgcuGUU u CAgaAga





1121
461
acAGcCU U ACCuUcg





1121
461
AcAgCCU u aCCuUcG





1121
461
ACagCCU u ACCUUCg





1122
462
CaGcCuU a cCUUCgG





1126
463
CUuACCU u CgGgccU





1127
464
UUaCcUU c ggGcCUG





1127
464
UuACcUU c GggCCUg





1144
465
GaagCAU U AgCUgAA





1144
465
gaAGcaU u AGCUGAA





1145
466
aAgcAUU a GCUgAAC





1160
467
AGAcCgU c UUCCUuu





1162
468
ACCgUCU u CcUUuaG





1163
469
ccGUCUU c CUUuaGU





1167
470
cUUCcUU u AGuUCUU





1177
471
uUCUUCU c UguCCAU





1181
472
UCuCugU C CAuGUGg





1181
472
ucUCUGU c CAuGUGg





1192
473
gUGGGAU A CAUGGua





1199
474
aCaUGGU a UUAugUG





1201
475
AuGgUaU u aUGUGGc





1210
476
ugUGGcU C aUGaGGu





1210
476
UGuGGcU C AUGAGGu





1223
477
GUacAAU c UUUCUUu





1225
478
ACAAUcU U UCUuUca





1225
478
ACAAuCU u uCuUucA





1226
479
caAuCUU u cUuUCAG





1227
480
aAucUUU C uUUCAGC





1227
480
AAucuuU C UUUCAGc





1227
480
AAUCUuU C uUUcaGC





1229
481
ucUUUCU U UCAGCaC





1230
482
cUUUCUU U CAGCaCc





1252
483
cUgAUCU u UcggACA





1274
484
acaAGAU a gAGuUaA





1310
485
UGAgGaU u uCuUuCc





1312
486
aGgAUUU c UuUcCAu





1314
487
gAUUUcU u UcCAuCA





1316
488
UUUcUuU c CAuCAgG





1320
489
UUUcCaU C AGgAAGC





1320
489
UUUCcaU c aggaAGC





1339
490
GgCAagU u UgCUGGG





1355
491
cUuUgAU U GCUUgAU





1437
492
gUGguaU A aGAAAAA





1437
492
gUggUAU a AGAAaaA










[0089]

5





TABLE V










Mouse B7-1 Hammerhead Ribozyme Sequences









nt.
SEQ ID



Position
NO
HH Ribozyme Sequences












8
1439
UGAGGUA CUGAUGAGGCCGAAAGGCCGAA AAAACUC





10
1440
AUUGAGG CUGAUGAGGCCGAAAGGCCGAA AUAAAAC





10
1440
AUUGAGG CUGAUGAGGCCGAAAGGCCGAA AUAAAAC





14
1441
GUCUAUU CUGAUGAGGCCGAAAGGCCGAA AGGUAUA





18
1442
AAGAGUC CUGAUGAGGCCGAAAGGCCGAA AUUGAGG





18
1442
AAGAGUC CUGAUGAGGCCGAAAGGCCGAA AUUGAGG





18
1442
AAGAGUC CUGAUGAGGCCGAAAGGCCGAA AUUGAGG





23
1443
CUAGUAA CUGAUGAGGCCGAAAGGCCGAA AGUCUAU





25
1444
AACUAGU CUGAUGAGGCCGAAAGGCCGAA AGAGUCU





26
1445
AAACUAG CUGAUGAGGCCGAAAGGCCGAA AAGAGUC





29
1446
GAGAAAC CUGAUGAGGCCGAAAGGCCGAA AGUAAGA





29
1446
GAGAAAC CUGAUGAGGCCGAAAGGCCGAA AGUAAGA





29
1446
GAGAAAC CUGAUGAGGCCGAAAGGCCGAA AGUAAGA





29
1446
GAGAAAC CUGAUGAGGCCGAAAGGCCGAA AGUAAGA





34
1447
AAAAAGA CUGAUGAGGCCGAAAGGCCGAA AAACUAG





34
1447
AAAAAGA CUGAUGAGGCCGAAAGGCCGAA AAACUAG





34
1447
AAAAAGA CUGAUGAGGCCGAAAGGCCGAA AAACUAG





40
1448
AACCUGA CUGAUGAGGCCGAAAGGCCGAA AAAGAGA





41
1449
CAACCUG CUGAUGAGGCCGAAAGGCCGAA AAAAGAG





41
1449
CAACCUG CUGAUGAGGCCGAAAGGCCGAA AAAAGAG





42
1450
ACAACCU CUGAUGAGGCCGAAAGGCCGAA AAAAAGA





56
1451
GAAGGUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCA





56
1451
GAAGGUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCA





62
1452
GUCUUUG CUGAUGAGGCCGAAAGGCCGAA AGGUUGA





62
1452
GUCUUUG CUGAUGAGGCCGAAAGGCCGAA AGGUUGA





62
1452
GUCUUUG CUGAUGAGGCCGAAAGGCCGAA AGGUUGA





63
1453
UGUCUUU CUGAUGAGGCCGAAAGGCCGAA AAGGUUG





73
1454
UGGAACA CUGAUGAGGCCGAAAGGCCGAA AGUGUCU





77
1455
GAAAUGG CUGAUGAGGCCGAAAGGCCGAA ACAGAGU





78
1456
AGAAAUG CUGAUGAGGCCGAAAGGCCGAA AACAGAG





83
1457
UCCACAG CUGAUGAGGCCGAAAGGCCGAA AAUGGAA





93
1458
AUCCUAU CUGAUGAGGCCGAAAGGCCGAA AGUCCAC





93
1458
AUCCUAU CUGAUGAGGCCGAAAGGCCGAA AGUCCAC





93
1458
AUCCUAU CUGAUGAGGCCGAAAGGCCGAA AGUCCAC





96
1459
AUGAUCC CUGAUGAGGCCGAAAGGCCGAA AUUAGUC





96
1459
AUGAUCC CUGAUGAGGCCGAAAGGCCGAA AUUAGUC





101
1460
UAAAGAU CUGAUGAGGCCGAAAGGCCGAA AUCCUAU





104
1461
UGCUAAA CUGAUGAGGCCGAAAGGCCGAA AUGAUCC





104
1461
UGCUAAA CUGAUGAGGCCGAAAGGCCGAA AUGAUCC





106
1462
GAUGCUA CUGAUGAGGCCGAAAGGCCGAA AGAUGAU





107
1463
AGAUGCU CUGAUGAGGCCGAAAGGCCGAA AAGAUGA





107
1463
AGAUGCU CUGAUGAGGCCGAAAGGCCGAA AAGAUGA





108
1464
CAGAUGC CUGAUGAGGCCGAAAGGCCGAA AAAGAUG





108
1464
CAGAUGC CUGAUGAGGCCGAAAGGCCGAA AAAGAUG





131
1465
AAGCCUG CUGAUGAGGCCGAAAGGCCGAA AUGGCAU





142
1466
UGUAGAA CUGAUGAGGCCGAAAGGCCGAA AAGAAGC





142
1466
UGUAGAA CUGAUGAGGCCGAAAGGCCGAA AAGAAGC





143
1467
AUGUAGA CUGAUGAGGCCGAAAGGCCGAA AAAGAAG





143
1467
AUGUAGA CUGAUGAGGCCGAAAGGCCGAA AAAGAAG





143
1467
AUGUAGA CUGAUGAGGCCGAAAGGCCGAA AAAGAAG





143
1467
AUGUAGA CUGAUGAGGCCGAAAGGCCGAA AAAGAAG





144
1468
GAUGUAG CUGAUGAGGCCGAAAGGCCGAA AAAAGAA





144
1468
GAUGUAG CUGAUGAGGCCGAAAGGCCGAA AAAAGAA





144
1468
GAUGUAG CUGAUGAGGCCGAAAGGCCGAA AAAAGAA





147
1469
AGAGAUG CUGAUGAGGCCGAAAGGCCGAA AGAAAAA





153
1470
AGAAACA CUGAUGAGGCCGAAAGGCCGAA AGAUGUA





165
1471
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUCGAGA





165
1471
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUCGAGA





165
1471
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUCGAGA





166
1472
CUCACAA CUGAUGAGGCCGAAAGGCCGAA AAUCGAG





167
1473
GCUCACA CUGAUGAGGCCGAAAGGCCGAA AAAUCGA





167
1473
GCUCACA CUGAUGAGGCCGAAAGGCCGAA AAAUCGA





167
1473
GCUCACA CUGAUGAGGCCGAAAGGCCGAA AAAUCGA





168
1474
GGCUCAC CUGAUGAGGCCGAAAGGCCGAA AAAAUCG





168
1474
GGCUCAC CUGAUGAGGCCGAAAGGCCGAA AAAAUCG





197
1475
UAGAGCC CUGAUGAGGCCGAAAGGCCGAA AUGGAGC





202
1476
GAAUCUA CUGAUGAGGCCGAAAGGCCGAA AGCCAAU





208
1477
AGCCAGG CUGAUGAGGCCGAAAGGCCGAA AUCUAGA





216
1478
AUGGGGA CUGAUGAGGCCGAAAGGCCGAA AGCCAGG





217
1479
GAUGGGG CUGAUGAGGCCGAAAGGCCGAA AAGCCAG





217
1479
GAUGGGG CUGAUGAGGCCGAAAGGCCGAA AAGCCAG





217
1479
GAUGGGG CUGAUGAGGCCGAAAGGCCGAA AAGCCAG





218
1480
UGAUGGG CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





218
1480
UGAUGGG CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





218
1480
UGAUGGG CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





218
1480
UGAUGGG CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





224
1481
AGAACAU CUGAUGAGGCCGAAAGGCCGAA AUGGGGA





224
1481
AGAACAU CUGAUGAGGCCGAAAGGCCGAA AUGGGGA





230
1482
CUUUGGA CUGAUGAGGCCGAAAGGCCGAA AACAUGA





232
1483
UGCUUUG CUGAUGAGGCCGAAAGGCCGAA AGAACAU





232
1483
UGCUUUG CUGAUGAGGCCGAAAGGCCGAA AGAACAU





232
1483
UGCUUUG CUGAUGAGGCCGAAAGGCCGAA AGAACAU





241
1484
AGCUUCA CUGAUGAGGCCGAAAGGCCGAA AUGCUUU





241
1484
AGCUUCA CUGAUGAGGCCGAAAGGCCGAA AUGCUUU





241
1484
AGCUUCA CUGAUGAGGCCGAAAGGCCGAA AUGCUUU





249
1485
CAAGCCA CUGAUGAGGCCGAAAGGCCGAA AGCUUCA





264
1486
AUCAACU CUGAUGAGGCCGAAAGGCCGAA ACAAUUG





287
1487
ACUUGAG CUGAUGAGGCCGAAAGGCCGAA AGUGGUG





295
1488
ACAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUUGAG





295
1488
ACAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUUGAG





296
1489
GACAUGG CUGAUGAGGCCGAAAGGCCGAA AACUUGA





297
1490
GGACAUG CUGAUGAGGCCGAAAGGCCGAA AAACUUG





297
1490
GGACAUG CUGAUGAGGCCGAAAGGCCGAA AAACUUG





314
1491
AGAGAAG CUGAUGAGGCCGAAAGGCCGAA AUGAGCC





314
1491
AGAGAAG CUGAUGAGGCCGAAAGGCCGAA AUGAGCC





315
1492
AAGAGAA CUGAUGAGGCCGAAAGGCCGAA AAUGAGC





315
1492
AAGAGAA CUGAUGAGGCCGAAAGGCCGAA AAUGAGC





317
1493
CAAAGAG CUGAUGAGGCCGAAAGGCCGAA AGAAUGA





318
1494
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGAAUG





318
1494
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGAAUG





320
1495
GCACAAA CUGAUGAGGCCGAAAGGCCGAA AGAAGAA





320
1495
GCACAAA CUGAUGAGGCCGAAAGGCCGAA AGAAGAA





322
1496
CAGCACA CUGAUGAGGCCGAAAGGCCGAA AGAGAAG





322
1496
CAGCACA CUGAUGAGGCCGAAAGGCCGAA AGAGAAG





323
1497
GCAGCAC CUGAUGAGGCCGAAAGGCCGAA AAGAGAA





336
1498
GAAAGAC CUGAUGAGGCCGAAAGGCCGAA AAUCAGC





341
1499
CUUGUGA CUGAUGAGGCCGAAAGGCCGAA AGACGAA





341
1499
CUUGUGA CUGAUGAGGCCGAAAGGCCGAA AGACGAA





342
1500
ACUUGUG CUGAUGAGGCCGAAAGGCCGAA AAGACGA





343
1501
CACUUGU CUGAUGAGGCCGAAAGGCCGAA AAAGACG





343
1501
CACUUGU CUGAUGAGGCCGAAAGGCCGAA AAAGACG





352
1502
AUCUGAA CUGAUGAGGCCGAAAGGCCGAA ACACUUG





355
1503
AACAUCU CUGAUGAGGCCGAAAGGCCGAA AAGACAC





382
1504
UUUCACU CUGAUGAGGCCGAAAGGCCGAA ACUUGGA





408
1505
UAACGGC CUGAUGAGGCCGAAAGGCCGAA AGGCAGC





414
1506
GAGUUGU CUGAUGAGGCCGAAAGGCCGAA ACGGCAA





414
1506
GAGUUGU CUGAUGAGGCCGAAAGGCCGAA ACGGCAA





421
1507
AUGAGGA CUGAUGAGGCCGAAAGGCCGAA AGUUGUA





426
1508
UCUUCAU CUGAUGAGGCCGAAAGGCCGAA AGGAGAG





439
1509
GUCUUCA CUGAUGAGGCCGAAAGGCCGAA ACUCAUC





452
1510
GCCAGUA CUGAUGAGGCCGAAAGGCCGAA AUUCGGU





454
1511
UUGCCAG CUGAUGAGGCCGAAAGGCCGAA AGAUUCG





484
1512
AAUGACA CUGAUGAGGCCGAAAGGCCGAA ACAGCAC





484
1512
AAUGACA CUGAUGAGGCCGAAAGGCCGAA ACAGCAC





488
1513
CAGCAAU CUGAUGAGGCCGAAAGGCCGAA ACAGACA





503
1514
ACACUUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCC





503
1514
ACACUUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCC





520
1515
GUUCUUA CUGAUGAGGCCGAAAGGCCGAA ACUCGGG





535
1516
GUCAUAU CUGAUGAGGCCGAAAGGCCGAA AAGUCCG





536
1517
UGUCAUA CUGAUGAGGCCGAAAGGCCGAA AAAGUCC





538
1518
GUUGUCA CUGAUGAGGCCGAAAGGCCGAA AUAAAGU





553
1519
AAGAGAG CUGAUGAGGCCGAAAGGCCGAA AGGUAGU





553
1519
AAGAGAG CUGAUGAGGCCGAAAGGCCGAA AGGUAGU





556
1520
GAUAAGA CUGAUGAGGCCGAAAGGCCGAA AGUAGGU





556
1520
GAUAAGA CUGAUGAGGCCGAAAGGCCGAA AGUAGGU





560
1521
GGAUGAU CUGAUGAGGCCGAAAGGCCGAA AGAGAGU





561
1522
AGGAUGA CUGAUGAGGCCGAAAGGCCGAA AAGAGAG





561
1522
AGGAUGA CUGAUGAGGCCGAAAGGCCGAA AAGAGAG





561
1522
AGGAUGA CUGAUGAGGCCGAAAGGCCGAA AAGAGAG





566
1523
GGCCCAG CUGAUGAGGCCGAAAGGCCGAA AUGAUAA





566
1523
GGCCCAG CUGAUGAGGCCGAAAGGCCGAA AUGAUAA





581
1524
GGUCUGA CUGAUGAGGCCGAAAGGCCGAA AGGACCA





583
1525
CCGGUCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC





583
1525
CCGGUCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC





598
1526
ACAGCUG CUGAUGAGGCCGAAAGGCCGAA AUGUGCC





608
1527
UUUGAAC CUGAUGAGGCCGAAAGGCCGAA ACACAGC





611
1528
UCUUUUG CUGAUGAGGCCGAAAGGCCGAA ACGACAC





611
1528
UCUUUUG CUGAUGAGGCCGAAAGGCCGAA ACGACAC





612
1529
UUCUUUU CUGAUGAGGCCGAAAGGCCGAA AACGACA





641
1530
AGUGUUU CUGAUGAGGCCGAAAGGCCGAA ACUUCAU





649
1531
UAAAGCC CUGAUGAGGCCGAAAGGCCGAA AGUGUUU





649
1531
UAAAGCC CUGAUGAGGCCGAAAGGCCGAA AGUGUUU





655
1532
CUUUACU CUGAUGAGGCCGAAAGGCCGAA AAGCCAA





656
1533
ACUUUAC CUGAUGAGGCCGAAAGGCCGAA AAAGCCA





659
1534
ACAACUU CUGAUGAGGCCGAAAGGCCGAA ACUAAAG





664
1535
GAUGGAC CUGAUGAGGCCGAAAGGCCGAA ACUUUAC





667
1536
UUUGAUG CUGAUGAGGCCGAAAGGCCGAA ACAACUU





671
1537
CAGCUUU CUGAUGAGGCCGAAAGGCCGAA AUGGACA





682
1538
GGUAGAG CUGAUGAGGCCGAAAGGCCGAA AGUCAGC





682
1538
GGUAGAG CUGAUGAGGCCGAAAGGCCGAA AGUCAGC





682
1538
GGUAGAG CUGAUGAGGCCGAAAGGCCGAA AGUCAGC





683
1539
GGGUAGA CUGAUGAGGCCGAAAGGCCGAA AAGUCAG





683
1539
GGGUAGA CUGAUGAGGCCGAAAGGCCGAA AAGUCAG





685
1540
GGGGGUA CUGAUGAGGCCGAAAGGCCGAA AGAAGUC





685
1540
GGGGGUA CUGAUGAGGCCGAAAGGCCGAA AGAAGUC





687
1541
UUGGGGG CUGAUGAGGCCGAAAGGCCGAA AGAGAAG





698
1542
ACUCAGU CUGAUGAGGCCGAAAGGCCGAA AUGUUGG





698
1542
ACUCAGU CUGAUGAGGCCGAAAGGCCGAA AUGUUGG





718
1543
GUCUGCA CUGAUGAGGCCGAAAGGCCGAA AUGGGUU





718
1543
GUCUGCA CUGAUGAGGCCGAAAGGCCGAA AUGGGUU





729
1544
AUCCUUU CUGAUGAGGCCGAAAGGCCGAA AGUGUCU





729
1544
AUCCUUU CUGAUGAGGCCGAAAGGCCGAA AGUGUCU





729
1544
AUCCUUU CUGAUGAGGCCGAAAGGCCGAA AGUGUCU





737
1545
AGCAGGU CUGAUGAGGCCGAAAGGCCGAA AUCCUUU





737
1545
AGCAGGU CUGAUGAGGCCGAAAGGCCGAA AUCCUUU





737
1545
AGCAGGU CUGAUGAGGCCGAAAGGCCGAA AUCCUUU





745
1546
GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGCAGGU





745
1546
GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGCAGGU





759
1547
UUUGGGA CUGAUGAGGCCGAAAGGCCGAA ACCCCCG





759
1547
UUUGGGA CUGAUGAGGCCGAAAGGCCGAA ACCCCCG





759
1547
UUUGGGA CUGAUGAGGCCGAAAGGCCGAA ACCCCCG





760
1548
CUUUGGG CUGAUGAGGCCGAAAGGCCGAA AACCCCC





760
1548
CUUUGGG CUGAUGAGGCCGAAAGGCCGAA AACCCCC





760
1548
CUUUGGG CUGAUGAGGCCGAAAGGCCGAA AACCCCC





761
1549
GCUUUGG CUGAUGAGGCCGAAAGGCCGAA AAACCCC





771
1550
GAGAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCUUU





771
1550
GAGAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCUUU





776
1551
ACCAAGA CUGAUGAGGCCGAAAGGCCGAA AAGCGAG





776
1551
ACCAAGA CUGAUGAGGCCGAAAGGCCGAA AAGCGAG





778
1552
CAACCAA CUGAUGAGGCCGAAAGGCCGAA AGAAGCG





784
1553
AUUUUCC CUGAUGAGGCCGAAAGGCCGAA ACCAAGA





803
1554
UGCCAGG CUGAUGAGGCCGAAAGGCCGAA AAUUCUC





803
1554
UGCCAGG CUGAUGAGGCCGAAAGGCCGAA AAUUCUC





803
1554
UGCCAGG CUGAUGAGGCCGAAAGGCCGAA AAUUCUC





812
1555
UCGUAUU CUGAUGAGGCCGAAAGGCCGAA AUGCCAG





812
1555
UCGUAUU CUGAUGAGGCCGAAAGGCCGAA AUGCCAG





816
1556
AUUGUCG CUGAUGAGGCCGAAAGGCCGAA AUUGAUG





816
1556
AUUGUCG CUGAUGAGGCCGAAAGGCCGAA AUUGAUG





824
1557
CCUGGGA CUGAUGAGGCCGAAAGGCCGAA AUUGUCG





825
1558
UCCUGGG CUGAUGAGGCCGAAAGGCCGAA AAUUGUC





826
1559
AUCCUGG CUGAUGAGGCCGAAAGGCCGAA AAAUUGU





834
1560
GAUUCAG CUGAUGAGGCCGAAAGGCCGAA AUCCUGG





841
1561
CAAUUCA CUGAUGAGGCCGAAAGGCCGAA AUUCAGG





841
1561
CAAUUCA CUGAUGAGGCCGAAAGGCCGAA AUUCAGG





850
1562
AAUGGUG CUGAUGAGGCCGAAAGGCCGAA ACAAUUC





869
1563
UGAAAUC CUGAUGAGGCCGAAAGGCCGAA AGUUGGC





869
1563
UGAAAUC CUGAUGAGGCCGAAAGGCCGAA AGUUGGC





869
1563
UGAAAUC CUGAUGAGGCCGAAAGGCCGAA AGUUGGC





873
1564
GUAUUGA CUGAUGAGGCCGAAAGGCCGAA AUCUAGU





873
1564
GUAUUGA CUGAUGAGGCCGAAAGGCCGAA AUCUAGU





874
1565
CGUAUUG CUGAUGAGGCCGAAAGGCCGAA AAUCUAG





875
1566
UCGUAUU CUGAUGAGGCCGAAAGGCCGAA AAAUCUA





885
1567
UGGUUGC CUGAUGAGGCCGAAAGGCCGAA AGUCGUA





899
1568
GACACUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGU





899
1568
GACACUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGU





906
1569
UUAAUGA CUGAUGAGGCCGAAAGGCCGAA ACACUUA





906
1569
UUAAUGA CUGAUGAGGCCGAAAGGCCGAA ACACUUA





908
1570
AUUUAAU CUGAUGAGGCCGAAAGGCCGAA AGACACU





911
1571
CAUAUUU CUGAUGAGGCCGAAAGGCCGAA AUGAGAC





916
1572
AUCUCCA CUGAUGAGGCCGAAAGGCCGAA AUUUAAU





916
1572
AUCUCCA CUGAUGAGGCCGAAAGGCCGAA AUUUAAU





943
1573
CCAGGUG CUGAUGAGGCCGAAAGGCCGAA AGUCCUC





944
1574
CCCAGGU CUGAUGAGGCCGAAAGGCCGAA AAGUCCU





1001
1575
CUGCCCC CUGAUGAGGCCGAAAGGCCGAA AAGAGCA





1034
1576
CGAUGAC CUGAUGAGGCCGAAAGGCCGAA ACGACUG





1037
1577
CAACGAU CUGAUGAGGCCGAAAGGCCGAA ACGACGA





1043
1578
UGAUGAC CUGAUGAGGCCGAAAGGCCGAA ACGAUGA





1046
1579
UGAUGAU CUGAUGAGGCCGAAAGGCCGAA ACAACGA





1049
1580
AUUUGAU CUGAUGAGGCCGAAAGGCCGAA AUGACAA





1060
1581
CUUACAG CUGAUGAGGCCGAAAGGCCGAA AGCAUUU





1060
1581
CUUACAG CUGAUGAGGCCGAAAGGCCGAA AGCAUUU





1060
1581
CUUACAG CUGAUGAGGCCGAAAGGCCGAA AGCAUUU





1060
1581
CUUACAG CUGAUGAGGCCGAAAGGCCGAA AGCAUUU





1061
1582
GCUUACA CUGAUGAGGCCGAAAGGCCGAA AAGCAUU





1080
1583
CUUCUGA CUGAUGAGGCCGAAAGGCCGAA ACAGCUU





1080
1583
CUUCUGA CUGAUGAGGCCGAAAGGCCGAA ACAGCUU





1081
1584
UCUUCUG CUGAUGAGGCCGAAAGGCCGAA AACAGCU





1121
1585
CGAAGGU CUGAUGAGGCCGAAAGGCCGAA AGGCUGU





1121
1585
CGAAGGU CUGAUGAGGCCGAAAGGCCGAA AGGCUGU





1121
1585
CGAAGGU CUGAUGAGGCCGAAAGGCCGAA AGGCUGU





1122
1586
CCGAAGG CUGAUGAGGCCGAAAGGCCGAA AAGGCUG





1126
1587
AGGCCCG CUGAUGAGGCCGAAAGGCCGAA AGGUAAG





1127
1588
CAGGCCC CUGAUGAGGCCGAAAGGCCGAA AAGGUAA





1127
1588
CAGGCCC CUGAUGAGGCCGAAAGGCCGAA AAGGUAA





1144
1589
UUCAGCU CUGAUGAGGCCGAAAGGCCGAA AUGCUUC





1144
1589
UUCAGCU CUGAUGAGGCCGAAAGGCCGAA AUGCUUC





1145
1590
GUUCAGC CUGAUGAGGCCGAAACGCCGAA AAUGCUU





1160
1591
AAAGGAA CUGAUGAGGCCGAAAGGCCGAA ACGGUCU





1162
1592
CUAAAGG CUGAUGAGGCCGAAAGGCCGAA AGACGGU





1163
1593
ACUAAAG CUGAUGAGGCCGAAAGGCCGAA AAGACGG





1167
1594
AAGAACU CUGAUGAGGCCGAAAGGCCGAA AAGGAAG





1177
1595
AUGGACA CUGAUGAGGCCGAAAGGCCGAA AGAAGAA





1181
1596
CCACAUG CUGAUGAGGCCGAAAGGCCGAA ACAGAGA





1181
1596
CCACAUG CUGAUGAGGCCGAAAGGCCGAA ACAGAGA





1192
1597
UACCAUG CUGAUGAGGCCGAAAGGCCGAA AUCCCAC





1199
1598
CACAUAA CUGAUGAGGCCGAAAGGCCGAA ACCAUGU





1201
1599
GCCACAU CUGAUGAGGCCGAAAGGCCGAA AUACCAU





1210
1600
ACCUCAU CUGAUGAGGCCGAAAGGCCGAA AGCCACA





1210
1600
ACCUCAU CUGAUGAGGCCGAAAGGCCGAA AGCCACA





1223
1601
AAAGAAA CUGAUGAGGCCGAAAGGCCGAA AUUGUAC





1225
1602
UGAAAGA CUGAUGAGGCCGAAAGGCCGAA AGAUUGU





1225
1602
UGAAAGA CUGAUGAGGCCGAAAGGCCGAA AGAUUGU





1226
1603
CUGAAAG CUGAUGAGGCCGAAAGGCCGAA AAGAUUG





1227
1604
GCUGAAA CUGAUGAGGCCGAAAGGCCGAA AAAGAUU





1227
1604
GCUGAAA CUGAUGAGGCCGAAAGGCCGAA AAAGAUU





1227
1604
GCUGAAA CUGAUGAGGCCGAAAGGCCGAA AAAGAUU





1229
1605
GUGCUGA CUGAUGAGGCCGAAAGGCCGAA AGAAAGA





1230
1606
GGUGCUG CUGAUGAGGCCGAAAGGCCGAA AAGAAAG





1252
1607
UGUCCGA CUGAUGAGGCCGAAAGGCCGAA AGAUCAG





1274
1608
UUAACUC CUGAUGAGGCCGAAAGGCCGAA AUCUUGU





1310
1609
GGAAAGA CUGAUGAGGCCGAAAGGCCGAA AUCCUCA





1312
1610
AUGGAAA CUGAUGAGGCCGAAAGGCCGAA AAAUCCU





1314
1611
UGAUGGA CUGAUGAGGCCGAAAGGCCGAA AGAAAUC





1316
1612
CCUGAUG CUGAUGAGGCCGAAAGGCCGAA AAAGAAA





1320
1613
GCUUCCU CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





1320
1613
GCUUCCU CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





1339
1614
CCCAGCA CUGAUGAGGCCGAAAGGCCGAA ACUUGCC





1355
1615
AUCAAGC CUGAUGAGGCCGAAAGGCCGAA AUCAAAG





1437
1616
UUUUUCU CUGAUGAGGCCGAAAGGCCGAA AUACCAC





1437
1616
UUUUUCU CUGAUGAGGCCGAAAGGCCGAA AUACCAC





1475
1617
GCAGUAA CUGAUGAGGCCGAAAGGCCGAA ACUAGGC





1477
1618
UUGCAGU CUGAUGAGGCCGAAAGGCCGAA AGACUAG





1487
1619
ACAUAUC CUGAUGAGGCCGAAAGGCCGAA AGUUGCA





1491
1620
CAUGACA CUGAUGAGGCCGAAAGGCCGAA AUCAAGU





1491
1620
CAUGACA CUGAUGAGGCCGAAAGGCCGAA AUCAAGU





1505
1621
AGACACC CUGAUGAGGCCGAAAGGCCGAA ACCAAAC





1530
1622
CUUCAGA CUGAUGAGGCCGAAAGGCCGAA AAGGGCA





1531
1623
UCUUCAG CUGAUGAGGCCGAAAGGCCGAA AAAGGGC





1532
1624
CUCUUCA CUGAUGAGGCCGAAAGGCCGAA AAAAGGG





1532
1624
CUCUUCA CUGAUGAGGCCGAAAGGCCGAA AAAAGGG





1644
1625
ACAUCCC CUGAUGAGGCCGAAAGGCCGAA ACCAUAG





1652
1626
CCGUUUU CUGAUGAGGCCGAAAGGCCGAA ACAUCCC





1652
1626
CCGUUUU CUGAUGAGGCCGAAAGGCCGAA ACAUCCC





1670
1627
UAAUAUU CUGAUGAGGCCGAAAGGCCGAA AUAUUAU





1674
1628
UAUUUAA CUGAUGAGGCCGAAAGGCCGAA AUUUAUA





1676
1629
UUUAUUU CUGAUGAGGCCGAAAGGCCGAA AUAUUUA





1677
1630
UUUUAUU CUGAUGAGGCCGAAAGGCCGAA AAUAUUU





1677
1630
UUUUAUU CUGAUGAGGCCGAAAGGCCGAA AAUAUUU





1694
1631
UUUGCUC CUGAUGAGGCCCAAAGGCCGAA AUACUCU










[0090]

6





TABLE VI










Human B7-2 Hammerhead Ribozyme Sequences









nt.
SEQ ID
HH Target


Position
NO
Sequence












16
493
GAAAGCU U UGCUUCU





17
494
AAAGCUU U GCUUCUC





21
495
CUUUGCU U CUCUGCU





22
496
UUUGCUU C UCUGCUG





24
497
UGCUUCU C UGCUGCU





34
498
CUGCUGU A ACAGGGA





44
499
AGGGACU A GCACAGA





70
500
GUGGGGU C AUUUCCA





73
501
GGGUCAU U UCCAGAU





74
502
GGUCAUU U CCAGAUA





75
503
GUCAUUU C CAGAUAU





81
504
UCCAGAU A UUAGGUC





83
505
CAGAUAU U AGGUCAC





84
506
AGAUAUU A GGUCACA





88
507
AUUAGGU C ACAGCAG





113
508
AAUGGAU C CCCAGUG





125
509
GUGCACU A UGGGACU





137
510
ACUGAGU A ACAUUCU





142
511
GUAACAU U CUCUUUG





143
512
UAACAUU C UCUUUGU





145
513
ACAUUCU C UUUGUGA





147
514
AUUCUCU U UGUGAUG





148
515
UUCUCUU U GUGAUGG





159
516
AUGGCCU U CCUGCUC





160
517
UGGCCUU C CUGCUCU





166
518
UCCUGCU C UCUGGUG





168
519
CUGCUCU C UGGUGCU





179
520
UGCUGCU C CUCUGAA





182
521
UGCUCCU C UGAAGAU





190
522
UGAAGAU U CAAGCUU





191
523
GAAGAUU C AAGCUUA





197
524
UCAAGCU U AUUUCAA





198
525
CAAGCUU A UUUCAAU





200
526
AGCUUAU U UCAAUGA





201
527
GCUUAUU U CAAUGAG





202
528
CUUAUUU C AAUGAGA





231
529
UGCCAAU U UGCAAAC





232
530
GCCAAUU U GCAAACU





240
531
GCAAACU C UCAAAAC





242
532
AAACUCU C AAAACCA





265
533
GUGAGCU A GUAGUAU





268
534
AGCUAGU A GUAUUUU





489
535
AUGAAUU C UGAACUG





498
536
GAACUGU C AGUGCUU





505
537
CAGUGCU U GCUAACU





509
538
GCUUGCU A ACUUCAG





513
539
GCUAACU U CAGUCAA





514
540
CUAACUU C AGUCAAC





518
541
CUUCAGU C AACCUGA





529
542
CUGAAAU A GUACCAA





532
543
AAAUAGU A CCAAUUU





538
544
UACCAAU U UCUAAUA





539
545
ACCAAUU U CUAAUAU





540
546
CCAAUUU C UAAUAUA





542
547
AAUUUCU A AUAUAAC





545
548
UUCUAAU A UAACAGA





547
549
CUAAUAU A ACAGAAA





561
550
AAUGUGU A CAUAAAU





565
551
UGUACAU A AAUUUGA





569
552
CAUAAAU U UGACCUG





570
553
AUAAAUU U GACCUGC





579
554
ACCUGCU C AUCUAUA





582
555
UGCUCAU C UAUACAC





584
556
CUCAUCU A UACACGG





586
557
CAUCUAU A CACGGUU





593
558
ACACGGU U ACCCAGA





594
559
CACGGUU A CCCAGAA





605
560
AGAACCU A AGAAGAU





619
561
UGAGUGU U UUGCUAA





620
562
GAGUGUU U UGCUAAG





621
563
AGUGUUU U GCUAAGA





625
564
UUUUGCU A AGAACCA





638
565
CAAGAAU U CAACUAU





639
566
AAGAAUU C AACUAUC





644
567
UUCAACU A UCGAGUA





646
568
CAACUAU C GAGUAUG





651
569
AUCGAGU A UGAUGGU





659
570
UGAUGGU A UUAUGCA





661
571
AUGGUAU U AUGCAGA





662
572
UGGUAUU A UGCAGAA





672
573
CAGAAAU C UCAAGAU





674
574
GAAAUCU C AAGAUAA





680
575
UCAAGAU A AUGUCAC





685
576
AUAAUGU C ACAGAAC





696
577
GAACUGU A CGACGUU





703
578
ACGACGU U UCCAUCA





704
579
CGACGUU U CCAUCAG





705
580
GACGUUU C CAUCAGC





709
581
UUUCCAU C AGCUUGU





714
582
AUCAGCU U GUCUGUU





717
583
AGCUUGU C UGUUUCA





904
584
GUCUAAU U CUAUGGA





905
585
UCUAAUU C UAUGGAA





907
586
UAAUUCU A UGGAAAU





935
587
GCGGCCU C GCAACUC





942
588
CGCAACU C UUAUAAA





944
589
CAACUCU U AUAAAUG





945
590
AACUCUU A UAAAUGU





947
591
CUCUUAU A AAUGUGG





1009
592
AAAAAAU C CAUAUAC





1013
593
AAUCCAU A UACCUGA





1015
594
UCCAUAU A CCUGAAA





1026
595
GAAAGAU C UGAUGAA





1045
596
AGCGUGU U UUUAAAA





1046
597
GCGUGUU U UUAAAAG





1047
598
CGUGUUU U UAAAAGU





1048
599
GUGUUUU U AAAAGUU





1049
600
UGUUUUU A AAAGUUC





1055
601
UAAAAGU U CGAAGAC





1056
602
AAAAGUU C GAAGACA





1065
603
AAGACAU C UUCAUGC





1067
604
GACAUCU U CAUGCGA





1068
605
ACAUCUU C AUGCGAC





1085
606
AAGUGAU A CAUGUUU





1091
607
UACAUGU U UUUAAUU





1092
608
ACAUGUU U UUAAUUA





1093
609
CAUGUUU U UAAUUAA





1094
610
AUGUUUU U AAUUAAA





1095
611
UGUUUUU A AUUAAAG





1098
612
UUUUAAU U AAAGAGU





1099
613
UUUAAUU A AAGAGUA





271
614
UAGUAGU A UUUUGGC





273
615
GUAGUAU U UUGGCAG





274
616
UAGUAUU U UGGCAGG





275
617
AGUAUUU U GGCAGGA





294
618
GAAAACU U GGUUCUG





298
619
ACUUGGU U CUGAAUG





299
620
CUUGGUU C UGAAUGA





310
621
AUGAGGU A UACUUAG





312
622
GAGGUAU A CUUAGGC





315
623
GUAUACU U AGGCAAA





316
624
UAUACUU A GGCAAAG





330
625
GAGAAAU U UGACAGU





331
626
AGAAAUU U GACAGUG





340
627
ACAGUGU U CAUUCCA





341
628
CAGUGUU C AUUCCAA





344
629
UGUUCAU U CCAAGUA





345
630
GUUCAUU C CAAGUAU





351
631
UCCAAGU A UAUGGGC





353
632
CAAGUAU A UGGGCCG





368
633
CACAAGU U UUGAUUC





369
634
ACAAGUU U UGAUUCG





370
635
CAAGUUU U GAUUCGG





374
636
UUUUGAU U CGGACAG





375
637
UUUGAUU C GGACAGU





383
638
GGACAGU U GGACCCU





397
639
UGAGACU U CACAAUC





398
640
GAGACUU C ACAAUCU





404
641
UCACAAU C UUCAGAU





406
642
ACAAUCU U CAGAUCA





407
643
CAAUCUU C AGAUCAA





412
644
UUCAGAU C AAGGACA





426
645
AAGGGCU U GUAUCAA





429
646
GGCUUGU A UCAAUGU





431
647
CUUGUAU C AAUGUAU





437
648
UCAAUGU A UCAUCCA





439
649
AAUGUAU C AUCCAUC





442
650
GUAUCAU C CAUCACA





446
651
CAUCCAU C ACAAAAA





469
652
GAAUGAU U CGCAUCC





470
653
AAUGAUU C GCAUCCA





475
654
UUCGCAU C CACCAGA





488
655
GAUGAAU U CUGAACU





721
656
UGUCUGU U UCAUUCC





722
657
GUCUGUU U CAUUCCC





723
658
UCUGUUU C AUUCCCU





726
659
GUUUCAU U CCCUGAU





727
660
UUUCAUU C CCUGAUG





736
661
CUGAUGU U ACGAGCA





737
662
UGAUGUU A CGAGCAA





746
663
GAGCAAU A UGACCAU





754
664
UGACCAU C UUCUGUA





756
665
ACCAUCU U CUGUAUU





757
666
CCAUCUU C UGUAUUC





761
667
CUUCUGU A UUCUGGA





763
668
UCUGUAU U CUGGAAA





764
669
CUGUAUU C UGGAAAC





787
670
CGCGGCU U UUAUCUU





788
671
GCGGCUU U UAUCUUC





789
672
CGGCUUU U AUCUUCA





790
673
GGCUUUU A UCUUCAC





792
674
CUUUUAU C UUCACCU





794
675
UUUAUCU U CACCUUU





795
676
UUAUCUU C ACCUUUC





800
677
UUCACCU U UCUCUAU





801
678
UCACCUU U CUCUAUA





802
679
CACCUUU C UCUAUAG





804
680
CCUUUCU C UAUAGAG





806
681
UUUCUCU A UAGAGCU





808
682
UCUCUAU A GAGCUUG





814
683
UAGAGCU U GAGGACC





824
684
GGACCCU C AGCCUCC





830
685
UCAGCCU C CCCCAGA





844
686
ACCACAU U CCUUGGA





845
687
CCACAUU C CUUGGAU





848
688
CAUUCCU U GGAUUAC





853
689
CUUGGAU U ACAGCUG





854
690
UUGGAUU A CAGCUGU





862
691
CAGCUGU A CUUCCAA





865
692
CUGUACU U CCAACAG





866
693
UGUACUU C CAACAGU





874
694
CAACAGU U AUUAUAU





875
695
AACAGUU A UUAUAUG





877
696
CAGUUAU U AUAUGUG





878
697
AGUUAUU A UAUGUGU





880
698
UUAUUAU A UGUGUGA





892
699
UGAUGGU U UUCUGUC





893
700
GAUGGUU U UCUGUCU





894
701
AUGGUUU U CUGUCUA





895
702
UGGUUUU C UGUCUAA





899
703
UUUCUGU C UAAUUCU





902
704
UCUGUCU A AUUCUAU










[0091]

7





TABLE VII










Human B7-2 Hammerhead Ribozyme Sequences









nt.
SEQ



Posi-
ID


tion
NO
HH Ribozyme Sequences












16
1632
AGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGCUUUC





17
1633
GAGAAGC CUGAUGAGGCCGAAAGGCCGAA AAGCUUU





21
1634
AGCAGAG CUGAUGAGGCCGAAAGGCCGAA AGCAAAG





22
1635
CAGCAGA CUGAUGAGGCCGAAAGGCCGAA AAGCAAA





24
1636
AGCAGCA CUGAUGAGGCCGAAAGGCCGAA AGAAGCA





34
1637
UCCCUGU CUGAUGAGGCCGAAAGGCCGAA ACAGCAG





44
1638
UCUGUGC CUGAUGAGGCCGAAAGGCCGAA AGUCCCU





70
1639
UGGAAAU CUGAUGAGGCCGAAAGGCCGAA ACCCCAC





73
1640
AUCUGGA CUGAUGAGGCCGAAAGGCCGAA AUGACCC





74
1641
UAUCUGG CUGAUGAGGCCGAAAGGCCGAA AAUGACC





75
1642
AUAUCUG CUGAUGAGGCCGAAAGGCCGAA AAAUGAC





81
1643
GACCUAA CUGAUGAGGCCGAAAGGCCGAA AUCUGGA





83
1644
GUGACCU CUGAUGAGGCCGAAAGGCCGAA AUAUCUG





84
1645
UGUGACC CUGAUGAGGCCGAAAGGCCGAA AAUAUCU





88
1646
CUGCUGU CUGAUGAGGCCGAAAGGCCGAA ACCUAAU





113
1647
CACUGGG CUGAUGAGGCCGAAAGGCCGAA AUCCAUU





125
1648
AGUCCCA CUGAUGAGGCCGAAAGGCCGAA AGUGCAC





137
1649
AGAAUGU CUGAUGAGGCCGAAAGGCCGAA ACUCAGU





142
1650
CAAAGAG CUGAUGAGGCCGAAAGGCCGAA AUGUUAC





143
1651
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAUGUUA





145
1652
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AGAAUGU





147
1653
CAUCACA CUGAUGAGGCCGAAAGGCCGAA AGAGAAU





148
1654
CCAUCAC CUGAUGAGGCCGAAAGGCCGAA AAGAGAA





159
1655
GAGCAGG CUGAUGAGGCCGAAAGGCCGAA AGGCCAU





160
1656
AGAGCAG CUGAUGAGGCCGAAAGGCCGAA AAGGCCA





166
1657
CACCAGA CUGAUGAGGCCGAAAGGCCGAA AGCAGGA





168
1658
AGCACCA CUGAUGAGGCCGAAAGGCCGAA AGAGCAG





179
1659
UUCAGAG CUGAUGAGGCCGAAAGGCCGAA AGCAGCA





182
1660
AUCUUCA CUGAUGAGGCCGAAAGGCCGAA AGGAGCA





190
1661
AAGCUUG CUGAUGAGGCCGAAAGGCCGAA AUCUUCA





191
1662
UAAGCUU CUGAUGAGGCCGAAAGGCCGAA AAUCUUC





197
1663
UUGAAAU CUGAUGAGGCCGAAAGGCCGAA AGCUUGA





198
1664
AUUGAAA CUGAUGAGGCCGAAAGGCCGAA AAGCUUG





200
1665
UCAUUGA CUGAUGAGGCCGAAAGGCCGAA AUAAGCU





201
1666
CUCAUUG CUGAUGAGGCCGAAAGGCCGAA AAUAAGC





202
1667
UCUCAUU CUGAUGAGGCCGAAAGGCCGAA AAAUAAG





231
1668
GUUUGCA CUGAUGAGGCCGAAAGGCCGAA AUUGGCA





232
1669
AGUUUGC CUGAUGAGGCCGAAAGGCCGAA AAUUGGC





240
1670
GUUUUGA CUGAUGAGGCCGAAAGGCCGAA AGUUUGC





242
1671
UGGUUUU CUGAUGAGGCCGAAAGGCCGAA AGAGUUU





265
1672
AUACUAC CUGAUGAGGCCGAAAGGCCGAA AGCUCAC





268
1673
AAAAUAC CUGAUGAGGCCGAAAGGCCGAA ACUAGCU





271
1674
GCCAAAA CUGAUGAGGCCGAAAGGCCGAA ACUACUA





273
1675
CUGCCAA CUGAUGAGGCCGAAAGGCCGAA AUACUAC





274
1676
CCUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUACUA





275
1677
UCCUGCC CUGAUGAGGCCGAAAGGCCGAA AAAUACU





294
1678
CAGAACC CUGAUGAGGCCGAAAGGCCGAA AGUUUUC





298
1679
CAUUCAG CUGAUGAGGCCGAAAGGCCGAA ACCAAGU





299
1680
UCAUUCA CUGAUGAGGCCGAAAGGCCGAA AACCAAG





310
1681
CUAAGUA CUGAUGAGGCCGAAAGGCCGAA ACCUCAU





312
1682
GCCUAAG CUGAUGAGGCCGAAAGGCCGAA AUACCUC





315
1683
UUUGCCU CUGAUGAGGCCGAAAGGCCGAA AGUAUAC





316
1684
CUUUGCC CUGAUGAGGCCGAAAGGCCGAA AAGUAUA





330
1685
ACUGUCA CUGAUGAGGCCGAAAGGCCGAA AUUUCUC





331
1686
CACUGUC CUGAUGAGGCCGAAAGGCCGAA AAUUUCU





340
1687
UGGAAUG CUGAUGAGGCCGAAAGGCCGAA ACACUGU





341
1688
UUGGAAU CUGAUGAGGCCGAAAGGCCGAA AACACUG





344
1689
UACUUGG CUGAUGAGGCCGAAAGGCCGAA AUGAACA





345
1690
AUACUUG CUGAUGAGGCCGAAAGGCCGAA AAUGAAC





351
1691
GCCCAUA CUGAUGAGGCCGAAAGGCCGAA ACUUGGA





353
1692
CGGCCCA CUGAUGAGGCCGAAAGGCCGAA AUACUUG





368
1693
GAAUCAA CUGAUGAGGCCGAAAGGCCGAA ACUUGUG





369
1694
CGAAUCA CUGAUGAGGCCGAAAGGCCGAA AACUUGU





370
1695
CCGAAUC CUGAUGAGGCCGAAAGGCCGAA AAACUUG





374
1696
CUGUCCG CUGAUGAGGCCGAAAGGCCGAA AUCAAAA





375
1697
ACUGUCC CUGAUGAGGCCGAAAGGCCGAA AAUCAAA





383
1698
AGGGUCC CUGAUGAGGCCGAAAGGCCGAA ACUGUCC





397
1699
GAUUGUG CUGAUGAGGCCGAAAGGCCGAA AGUCUCA





398
1700
AGAUUGU CUGAUGAGGCCGAAAGGCCGAA AAGUCUC





404
1701
AUCUGAA CUGAUGAGGCCGAAAGGCCGAA AUUGUGA





406
1702
UGAUCUG CUGAUGAGGCCGAAAGGCCGAA AGAUUGU





407
1703
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AAGAUUG





412
1704
UGUCCUU CUGAUGAGGCCGAAAGGCCGAA AUCUGAA





426
1705
UUGAUAC CUGAUGAGGCCGAAAGGCCGAA AGCCCUU





429
1706
ACAUUGA CUGAUGAGGCCGAAAGGCCGAA ACAAGCC





431
1707
AUACAUU CUGAUGAGGCCGAAAGGCCGAA AUACAAG





437
1708
UGGAUGA CUGAUGAGGCCGAAAGGCCGAA ACAUUGA





439
1709
GAUGGAU CUGAUGAGGCCGAAAGGCCGAA AUACAUU





442
1710
UGUGAUG CUGAUGAGGCCGAAAGGCCGAA AUGAUAC





446
1711
UUUUUGU CUGAUGAGGCCGAAAGGCCGAA AUGGAUG





469
1712
GGAUGCG CUGAUGAGGCCGAAAGGCCGAA AUCAUUC





470
1713
UGGAUGC CUGAUGAGGCCGAAAGGCCGAA AAUCAUU





475
1714
UCUGGUG CUGAUGAGGCCGAAAGGCCGAA AUGCGAA





488
1715
AGUUCAG CUGAUGAGGCCGAAAGGCCGAA AUUCAUC





489
1716
CAGUUCA CUGAUGAGGCCGAAAGGCCGAA AAUUCAU





498
1717
AAGCACU CUGAUGAGGCCGAAAGGCCGAA ACAGUUC





505
1718
AGUUAGC CUGAUGAGGCCGAAAGGCCGAA AGCACUG





509
1719
CUGAAGU CUGAUGAGGCCGAAAGGCCGAA AGCAAGC





513
1720
UUGACUG CUGAUGAGGCCGAAAGGCCGAA AGUUAGC





514
1721
GUUGACU CUGAUGAGGCCGAAAGGCCGAA AAGUUAG





518
1722
UCAGGUU CUGAUGAGGCCGAAAGGCCGAA ACUGAAG





529
1723
UUGGUAC CUGAUGAGGCCGAAAGGCCGAA AUUUCAG





532
1724
AAAUUGG CUGAUGAGGCCGAAAGGCCGAA ACUAUUU





538
1725
UAUUAGA CUGAUGAGGCCGAAAGGCCGAA AUUGGUA





539
1726
AUAUUAG CUGAUGAGGCCGAAAGGCCGAA AAUUGGU





540
1727
UAUAUUA CUGAUGAGGCCGAAAGGCCGAA AAAUUGG





542
1728
GUUAUAU CUGAUGAGGCCGAAAGGCCGAA AGAAAUU





545
1729
UCUGUUA CUGAUGAGGCCGAAAGGCCGAA AUUAGAA





547
1730
UUUCUGU CUGAUGAGGCCGAAAGGCCGAA AUAUUAG





S61
1731
AUUUAUG CUGAUGAGGCCGAAAGGCCGAA ACACAUU





565
1732
UCAAAUU CUGAUGAGGCCGAAAGGCCGAA AUGUACA





569
1733
CAGGUCA CUGAUGAGGCCGAAAGGCCGAA AUUUAUG





570
1734
GCAGGUC CUGAUGAGGCCGAAAGGCCGAA AAUUUAU





579
1735
UAUAGAU CUGAUGAGGCCGAAAGGCCGAA AGCAGGU





582
1736
GUGUAUA CUGAUGAGGCCGAAAGGCCGAA AUGAGCA





584
1737
CCGUGUA CUGAUGAGGCCGAAAGGCCGAA AGAUGAG





586
1738
AACCGUG CUGAUGAGGCCGAAAGGCCGAA AUAGAUG





593
1739
UCUGGGU CUGAUGAGGCCGAAAGGCCGAA ACCGUGU





594
1740
UUCUGGG CUGAUGAGGCCGAAAGGCCGAA AACCGUG





605
1741
AUCUUCU CUGAUGAGGCCGAAAGGCCGAA AGGUUCU





619
1742
UUAGCAA CUGAUGAGGCCGAAAGGCCGAA ACACUCA





620
1743
CUUAGCA CUGAUGAGGCCGAAAGGCCGAA AACACUC





621
1744
UCUUAGC CUGAUGAGGCCGAAAGGCCGAA AAACACU





625
1745
UGGUUCU CUGAUGAGGCCGAAAGGCCGAA AGCAAAA





638
1746
AUAGUUG CUGAUGAGGCCGAAAGGCCGAA AUUCUUG





639
1747
GAUAGUU CUGAUGAGGCCGAAAGGCCGAA AAUUCUU





644
1748
UACUCGA CUGAUGAGGCCGAAAGGCCGAA AGUUGAA





646
1749
CAUACUC CUGAUGAGGCCGAAAGGCCGAA AUAGUUG





651
1750
ACCAUCA CUGAUGAGGCCGAAAGGCCGAA ACUCGAU





659
1751
UGCAUAA CUGAUGAGGCCGAAAGGCCGAA ACCAUCA





661
1752
UCUGCAU CUGAUGAGGCCGAAAGGCCGAA AUACCAU





662
1753
UUCUGCA CUGAUGAGGCCGAAAGGCCGAA AAUACCA





672
1754
AUCUUGA CUGAUGAGGCCGAAAGGCCGAA AUUUCUG





674
1755
UUAUCUU CUGAUGAGGCCGAAAGGCCGAA AGAUUUC





680
1756
GUGACAU CUGAUGAGGCCGAAAGGCCGAA AUCUUGA





685
1757
GUUCUGU CUGAUGAGGCCGAAAGGCCGAA ACAUUAU





696
1758
AACGUCG CUGAUGAGGCCGAAAGGCCGAA ACAGUUC





703
1759
UGAUGGA CUGAUGAGGCCGAAAGGCCGAA ACGUCGU





704
1760
CUGAUGG CUGAUGAGGCCGAAAGGCCGAA AACGUCG





705
1761
GCUGAUG CUGAUGAGGCCGAAAGGCCGAA AAACGUC





709
1762
ACAAGCU CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





714
1763
AACAGAC CUGAUGAGGCCGAAAGGCCGAA AGCUGAU





717
1764
UGAAACA CUGAUGAGGCCGAAAGGCCGAA ACAAGCU





721
1765
GGAAUGA CUGAUGAGGCCGAAAGGCCGAA ACAGACA





722
1766
GGGAAUG CUGAUGAGGCCGAAAGGCCGAA AACAGAC





723
1767
AGGGAAU CUGAUGAGGCCGAAAGGCCGAA AAACAGA





726
1768
AUCAGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAC





727
1769
CAUCAGG CUGAUGAGGCCGAAAGGCCGAA AAUGAAA





736
1770
UGCUCGU CUGAUGAGGCCGAAAGGCCGAA ACAUCAG





737
1771
UUGCUCG CUGAUGAGGCCGAAAGGCCGAA AACAUCA





746
1772
AUGGUCA CUGAUGAGGCCGAAAGGCCGAA AUUGCUC





754
1773
UACAGAA CUGAUGAGGCCGAAAGGCCGAA AUGGUCA





756
1774
AAUACAG CUGAUGAGGCCGAAAGGCCGAA AGAUGGU





757
1775
GAAUACA CUGAUGAGGCCGAAAGGCCGAA AAGAUGG





761
1776
UCCAGAA CUGAUGAGGCCGAAAGGCCGAA ACAGAAG





763
1777
UUUCCAG CUGAUGAGGCCGAAAGGCCGAA AUACAGA





764
1778
GUUUCCA CUGAUGAGGCCGAAAGGCCGAA AAUACAG





787
1779
AAGAUAA CUGAUGAGGCCGAAAGGCCGAA AGCCGCG





788
1780
GAAGAUA CUGAUGAGGCCGAAAGGCCGAA AAGCCGC





789
1781
UGAAGAU CUGAUGAGGCCGAAAGGCCGAA AAAGCCG





790
1782
GUGAAGA CUGAUGAGGCCGAAAGGCCGAA AAAAGCC





792
1783
AGGUGAA CUGAUGAGGCCGAAAGGCCGAA AUAAAAG





794
1784
AAAGGUG CUGAUGAGGCCGAAAGGCCGAA AGAUAAA





795
1785
GAAAGGU CUGAUGAGGCCGAAAGGCCGAA AAGAUAA





800
1786
AUAGAGA CUGAUGAGGCCGAAAGGCCGAA AGGUGAA





801
1787
UAUAGAG CUGAUGAGGCCGAAAGGCCGAA AAGGUGA





802
1788
CUAUAGA CUGAUGAGGCCGAAAGGCCGAA AAAGGUG





804
1789
CUCUAUA CUGAUGAGGCCGAAAGGCCGAA AGAAAGG





806
1790
AGCUCUA CUGAUGAGGCCGAAAGGCCGAA AGAGAAA





808
1791
CAAGCUC CUGAUGAGGCCGAAAGGCCGAA AUAGAGA





814
1792
GGUCCUC CUGAUGAGGCCGAAAGGCCGAA AGCUCUA





824
1793
GGAGGCU CUGAUGAGGCCGAAAGGCCGAA AGGGUCC





830
1794
UCUGGGG CUGAUGAGGCCGAAAGGCCGAA AGGCUGA





844
1795
UCCAAGG CUGAUGAGGCCGAAAGGCCGAA AUGUGGU





845
1796
AUCCAAG CUGAUGAGGCCGAAAGGCCGAA AAUGUGG





848
1797
GUAAUCC CUGAUGAGGCCGAAAGGCCGAA AGGAAUG





853
1798
CAGCUGU CUGAUGAGGCCGAAAGGCCGAA AUCCAAG





854
1799
ACAGCUG CUGAUGAGGCCGAAAGGCCGAA AAUCCAA





862
1800
UUGGAAG CUGAUGAGGCCGAAAGGCCGAA ACAGCUG





865
1801
CUGUUGG CUGAUGAGGCCGAAAGGCCGAA AGUACAG





866
1802
ACUGUUG CUGAUGAGGCCGAAAGGCCGAA AAGUACA





874
1803
AUAUAAU CUGAUGAGGCCGAAAGGCCGAA ACUGUUG





875
1804
CAUAUAA CUGAUGAGGCCGAAAGGCCGAA AACUGUU





877
1805
CACAUAU CUGAUGAGGCCGAAAGGCCGAA AUAACUG





878
1806
ACACAUA CUGAUGAGGCCGAAAGGCCGAA AAUAACU





880
1807
UCACACA CUGAUGAGGCCGAAAGGCCGAA AUAAUAA





892
1808
GACAGAA CUGAUGAGGCCGAAAGGCCGAA ACCAUCA





893
1809
AGACAGA CUGAUGAGGCCGAAAGGCCGAA AACCAUC





894
1810
UAGACAG CUGAUGAGGCCGAAAGGCCGAA AAACCAU





895
1811
UUAGACA CUGAUGAGGCCGAAAGGCCGAA AAAACCA





899
1812
AGAAUUA CUGAUGAGGCCGAAAGGCCGAA ACAGAAA





901
1813
AUAGAAU CUGAUGAGGCCGAAAGGCCGAA AGACAGA





904
1814
UCCAUAG CUGAUGAGGCCGAAAGGCCGAA AUUAGAC





905
1815
UUCCAUA CUGAUGAGGCCGAAAGGCCGAA AAUUAGA





907
1816
AUUUCCA CUGAUGAGGCCGAAAGGCCGAA AGAAUUA





935
1817
GAGUUGC CUGAUGAGGCCGAAAGGCCGAA AGGCCGC





942
1818
UUUAUAA CUGAUGAGGCCGAAAGGCCGAA AGUUGCG





944
1819
CAUUUAU CUGAUGAGGCCGAAAGGCCGAA AGAGUUG





945
1820
ACAUUUA CUGAUGAGGCCGAAAGGCCGAA AAGAGUU





947
1821
CCACAUU CUGAUGAGGCCGAAAGGCCGAA AUAAGAG





1009
1822
GUAUAUG CUGAUGAGGCCGAAAGGCCGAA AUUUUUU





1013
1823
UCAGGUA CUGAUGAGGCCGAAAGGCCGAA AUGGAUU





1015
1824
UUUCAGG CUGAUGAGGCCGAAAGGCCGAA AUAUGGA





1026
1825
UUCAUCA CUGAUGAGGCCGAAAGGCCGAA AUCUUUC





1045
1826
UUUUAAA CUGAUGAGGCCGAAAGGCCGAA ACACGCU





1046
1827
CUUUUAA CUGAUGAGGCCGAAAGGCCGAA AACACGC





1047
1828
ACUUUUA CUGAUGAGGCCGAAAGGCCGAA AAACACG





1048
1829
AACUUUU CUGAUGAGGCCGAAAGGCCGAA AAAACAC





1049
1830
GAACUUU CUGAUGAGGCCGAAAGGCCGAA AAAAACA





1055
1831
GUCUUCG CUGAUGAGGCCGAAAGGCCGAA ACUUUUA





1056
1832
UGUCUUC CUGAUGAGGCCGAAAGGCCGAA AACUUUU





1065
1833
GCAUGAA CUGAUGAGGCCGAAAGGCCGAA AUGUCUU





1067
1834
UCGCAUG CUGAUGAGGCCGAAAGGCCGAA AGAUGUC





1068
1835
GUCGCAU CUGAUGAGGCCGAAAGGCCGAA AAGAUGU





1085
1836
AAACAUG CUGAUGAGGCCGAAAGGCCGAA AUCACUU





1091
1837
AAUUAAA CUGAUGAGGCCGAAAGGCCGAA ACAUGUA





1092
1838
UAAUUAA CUGAUGAGGCCGAAAGGCCGAA AACAUGU





1093
1839
UUAAUUA CUGAUGAGGCCGAAAGGCCGAA AAACAUG





1094
1840
UUUAAUU CUGAUGAGGCCGAAAGGCCGAA AAAACAU





1095
1841
CUUUAAU CUGAUGAGGCCGAAAGGCCGAA AAAAACA





1098
1842
ACUCUUU CUGAUGAGGCCGAAAGGCCGAA AUUAAAA





1099
1843
UACUCUU CUGAUGAGGCCGAAAGGCCGA AAAUUAAA










[0092]

8





TABLE VIII










Mouse B7-2 Hammerhead Ribozyme Target Sequences












nt.

HH Target
nt.

HH Target


Position
SEQ ID NO
Sequence
Position
SEQ ID NO
Sequence















47
705
ACGGACU u GaACAaC
194
724
CuUAuUU C aAUGGgA





47
705
aCggACU U gaACAAC
208
775
aCUGCaU a UCUGCCG





66
706
CUCCUgU a gACGUgU
210
776
UGCaUaU C UGCCGug





66
706
CUccUgU A gACGUGu
223
777
UGCCCAU U UaCAAAg





74
707
gACGUGU u CCagAAC
223
777
UGCCCAU U UACAaAg





83
708
CaGaACU U aCggaAG
224
778
GCCCAUU U aCAAAgg





134
709
CaAuCCU U aUCUUUG
225
779
CCCAUUU a CAaAggC





134
709
CaauCCU U AUCUUug
225
779
CCCaUUU a CAAAgGC





134
709
CaAUCCU U AuCUUUg
242
780
AAaACAU a agCCUGa





134
709
CAaUCCU U AUCUuUG
260
781
AGCUgGU A GUAUUUU





134
709
CAAuCCU U AUCuuUG
260
781
aGCuGgU a gUAUuUU





135
710
aAuCCUU a UCUUUGU
263
782
UgGUAGU A UUUUGGC





135
710
aAUCCUU a UCUuUgu
263
782
UGgUaGU a UUuUGgC





135
710
AaUCCUU A UCUuUGU
265
615
GUAGUAU U UUGGCAG





135
710
aAUCCUU a UCUuUgU
265
615
guAGUAU u UuGGCaG





137
711
uCCUUaU C UUUGUGA
266
616
UAGUAUU U UGGCAGG





137
711
UCCUUAU C UuUGUGA
266
616
uAGUaUU U UGgCAgG





137
711
UCCuUAU C uuUGugA
266
616
UAgUauU u UGGCAgg





139
712
CUUaUCU U UGUGACa
267
617
AGUAUUU U GGCAGGA





140
713
UUaUCUU U GUGACaG
267
617
AGUaUUU U GgCAgGA





140
713
UUaUCuU U guGACAG
286
783
CAAAAgU U GGUUCUG





149
714
UGACaGU C UUGCUgA
286
783
CAAaagU U GgUUCuG





151
715
ACAGuCU U GGUgaUC
290
784
AgUUGGU U CUGUACG





151
715
ACaGuCU U gCUGaUC
291
785
gUUGGUU C UGuACGA





158
716
UgCuGAU C UCAGaUg
295
786
GUUCugU a CgAGCAC





158
716
UgCUGaU C UCaGaUG
304
787
GAGCaCU A uUUgGGC





158
716
UGCUgAU C uCAgaUg
307
788
cacUAUU u GGgCACA





158
716
UgCugAU C UCagAUg
323
789
AGAAACU U GAUAGUG





160
717
CUGaUCU C aGaUGCU
343
790
gCCAAGU A CCUGGGC





160
717
CUGaUCU C AgAuGCU
343
790
gCCAagU a CCUgGGC





170
718
AUGCuGU u UCCgUgG
361
791
ACgAGCU U UGACagG





171
719
UGCUGuU u CCgUGgA
381
792
CUGgACU a UaCGACtU





172
720
gCUgUuU C agUgGAG
383
793
GgACUCU A CGACuUC





189
721
GCaaGCU u AUUUCaA
383
793
GGACuCU a CGaCUuC





189
721
gCAAGCU U AUUUCAA
389
794
uACGaCU u CaCAaUG





189
721
GCaaGCU u AuUUCAa
389
794
UaCGACU U CACAAUg





190
525
CAAGCUU A UUUCAAU
390
795
aCGACUIU C ACAAUgU





190
525
CaAgCUU a uUUCaAU
390
795
ACgACUEU C aCAAUgU





192
722
AGCUUAU U UCAAUGg
398
796
ACAaUGU U CAgauCA





192
722
aGCUUaU u UCAAUGg
398
796
ACAAUgU U CAGAUCA





193
723
GCUUAUUU CAAUGgG
398
796
ACaAuGU U CagAUCA





193
723
GCuUAuUU CaAUGGg
399
725
CAaUGUU C AgauCAA





194
724
CUUAUUEUC AAUGgGA
399
725
CAAUgUU C AGAUCAA





399
725
CaAuGUUC agAUCAa
658
797
CAGAUAU C ACaagAu





399
725
CaAUGUUC aGAuCAA
658
797
CAgauAu C ACAAgAu





399
725
CAaUguUC aGAUCAa
658
797
CAGAuAU C aCAAGAU





399
725
CAAuGuUC aGAUCAA
658
797
CaGAUaU C ACaAGau





399
725
CAauguUC agAUCAA
666
798
aCAAGAU A AUGUCAC





404
644
UUCAGAUC AAGGACA
666
798
ACAagaU a AUGuCAC





404
644
UuCAGaUC aAGGACa
671
576
AUaAuGU C ACAGaAC





418
726
aUGgGCUC GUAugAU
671
576
aUAAUgU C ACAGAAC





418
726
AuGGGCUC GUAUgAu
671
576
AUAAUGU C ACAGAAC





428
726
AUggGCUC GUaUGaU
682
799
gAACUgU U CAGUAUC





421
727
gGCUCgUa UGAUUgU
683
800
aACUGuU C aGuAUCu





421
727
ggCUCgUA UgAuUGU
683
800
AACUGuU C agUaUCU





429
728
UgAuUGUu UuAUaCA
691
801
aguaUCU C CAaCAGC





429
728
UGAUuGUu UUAUaCA
691
801
agUAUCU C CAaCagC





431
729
AuUgUuUu AUACAAa
691
801
aGUAuCU C CAACAGC





431
729
AUuGUuUU AUaCAaA
701
802
aCaGCCU C UCUCUUu





432
730
UuGUuUUA UaCAaAA
701
802
aCagCCU C UCUCUuU





432
730
UuGUtUUUa UaCaaAA
703
803
AGCCUCU C UCUUUCA





432
730
uUGUUUUa uACaAAA
703
803
aGCCUCU C UCUUuCa





461
731
gAUCaAUu AUCCuCC
707
804
UCUCUCU U UCAUUCC





462
732
AuCaAUUa uCCUCCA
707
804
UCUCUCU u UCAUUCC





464
733
CAauUaUC CUCCaAC
708
805
CUCUCUU U CAUUCCC





467
734
uUAUCCUC CAaCAgA
709
806
UCUCUUU C AUUCCCg





467
734
UUauCCUC CAaCAGA
709
806
UCUCUuU C auuCCCG





467
734
UUaUCCUC CAACAGA
709
806
UCUCUuU C AUUCCC9





467
734
UuAuCCUC CaaCAGA
712
807
CUtUUCaU U CCCgGaU





490
735
GAACUGUC AGUGaUC
712
807
CuuUCAU U CCCgGAU





497
736
CAGUGaUC GCCAACU
712
807
CuUuCAU u CCCGGaU





505
737
GCCAACUU CAGUgAA
712
807
CUtUUCAU U CCCgGAU





506
738
CCAACUUC AGUgAAC
712
807
CU1
UUCAU u CCCggaU





506
738
CCAaCUUC aGUgaaC
713
808
UUUCAUU C CCgGAUg





521
739
CUGAAAUA aaACugg
713
808
UUUCAUU C CCgGAUG





531
740
ACUGgCUC AgAaUgU
732
809
GuGgCAU a UGACCGU





539
741
agaaUGUA ACAGGaA
732
809
GuGgCAU A UGACCgU





550
742
GgAaAuUC uGGCAuA
740
810
UGACCgU U gUgUGUg





550
742
ggAAaUUC UggCAUA
749
811
UgUGUgU U CUGGAAA





557
743
CuggCAUA AAUUUGA
749
811
uGuGUGU U CUggAAA





561
552
CAUAAAUU UGACCUG
750
812
gUGUgUU C UGGAAAC





562
553
AUAAAUUU GACCUGC
750
812
GuGUGUU C UggAAAC





576
744
CaCgUCUA agCAaGG
773
813
ugAAGaU U UCCUCCa





585
745
gCAaGGUC ACCCgaA
778
814
aUUUcCU C CaAACCu





597
746
gaAACCUA AGAAGAU
788
815
AACCUCU C AAuuuCA





607
747
AaGaUgUa UUUUCUg
798
816
UUUCaCU C aAGAGuU





611
748
UGUaUUUu CUgAuAa
805
817
CAagAGU U UCCAUCU





625
749
ACUAAUUC AACUAau
805
817
CAAgAGU U uCCAUCU





630
750
UUCAACUA auGAGUA
806
818
AAgAGUU u CCAUCUC





630
750
UtUCAACUA AuGAGUA
811
819
LTTUUCCAU C uCCUCaa





637
751
AauGAGUA UGgUGaU
811
819
uUUCCaU C UCCUCaA





656
752
uGCAgaUa UCACAAg
813
820
uCCAUCU C CUCaAaC





836
753
aGgAGAUU aCAGCUU





836
753
aggaGAUU ACAGCUu





837
754
GgAGAUUa CAGCUUC





848
755
CUUCAGUu ACugUGg





860
756
UGGCCCUC CUCCUug





860
756
UggCCCuC CUCCuug





878
757
ugCUGCUC AUCauUg





951
758
GCGGgaUa GuAACgC





974
759
AgaCuAUC aACCUGA





989
760
aGgaACuU GaACCCC





1006
761
auUgCUUC aGCAAAa





1055
762
AAAgAGUu aaAAaUU





1056
763
AaGAgUUa aaAAuUG





1062
764
UAAAAAUu gCUuUgC





1092
765
CAgaGUUu CUCAGAA





1095
766
aGUUcCUC AgAaUUC





1101
767
UCAgAAUU CaaAaAU





1101
767
uCAGAAUU CAAaaAU





1101
767
UCAgAaUU CaAAaAu





1111
768
aAaAUGUU CUCAgCU





1112
769
AaAUGUUC UCAgCUg





1128
770
UUgGAaUu CUACAGU





1128
770
UUGGAaUu CuaCaGU





1131
771
GAAuUCUa CAGUUgA





1131
771
GAauUCUa CAgUUGA





1141
772
GuUGAAUa aUuAAag





1144
773
gaaUAAUU AAAGAaC





1145
774
AAuAaUUa aAgaACA










[0093]

9





TABLE IX










Mouse B7-2 Hammerhead Ribozyme Sequences









nt.
SEQ



Posi-
ID


tion
NO
HH Ribozyme Sequences












47
1844
GUUGUUC CUGAUGAGGCCGAAAGGCCGAA AGUCCGU





47
1844
GUUGUUC CUGAUGAGGCCGAAAGGCCGAA AGUCCGU





66
1545
ACACGUC CUGAUGAGGCCGAAAGGCCGAA ACAGGAG





66
1845
ACACGUC CUGAUGAGGCCGAAAGGCCGAA ACAGGAG





74
1846
GUUCUGG CUGAUGAGGCCGAAAGGCCGAA ACACGUC





83
1847
CUUCCGU CUGAUGAGGCCGAAAGGCCGAA AGUUCUG





134
1848
CAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGAUUG





134
1848
CAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGAUUG





134
1848
CAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGAUUG





134
1848
CAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGAUUG





134
1848
CAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGAUUG





135
1849
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAUU





135
1849
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAUU





135
1849
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAUU





135
1849
ACAAAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAUU





137
1850
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUAAGGA





137
1850
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUAAGGA





137
1850
UCACAAA CUGAUGAGGCCGAAAGGCCGAA AUAAGGA





139
1851
UGUCACA CUGAUGAGGCCGAAAGGCCGAA AGAUAAG





140
1852
CUGUCAC CUGAUGAGGCCGAAAGGCCGAA AAGAUAA





140
1852
CUGUCAC CUGAUGAGGCCGAAAGGCCGAA AAGAUAA





149
1853
UCAGCAA CUGAUGAGGCCGAAAGGCCGAA ACUGUCA





151
1854
GAUCAGC CUGAUGAGGCCGAAAGGCCGAA AGACUGU





151
1854
GAUCAGC CUGAUGAGGCCGAAAGGCCGAA AGACUGU





158
1855
CAUCUGA CUGAUGAGGCCGAAAGGCCGAA AUCAGCA





158
1855
CAUCUGA CUGAUGAGGCCGAAAGGCCGAA AUCAGCA





158
1855
CAUCUGA CUGAUGAGGCCGAAAGGCCGAA AUCAGCA





158
1855
CAUCUGA CUGAUGAGGCCGAAAGGCCGAA AUCAGCA





160
1856
AGCAUCU CUGAUGAGGCCGAAAGGCCGAA AGAUCAG





160
1856
AGCAUCU CUGAUGAGGCCGAAAGGCCGAA AGAUCAG





170
1857
CCACGGA CUGAUGAGGCCGAAAGGCCGAA ACAGCAU





171
1858
UCCACGG CUGAUGAGGCCGAAAGGCCGAA AACAGCA





172
1859
CUCCACG CUGAUGAGGCCGAAAGGCCGAA AAACAGC





189
1860
UUGAAAU CUGAUGAGGCCGAAAGGCCGAA AGCUUGC





189
1860
UUGAAAU CUGAUGAGGCCGAAAGGCCGAA AGCUUGC





189
1860
UUGAAAU CUGAUGAGGCCGAAAGGCCGAA AGCUUGC





190
1664
AUUGAAA CUGAUGAGGCCGAAAGGCCGAA AAGCUUG





190
1664
AUUGAAA CUGAUGAGGCCGAAAGGCCGAA AAGCUUG





192
1861
CCAUUGA CUGAUGAGGCCGAAAGGCCGAA AUAAGCU





192
1861
CCAUUGA CUGAUGAGGCCGAAAGGCCGAA AUAAGCU





193
1862
CCCAUUG CUGAUGAGGCCGAAAGGCCGAA AAUAAGC





193
1862
CCCAUUG CUGAUGAGGCCGAAAGGCCGAAAAUAAGC





194
1863
UCCCAUU CUGAUGAGGCCGAAAGGCCGAA AAAUAAG





194
1863
UCCCAUU CUGAUGAGGCCGAAAGGCCGAA AAAUAAG





208
1864
CGGCAGA CUGAUGAGGCCGAAAGGCCGAA AUGCAGU





210
1865
CACGGCA CUGAUGAGGCCGAAAGGCCGAA AUAUGCA





223
1866
CUUUGUA CUGAUGAGGCCGAAAGGCCGAA AUGGGCA





223
1866
CUUUGUA CUGAUGAGGCCGAAAGGCCGAA AUGGGCA





224
1867
CCUUUGU CUGAUGAGGCCGAAAGGCCGAA AAUGGGC





225
1868
GCCUUUG CTGAUGAGGCCGAAAGGCCGAA AAAUGGG





225
1868
GCCUUUG CUGAUGAGGCCGAAAGGCCGAA AAAUGGG





242
1869
UCAGGCU CUGAUGAGGCCGAAAGGCCGAA AUGUUUU





260
1870
AAAAUAC CUGAUGAGGCCGAAAGGCCGAA ACCAGCU





260
1870
AAAAUAC CUGAUGAGGCCGAAAGGCCGAA ACCAGCU





263
1871
GCCAAAA CUGAUGAGGCCGAAAGGCCGAA ACUACCA





263
1871
GCCAAAA CUGAUGAGGCCGAAAGGCCGAA ACUACCA





265
1675
CUGCCAA CUGAUGAGGCCGAAAGGCCGAA AUACUAC





265
1675
CUGCCAA CUGAUGAGGCCGAAAGGCCGAA AUACUAC





266
1676
CCUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUACUA





266
1676
CCUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUACUA





266
1676
CCUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUACUA





267
1677
UCCUGCC CUGAUGAGGCCGAAAGGCCGAA AAAUAAU





267
1677
UCCUGCC CUGAUGAGGCCGAAAGGCCGAA AAAUACU





286
1872
CAGAACC CUGAUGAGGCCGAAAGGCCGAA ACUUUUG





286
1872
CAGAACC CUGAUGAGGCCGAAAGGCCGAA ACUUUUG





290
1873
CGUACAG CUGAUGAGGCCGAAAGGCCGAA ACCAACU





291
1874
UCGUACA CUGAUGAGGCCGAAAGGCCGAA AACCAAC





295
1875
GUGCUCG CUGAUGAGGCCGAAAGGCCGAA ACAGAAC





304
1876
GCCCAAA CUGAUGAGGCCGAAAGGCCGAA AGUGCUC





307
1877
UGUGCCC CUGAUGAGGCCGAAAGGCCGAA AAUAGUG





323
1878
CACUAUC CUGAUGAGGCCGAAAGGCCGAA AGUUUCU





343
1879
GCCCACG CUGAUGAGGCCGAAAGGCCGAA ACUUGGC





343
1879
GCCCAGG CUGAUGAGGCCGAAAGGCCGAA ACUUGGC





361
1880
CCUGUCA CUGAUGAGGCCGAAAGGCCGAA AGCUCGU





381
1881
AGUCGUA CUGAUGAGGCCGAAAGGCCGAA AGUCCAG





383
1882
GAAGUCG CUGAUGAGGCCGAAAGGCCGAA AGAGUCC





383
1882
GAAGUCG CUGAUGAGGCCGAAAGGCCGAA AGAGUCC





389
1883
CAUUGUG CUGAUGAGGCCGAAAGGCCGAA AGUCGUA





389
1883
CAUUGUG CUGAUGAGGCCGAAAGGCCGAA AGUCGUA





390
1884
ACAUUGU CUGAUGAGGCCGAAAGGCCGAA AAGUCGU





390
1884
ACAUUGU CUGAUGAGGCCGAAAGGCCGAA AAGUCGU





398
1885
UGAUCUG CUGAUGAGGCCGAAAGGCCGAA ACAUUGU





398
1885
UGAUCUG CUGAUGAGGCCGAAAGGCCGAA ACAUUGU





398
1885
UGAUCUG CUGAUGAGGCCGAAAGGCCGAA ACAUUGU





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





399
1886
UUGAUCU CUGAUGAGGCCGAAAGGCCGAA AACAUUG





404
1704
UGUCCUU CUGAUGAGGCCGAAAGGCCGAA AUCUGAA





404
1704
UGUCCUU CUGAUGAGGCCGAAAGGCCGAA AUCUGAA





418
1887
AUCAUAC CUGAUGAGGCCGAAAGGCCGAA AGCCCAU





418
1887
AUCAUAC CUGAUGAGGCCGAAAGGCCGUA AGCCCAU





418
1887
AUCAUAC CUCAUGAGGCCGAAAGGCCGAA AGCCCAU





421
1888
ACAAUCA CUGAUGAGGCCGAAAGGCCGAA ACGAGCC





421
1888
ACAAUCA CUGAUGAGGCCGAAAGGCCGAA ACGAGCC





429
1889
UGUAUAA CUGAUGAGGCCGAAAGGCCGAA ACAAUCA





429
1889
UGUAUAA CUGAUGAGGCCGAAAGGCCGAA ACAAUCA





431
1890
UUUGUAU CUGAUGAGGCCGAAAGGCCGAA AAACAAU





431
1890
UUUGUAU CUGAUGAGGCCGAAAGGCCGAA AAACAAU





432
1891
UUUUGUA CUGAUGAGGCCGAAAGGCCGAA AAAACAA





432
1891
UUUUGUA CUGAUGAGGCCGAAAGGCCGAA AAAACAA





432
1891
UUUUGUA CUGAUGAGGCCGAAAGGCCGAA AAAACAA





461
1892
GGAGGAU CUGAUGAGGCCGAAAGGCCGAA AUUGAUC





462
1893
UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AAUUGAU





464
1894
GUUGGAG CUGAUGAGGCCGAAAGGCCGAA AUAAUUG





467
1895
UCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGGAUAA





467
1895
UCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGGAUAA





467
1895
UCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGGAUAA





467
1895
UCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGGAUAA





490
1896
GAUCACU CUGAUGAGGCCGAAAGGCCGAA ACAGUUC





497
1897
AGUUGGC CUGAUGAGGCCGAAAGGCCGAA AUCACUG





505
1898
UUCACUG CUGAUGAGGCCGAAAGGCCGAA AGUUGGC





506
1899
GUUCACU CUGAUGAGGCCGAAAGGCCGAA AAGUUGG





506
1899
GUUCACU CUGAUGAGGCCGAAAGGCCGAA AAGUUGG





521
1900
CCAGUUU CUGAUGAGGCCGAAAGGCCGAA AUUUCAG





531
1901
ACAUUCU CUGAUGAGGCCGAAAGGCCGAA AGCCAGU





539
1902
UUCCUGU CUGAUGAGGCCGAAAGGCCGAA ACAUUCU





550
1903
UAUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUUUCC





550
1903
UAUGCCA CUGAUGAGGCCGAAAGGCCGAA AAUUUCC





557
1904
UCAAAUU CUGAUGAGGCCGAAAGGCCGAA AUGCCAG





561
1733
CAGGUCA CUGAUGAGGCCGAAAGGCCGAA AUUUAUG





562
1734
GCAGGUC CUGAUGAGGCCGAAAGGCCGAA AAUUUAU





576
1905
CCUUGCU CUGAUGAGGCCGAAAGGCCGAA AGACGUG





585
1906
UUCGGGU CUGAUGAGGCCGAAAGGCCGAA ACCUUGC





597
1907
AUCUUCU CUGAUGAGGCCGAAAGGCCGAA AGGUUUC





607
1908
CAGAAAA CUGAUGAGGCCGAAAGGCCGAA ACAUCUU





611
1909
UUAUCAG CUGAUGAGGCCGAAAGGCCGAA AAAUACA





625
1910
AUUAGUU CUGAUGAGGCCGAAAGGCCGAA AAUUAGU





630
1911
UACUCAU CUGAUGAGGCCGAAAGGCCGAA AGUUGAA





630
1911
UACUCAU CUGAUGAGGCCGAAAGGCCGAA AGUUGAA





637
1912
AUCACCA CUGAUGAGGCCGAAAGGCCGAA ACUCAUU





656
1913
CUUGUGA CUGAUGAGGCCGAAAGGCCGAA AUCUGCA





658
1914
AUCUUGU CUGAUGAGGCCGAAAGGCCGAA AUAUCUG





658
1914
AUCUUGU CUGAUGAGGCCGAAAGGCCGAA AUAUCUG





658
1914
AUCUUGU CUGAUGAGGCCGAAAGGCCGAA AUAUCUG





658
1914
AUCUUGU CUGAUGAGGCCGAAAGGCCGAA AUAUCUG





666
1915
GUGACAU CUGAUGAGGCCGAAAGGCCGAA AUCUUGU





666
1915
GUGACAU CUGAUGAGGCCGAAAGGCCGAA AUCUUGU





671
1757
GUUCUGU CUGAUGAGGCCGAAAGGCCGAA ACAUUAU





671
1757
GUUCUGU CUGAUGAGGCCGAAAGGCCGAA ACAUUAU





671
1757
GUUCUGU CUGAUGAGGCCGAAAGGCCGAA ACAUUAU





682
1916
GAUACUG CUGAUGAGGCCGAAAGGCCGAA ACAGUUC





683
1917
AGAUACU CUGAUGAGGCCGAAAGGCCGAA AACAGUU





683
1917
AGAUACU CUGAUGAGGCCGAAAGGCCGAA AACAGUU





691
1918
GCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGAUACU





691
1918
GCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGAUACU





691
1918
GCUGUUG CUGAUGAGGCCGAAAGGCCGAA AGAUACU





701
1919
AAAGAGA CUGAUGAGGCCGAAAGGCCGAA AGGCUGU





701
1919
AAAGAGA CUGAUGAGGCCGAAAGGCCGAA AGGCUGU





703
1920
UGAAAGA CUGAUGAGGCCGAAAGGCCGAA AGAGGCU





703
1920
UGAAAGA CUGAUGAGGCCGAAAGGCCGAA AAAGGCU





707
1921
GGAAUGA CUGAUGAGGCCGAAAGGCCGAA AGAGAGA





707
1921
GGAAUGA CUGAUGAGGCCGAAAGGCCGAA AGAGAGA





708
1922
GGGAAUG CUGAUGAGGCCGAAAGGCCGAA AAGAGAG





709
1923
CGGGAAU CUGAUGAGGCCGAAAGGCCGAA AAAGAGA





709
1923
CGGGAAU CUGAUGAGGCCGAAAGGCCGAA AAAGAGA





709
1923
CGGGAAU CUGAUGAGGCCGAAAGGCCGAA AAAGAGA





712
1924
AUCCGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAG





712
1924
AUCCGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAG





712
1924
AUCCGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAG





712
1924
AUCCGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAG





712
1924
AUCCGGG CUGAUGAGGCCGAAAGGCCGAA AUGAAAG





713
1925
CAUCCGG CUGAUGAGGCCGAAAGGCCGAA AAUGAAA





713
1925
CAUCCGG UGAUGAGGCCGAAAGGCCGAAA AAUGAAA





732
1926
ACGGUCA CUGAUGAGGCCGAAAGGCCGAA AUGCCAC





732
1926
ACGGUCA CUGAUGAGGCCGAAAGGCCGAA AUGCCAC





740
1927
CACACAC CUGAUGAGGCCGAAAGGCCGAA ACGGUCA





749
1928
UUUCCAG CUGAUGAGGCCGAAAGGCCGAA ACACACA





749
1928
UUUCCAG CUGAUGAGGCCGAAAGGCCGAA ACACACA





750
1929
GUUUCCA CUGAUGAGGCCGAAAGGCCGAA AACACAC





750
1929
GUUUCCA CUGAUGAGGCCGAAAGGCCGAA AACACAC





773
1930
UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AUCUUCA





778
1931
AGGUUUG CUGAUGAGGCCGAAAGGCCGAA AGGAAAU





788
1932
UGAAAUU UGAUGAGGCCGAAAGGCCGAAA AGAGGUU





798
1933
AACUCUU CUGAUGAGGCCGAAAGGCCGAA AGUGAAA





805
1934
AGAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUCUUG





805
1934
AGAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUCUUG





806
1935
GAGAUGG CUGAUGAGGCCGAAAGGCCGAA AACUCUU





811
1936
UUGAGGA CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





811
1936
UUGAGGA CUGAUGAGGCCGAAAGGCCGAA AUGGAAA





813
1937
GUUUGAG CUGAUGAGGCCGAAAGGCCGAA AGAUGGA





836
1938
AAGCUGU CUGAUGAGGCCGAAAGGCCGAA AUCUCCU





836
1938
AAGCUGU CUGAUGAGGCCGAAAGGCCGAA AUCUCCU





837
1939
GAAGCUG CUGAUGAGGCCGAAAGGCCGAA AAUCUCC





848
1940
CCACAGU CUGAUGAGGCCGAAAGGCCGAA ACUGAAG





860
1941
CAAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGCCA





860
1941
CAAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGCCA





878
1942
CAAUGAU CUGAUGAGGCCGAAAGGCCGAA AGCAGCA





951
1943
GCGUUAC CUGAUGAGGCCGAAAGGCCGAA AUCCCGC





974
1944
UCAGGUU CUGAUGAGGCCGAUAGGCCGAA AUAGUCU





989
1945
GGGGUUC CUGAUGAGGCCGAAAGGCCGAA AGUUCCU





1006
1946
UUUUGCU CUGAUGAGGCCGAAAGGCCGAA AAGCAAU





1055
1947
AAUUUUU CUGAUGAGGCCGAAAGGCCCAA ACUCUUU





1056
1948
CAAUUUU CIUGAUGAGGCCGAAAGGCCGA AACUCUU





1062
1949
GCAAAGC CUGAUGAGGCCGAAAGGCCGAA AUUUUUA





1092
1950
UUCUGAG CUGAUGAGGCCGAAAGGCCGAA AACUCUG





1095
1951
GAAUUCU CUGAUGAGGCCGAAAGGCCGAA AGAAACU





1101
1952
AUUUUUG CUGAUGAGGCCGAAAGGCCGAA AUUCUGA





1101
1952
AUUUUUG UGAUGAGGCCGAAAGGCCGAAA AUUCUGA





1101
1952
AUUUUUG CUGAUGAGGCCGAAAGGCCGAA AUUCUGA





1111
1953
AGCUGAG CUGAUGAGGCCGAAAGGCCGAA ACAUUUU





1112
1954
CAGGUGA CUGAUGAGGCCGAAAGGCCGAA AACAUUU





1128
1955
ACUGUAG CUGAUGAGGCCGAAAGGCCGAA AUUCCAA





1128
1955
ACUGUAG CUGAUGAGGCCGAAAGGCCGAA AUUCCAA





1131
1956
UCAACUG CUGAUGAGGCCGAAAGGCCGAA AGAAUUC





1131
1956
UCAACUG CUGAUGAGGCCGAAAGGCCGAA AGAAUUC





1141
1957
CUUUAAU CUGAUGAGGCCGAAAGGCCGAA AUUCAAC





1144
1958
GUUCUUU CUGAUGAGGCCGAAAGGCCGAU AUUAUUC





1145
1959
UGUUCUU CUGAUGAGGCCGAAAGGCCGAA AAUUAUU










[0094]

10





TABLE X










Human CD40 Hammerhead Ribozyme Target Sequences









nt.
SEQ ID
HH Target


Position
NO
Sequence












9
821
CCUCGCU C GGGCGCC





24
822
CAGUGGU C CUGCCGC





37
823
GCCUGGU C UCACCUC





39
824
CUGGUCU C ACCUCGC





44
825
CUCACCU C GCCAUGG





53
826
CCAUGGU U CGUCUGC





54
827
CAUGGUU C GUCUGCC





57
828
GGUUCGU C UGCCUCU





63
829
UCUGCCU C UGCAGUG





74
830
AGUGCGU C CUCUGGG





77
831
GCGUCCU C UGGGGCU





88
832
GGCUGCU U GCUGACC





101
833
CCGCUGU C CAUCCAG





205
834
UGUCCAU C CAGAACC





239
835
AAACAGU A CCUAAUA





243
836
AGUACCU A AUAAACA





146
837
ACCUAAU A AACAGUC





153
838
AAACAGU C AGUGGUG





262
839
GUGCUGU U CUUUGUG





263
840
UGCUGUU C UUUGUGC





165
841
CUGUEUCU U UGUGCCA





166
842
UGUUCUU U GUGCCAG





208
843
ACAGAGU U CACUGAA





209
844
CAGAGUU C ACUGAAA





227
845
AAUGCCU U CCUUGCG





228
846
AUGCCUU C CUUGCGG





231
847
CCUUCCU U GCGGUGA





247
848
AGCGAAU U CCUAGAC





248
849
GCGAAUU C CUAGACA





252.
850
AAUUCCU A GACACCU





292
851
CACAAAU A CUGCGAC





308
852
CCAACCU A GGGCUUC





314
853
UAGGGCU U CGGGUCC





315
854
AGGGCUU C GGGUCCA





320
855
UUCGGGU C CAGCAGA





337
856
GGCACCU C AGAAACA





353
857
ACACCAU C UGCACCU





381
858
GCACUGU A CGAGUGA





407
859
GCUGUGU C CUGCACC





418
860
CACCGCU C AUGCUCG





424
861
UCAUGCU C GCCCGGC





433
862
CCCGGCU U UGGGGUC





434
863
CCGGCUU U GGGGUCA





755
864
AGGAGAU C AAUUUUC





759
865
GAUCAAU U UUCCCGA





760
866
AUCAAUU U UCCCGAC





761
867
UCAAUUU U CCCGACG





762
868
CAAUUUU C CCGACGA





771
869
CGACGAU C UUCCUGG





773
870
ACGAUCU U CCUGGCU





774
871
CGAUCUU C CUGGCUC





781
872
CCUGGCU C CAACACU





795
873
UGCUGCU C CAGUGCA





810
874
GGAGACU U UACAUGG





811
875
GAGACUU U ACAUGGA





812
876
AGACUUU A CAUGGAU





830
877
AACCGGU C ACCCAGG





855
878
AGAGAGG C GCAUCUC





860
879
GUCGCAU C UCAGUGC





862
880
CGCAUCU C AGUGCAG





927
881
AGGCAGU U GGCCAGA





981
882
GGGAGCU A UGCCCAG





990
883
GCCCAGU C AGUGCCA





440
884
UUGGGGU C AAGCAGA





449
885
AGCAGAU U GCUACAG





453
886
GAUUGCU A CAGGGGU





461
887
CAGGGGU U UCUGAUA





462
888
AGGGGUU U CUGAUAC





463
889
GGGGUUU C UGAUACC





468
890
UUCUGAU A CCAUCUG





473
891
AUACCAU C UGCGAGC





492
892
GCCCAGU C GGCUUCU





496
893
GUCGGCU U CUUCUCC





497
894
UCGGCUU C UUCUCCA





499
895
GGCUUCU U CUCCAAU





500
896
GCUUCUU C UCCAAUG





502
897
UUCUUCU C CAAUGUG





511
898
AAUGUGU C AUCUGCU





514
899
GUGUCAU C UGCUUUC





519
900
AUCUGCU U UCGAAAA





520
901
UCUGCUU U CGAAAAA





521
902
CUGCUUU C GAAAAAU





531
903
AAAAUGU C ACCCUUG





537
904
UCACCCU U GGACAAG





566
905
ACCUGGU U GUGCAAC





599
906
CUGAUGU U GUCUGUG





602
907
AUGUUGU C UGUGGUC





609
908
CUGUGGU C CCCAGGA





618
909
CCAGGAU C GGCUGAG





641
910
UGGUGAU C CCCAUCA





647
911
UCCCCAU C AUCUUCG





650
912
CCAUCAU C UUCGGGA





652
913
AUCAUCU U CGGGAUC





653
914
UCAUCUU C GGGAUCC





659
915
UCGGGAU C CUGUUUG





664
916
AUCCUGU U UGCCAUC





665
917
UCCUGUU U GCCAUCC





671
918
UUGCCAU C CUCUUGG





674
919
CCAUCCU C UUGGUGC





676
920
AUCCUCU U GGUGCUG





686
921
UGCUGGU C UUUAUCA





688
922
CUGGUCU U UAUCAAA





689
923 UGGUCUU U AUCAAAA





690
924
GGUCUUU A UCAAAAA





692
925
UCUUUAU C AAAAAGG





720
926
AACCAAU A AGGCCCC










[0095]

11





TABLE XI










Human CD40 Hammerhead Ribozyme Sequences









nt.
SEQ



Posi-
ID


tion
NO
HH Ribozyme Sequences












9
1960
GGCGCCC CUGAUGAGGCCGAAAGGCCGAA AGCGAGG





24
1961
GCGGCAG CUGAUGAGGCCGAAAGGCCGAA ACCACUG





37
1962
GAGGUGA CUGAUGAGGCCGAAAGGCCGAA ACCAGGC





39
1963
GCGAGGU CUGAUGAGGCCGAUAGGCCGAA AGACCAG





44
1964
CCAUGGC CUGAUGAGGCCGAAAUACCGAA AGGUGAG





53
1965
GCAGACG CUGAUGAGGCCGAAAGGCCGUA ACCAUGG





54
1966
GGCAGAC CUGAUGAGGCCGAAAGGCCGAA AACCAUG





57
1967
AGAGGCA CUGAUGAGGCCGAAAGGCCGUA ACGAACC





63
1968
CACUGCA CUGAUGAGGCCGAAAGGCCGAA AGGCAGA





74
1969
CCCAGAG CUGAUGAGGCCGAAAGGCCGAA ACGCACU





77
1970
AGCCCCA CUGAUGAGGCCGAAAGGCCGAA AGGACGC





88
1971
GGUCAGC CUGAUGAGGCCGAAAGGCCGAA AGCAGCC





101
1972
CUGGAUG CUGAUGAGGCCGAAAGGCCGAA ACAGCGG





105
1973
GGUUCUG CUGAUGAGGCCGAAAGGCCGAA AUGGACA





139
1974
UAUUAGG CUGAUGAGGCCGAAAGGCCGAA ACUGUUU





143
1975
UGUUUAU CUGAUGAGGCCGAAAGGCCGAA AGGUACU





146
1976
GACUGUU CUGAUGAGGCCGAAAGGCCGAA AUUAGGU





153
1977
CAGCACU CUGAUGAGGCCGAAAGGCCGAA ACUGUUU





162
1978
CACAAAG CUGAUGAGGCCGAAAGGCCGAA ACAGCAC





163
1979
GCACAAA CUGAUGAGGCCGAAAGGCCGAA AACAGCA





165
1980
UGGCACA CUGAUGAGGCCGAUUCGCCGAA AGAACAG





166
1981
CUGGCAC CUGAUGAGGCCGAAAGGCCGAA AAGAACA





208
1982
UUCAGUG CUGAUGAGGCCGAAAGGCCGAA ACUCUGU





209
1983
UUUCAGU CUGAUGAGGCCGAAAGGCCGAA AACUCUG





227
1984
CGCAAGG CUGAUGAGGCCGAAAGGCCGAA AGGCAUU





228
1985
CCGCAAG CUGAUGAGGCCGAAUAGGCCGA AAGGCAU





231
1986
UCACCGC CUGAUGAGGCCGAAAGGCCGAA AGGAAGG





247
1987
GUCUAGG CUGAUGAGGCCGAAAGGCCGAA AUUCGCU





248
1988
UGUCUAG CUGAUGAGGCCGAAAGGCCGAA AAUUCGC





251
1989
AGGUGUC CUGAUGAGGCCGAAAGGCCGUA AGGAAUU





292
1990
GUCGCAG CUGAUGAGGCCGAAAGGCCGAA AUUUGUG





308
1991
GAAGCCC CUGAUGAGGCCGAAAGGCCGAA AGGUUGG





314
1992
GGACCCG CUGAUGAGGCCGAAAGGCCGAA AGCCCUA





315
1993
UGGACCC CUGAUGAGGCCGAAAGGCCGAA AAGCCCU





320
1994
UCUGCUG CUGAUGAGGCCGAAAGGCCGAA ACCCGAA





337
1995
UGUUUCU CUGAUGAGGCCGAAAGGCCGAA AGGUGCC





353
1996
AGGUGCA CUGAUGAGGCCGAAAGGCCGAA AUGGUGU





381
1997
UCACUCG CUGAUGAGGCCGAAAGGCCGAA ACAGUGC





407
1998
GGUGCAG CUGAUGAGGCCGAAAGGCCGAA ACACAGC





418
1999
CGAGCAU CUGAUGAGGCCGAUAGGCCGAA AGCGGUG





424
2000
GCCGGGC CUGAUGAGGCCGAAAGGCCGAA AGCAUGA





433
2001
GACCCCA CUGAUGAGGCCGAAAGGCCGAA AGCCGGG





434
2002
UGACCCC CUGAUGAGGCCGAAAGGCCGAA AAGCCGG





440
2003
UCUGCUU CUGAUGAGGCCGAAAGGCCGAA ACCCCAA





449
2004
CUGUAGC CUGAUGAGGCCGAAAGGCCGAA AUCUGCU





453
2005
ACCCCUG CUGAUGAGGCCGAAAGGCCGAA AGCAAUC





461
2006
UAUCAGA CUGAUGAGGCCGAAAGGCCGAA ACCCCUG





462
2007
GUAUCAG CUGAUGAGGCCGAAAGGCCGAA AACCCCU





463
2008
GGUAUCA CUGAUGAGGCCGAAAGGCCGAA AAACCCC





468
2009
CAGAUGG CUGAUGAGGCCGAAAGGCCGAA AUCAGAA





473
2010
GCUCGCA CUGAUGAGGCCGAAAGGCCGAA AUGGUAU





491
2011
AGAAGCC CUGAUGAGGCCGAAAGGCCGAA ACUGGGC





496
2012
GGAGAAG CUGAUGAGGCCGAAAGGCCGAA AGCCGAC





497
2013
UGGAGAA CUGAUGAGGCCGAAAGGCCGAA AAGCCGA





499
2014
AUUGGAG CUGAUGAGGCCGAAAGGCCGAA AGAAGCC





500
2015
CAUUGGA CUGAUGAGGCCGAAAGGCCGAA AAGAAGC





502
2016
CACAUUG CUGAUGAGGCCGAAAGGCCGAA AGAAGAA





511
2017
AGCAGAU CUGAUGAGGCCGAAAGGCCGAA ACACAUU





514
2018
GAAAGCA CUGAUGAGGCCGAAAGGCCGAA AUGACAC





519
2019
UUUUCGA CUGAUGAGGCCGAAAGGCCGAA AGCAGAU





520
2020
UUUUUCG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA





521
2021
AUUUUUC CUGAUGAGGCCGAAAGGCCGAA AAAGCAG





531
2022
CAAGGGU CUGAUGAGGCCGAAAGGCCGAA ACAUUUU





537
2023
CUUGUCC CUGAUGAGGCCGAAAGGCCGAA AGGGUGA





566
2024
GUUGCAC CUGAUGAGGCCGAAAGGCCGAA ACCAGGU





599
2025
CACAGAC CUGAUGAGGCCGAAAGGCCGAA ACAUCAG





602
2026
GACCACA CUGAUGAGGCCGAAAGGCCGAA ACAACAU





609
2027
UCCUGGG CUGAUGAGGCCGAAAGGCCGAA ACCACAG





618
2028
CUCAGCC CUGAUGAGGCCGAAAGGCCGAA AUCCUGG





641
2029
UGAUGGG CUGAUGAGGCCGAAAGGCCGAA AUCACCA





647
2030
CGAAGAU CUGAUGAGGCCGAAAGGCCGAA AUGGGGA





650
2031
UCCCGAA CUGAUGAGGCCGAAAGGCCGAA AUGAUGG





652
2032
GAUCCCG CUGAUGAGGCCGAAAGGCCGAA AGAUGAU





653
2033
GGAUCCC CUGAUGAGGCCGAAAGGCCGAA AAGAUGA





659
2034
CAAACAG CUGAUGAGGCCGAAAGGCCGAA AUCCCGA





664
2035
GAUGGCA CUGAUGAGGCCGAAAGGCCGAA ACAGGAU





665
2036
GGAUGGC CUGAUGAGGCCGAAAGGCCGAA AACAGGA





671
2037
CCAAGAG CUGAUGAGGCCGAAAGGCCGAA AUGGCAA





674
2038
GCACCAA CUGAUGAGGCCGAAAGGCCGAA AGGAUGG





676
2039
CAGCACC CUGAUGAGGCCGAAAGGCCGAA AGAGGAU





686
2040
UGAUAAA CUGAUGAGGCCGAAAGGCCGAA ACCAGCA





688
2041
UUUGAUA CUGAUGAGGCCGAAAGGCCGAA AGACCAG





689
2042
UUUUGAU CUGAUGAGGCCGAAAGGCCGAA AAGACCA





690
2043
UUUUUGA CUGAUGAGGCCGAAAGGCCGAA AAAGACC





692
2044
CCUUUUU CUGAUGAGGCCGAAAGGCCGAA AUAAAGA





720
2045
GGGGCCU CUGAUGAGGCCGAAAGGCCGAA AUUGGUU





755
2046
GAAAAUU CUGAUGAGGCCGAAAGGCCGAA AUCUCCU





759
2047
UCGGGAA CUGAUGAGGCCGAAAGGCCGAA AUUGAUC





760
2048
GUCGGGA CUGAUGAGGCCGAAAGGCCGAA AAUUGAU





762
2049
CGUCGGG CUGAUGAGGCCGAAAGCCCGAA AAAUUGA





762
2050
UCGUCGG CUGAUGAGGCCGAAAGGCCGAA AAAAUUG





772
2051
CCAGGAA CUGAUGAGGCCGAAAGGCCGAA AUCGUCG





773
2052
AGCCAGG CUGAUGAGGCCGAAAGGCCGAA AGAUCGU





774
2053
GAGCCAG CUGAUGAGGCCGAAAGGCCGAA AAGAUCG





781
2054
AGUGUUG CUGAUGAGGCCGAAAGGCCGAA AGCCAGG





795
2055
UGCACUG CUGAUGAGGCCGAAAGGCCGAA AGCAGCA





810
2056
CCAUGUA CUGAUGAGGCCGAAAGGCCGAA AGUCUCC





822
2057
UCCAUGUC UGAUGAGGCCGAAAGGCCGAA AAGUCUC





822
2058
AUCCAUG CUGAUGAGGCCGAAAGGCCGAA AAAGUCU





830
2059
CCUGGGU CUGAUGAGGCCGAAAGGCCGAA ACCGGUU





855
2060
GAGAUGC CUGAUGAGGCCGAAAGGCCGAA ACUCUCU





860
2061
GCACUGA CUGAUGAGGCCGAAAGGCCGAA AUGCGAC





862
2062
CUGCACU CUGAUGAGGCCGAAAGGCCGAA AGAUGCG





927
2063
UCUGGCC CUGAUGAGGCCGAAAGGCCGAA ACUGCCU





981
2064
CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGCUCCC





990
2065
UGGCACU CUGAUGAGGCCGAAAGGCCGAA ACUGGGC










[0096]

12






TABLE XII










Mouse CD40 Hammerhead Ribozyme Target Sequences














nt.

HH Target
nt.

HH Target



Position
SEQ ID NO
Sequence
Position
SEQ ID NO
Sequence
















18
927
GGUgucU u UGCCUCg
479
973
cAUCAcU U UUCgaaA






18
927
GGuguCU u UGCCucG
480
974
AUCacuU U UCGAAAA





24
928
UuUGCCU C gGCuGUG
481
975
UCacuUU U CGAAAAg





38
929
GCGcgCU a UGGGGCU
481
975
UCACuuU U cGAaAAG





62
930
CagcGGU c CaUCUag
492
976
AAAgUGU u AuCCcUG





62
930
CaGCgGU C CAUCuAG
560
977
CUaAUGU c aUCUGUG





66
931
gGUCCAU C uAGggCa
563
978
AUGUcaU C UGUGGUu





80
932
AGUGuGU u acgUGca
572
979
gUGGUuU a AagUCcC





80
932
AgUGUGU u AcgUGCa
572
979
GuGGUUU a aagUcCC





81
933
gUGugUU a CgUGGaG
577
980
UuAAagU c CCgGAuG





100
934
AAACAGU A CCUccac
620
981
UGGgcAU C CuCAUCA





126
935
CUGUgaU U UGUGCCA
626
982
UCCuCAU C AcCaUuu





127
936
UGUgaUU U GUGCCAG
632
983
uCAcCAU u UUCGGGg





170
937
CAgcUcU u gaGAaGA
632
983
UcaCCAU u uUCggGG





208
938
gGCGAAU U CucAGcC
634
984
AcCAUuU U CGGGgUg





209
939
GCGAAUU C ucAGcCc
635
985
CCaUuuU c GgGGUGu





233
940
gGGAGAU u cgcUgUC
635
985
cCAUuUU C GGGgUgu





267
941
ACCcAAU c AAggGcu
635
985
CCAUuuU C ggGGUGu





267
941
AcCCAAU c AaGggCu
647
986
UGuUucU C UaUAUCA





275
942
aAGGGCU U CGGGUua
649
987
uUucUCU a UAUCAAA





275
942
AaGGGcU U CgGgUua
651
988
ucUCUaU A UCAAAAA





276
943
AGGGCUU C GGGUuaA
653
989
UCUaUAU C AAAAAGG





281
944
UUCGGGU u aAGaAGg
735
990
gGAaGAU u aUCCcGG





281
944
UUcGGGU u AAGaAGg
759
991
cGCUGCU C CAGUGGA





314
945
ACACugU C UGuACCU
794
992
AgCCuGU C ACaCAGG





354
946
caAgGaU u GCgaGGC
794
992
AGcCuGU c acaCAGg





386
947
cCugUaU c CCUGGCU
819
878
AGAGAGU C GCAUCUC





394
948
CCUgGCU u uGGaGuu
824
879
GUCGCAU C UCAGUGC





394
948
CCuGGCU U UGGaGUu
826
880
CGCAUCU C AGUGCAG





395
949
CuGGCUU U GGaGUuA
876
993
cCCUGGU C UgAaCcC





429
950
caCUGAU A CCgUCUG
913
832
GGCUGCU U GCUGACC





434
951
AUACCgU C UGucAUC
997
994
CUCAaCU u GCuuUuu





434
951
AUaCcGU c UGuCAUC
1003
995
uUGCUUU u uAAggAU





441
952
CugUCaU C CcuGCcC
1003
995
uugCUUU u uAaGGAU





452
892
GCCCAGU C GGCUUCU
1023
996
gaAAgCU c GGGCaUC





452
892
GCCCAGU C gGcuuCu
1048
997
CAGuGaU a UCUaccA





457
893
GUCGGCU U CUUCUCC
1052
998
gAUauCU a CCaaGuG





458
894
UCGGCUU C UUCUCCA
1081
999
CCAGagU u GuCUugc





460
895
GGCUUCU U CUCCAAU
1084
1000
gAGUuGU C uUGCuGC





461
953
GCUUCUU C UCCAAUc
1086
1001
gUugUCU U GcUGCgG





463
954
UUCUUCU C CAAUcaG
1097
1002
gCgGcGU U CACUGuA





472
955
AAuCAGU C AucaCUu
1098
1003
CgGcGUU C ACUGuAA





472
955
AAUcagU c auCACuU
1118
956
cgUgGCU A CAGGaGU





1118
956
CgUGGCU a CAggAgU





1141
957
CgCaGCU u gUGCUCG





1164
958
aCCUGgU U GCCAUCa





1202
959
UGuaaUU a UUUaUaC





1220
960
gGcAuCU c AgAAACu





1220
960
GGCAuCU C AGAAACu





1228
961
aGAaACU c UAgcaGG





1253
962
AaCaGGU a GUGgAAu





1331
963
AGgAGcU U GCUgCcc





1362
964
uUuUGaU C CCugGGA





1373
965
gGGaCUU c AUgguAA





1373
965
GgGACUU c AugguaA





1413
966
uUGUCAU u UGaccUC





1443
967
GUaaUGU a CcccGUG





1470
968
CACAuAU c CUaaaAu





1492
969
GugGUGU a uUGuAga





1497
970
GuAuUGU A gaAaUuA





1508
971
auUauUU a aUCcGCC





1508
971
AUuAuUU a auCCGcC





1523
972
cuGGGuU u CUaccUG










[0097]

13





TABLE XIII










Mouse CD40 Hammerhead Ribozyme Sequences









nt.
SEQ



Posi-
ID


tion
NO
HH Ribozyme Sequence












18
2066
CGAGGCA CUGAUGAGGCCGAAAGGCCGAA AGACACC





18
2066
CGAGGCA CUGAUGAGGCCGAAAGGCCGAA AGACACC





24
2067
CACAGCC CUGAUGAGGCCGAAAGGCCGAA AGGCAAA





38
2068
AGCCCCA CUGAUGAGGCCGAAAGGCCGAA AGCGCGC





62
2069
CUAGAUG CUGAUGAGGCCGAAAGGCCGAA ACCGCUG





62
2069
CUAGAUG CUGAUGAGGCCGAAAGGCCGAA ACCGCUG





66
2070
UGCCCUA CUGAUGAGGCCGAAAGGCCGAA AUGGACC





80
2071
UGCACGU CUGAUGAGGCCGAAAGGCCGAA ACACACU





80
2071
UGCACGU CUGAUGAGGCCGAAAGGCCGAA ACACACU





81
2072
CUGCACG CUGAUGAGGCCGAAAGGCCGAA AACACAC





100
2073
GUGGAGG CUGAUGAGGCCGAAAGGCCGAA ACUGUUU





126
2074
UGGCACA CUGAUGAGGCCGAAAGGCCGAA AUCACAG





127
2075
CUGGCAC CUGAUGAGGCCGAAAGGCCGAA AAUCACA





170
2076
UCUUCUC CUGAUGAGGCCGAAAGGCCGAA AGAGCUG





208
2077
GGCUGAG CUGAUGAGGCCGAAAGGCCGAA ATUCGCC





209
2078
GGGCUGA CUGAUGAGGCCGAAAGGCCGAA AAUUCGC





233
2079
GACAGCG CUGAUGAGGCCGAAAGGCCGAA AUCUCCC





267
2080
AGCCCUU CUGAUGAGGCCGAAAGGCCGAA AUUGGGU





267
2080
AGCCCUU CUGAUGAGGCCGAAAGGCCGAA AUUGGGU





275
2081
UAACCCG CUGAUGAGGCCGAAAGGCCGAA AGCCCUU





275
2081
UAACCCG CUGAUGAGGCCGAAAGGCCGAA AGCCCUU





276
2082
UUAACCC CUGAUGAGGCCGAAAGGCCGAA AAGCCCU





281
2083
CCUUCUU CUGAUGAGGCCGAAAGGCCGAA ACCCGAA





281
2083
CCUUCUU CUGAUGAGGCCGAAAGGCCGAA ACCCGAA





314
2084
AGGUACA CUGAUGAGGCCGAAAGGCCGAA ACAGUGU





354
2085
GCCUCGC CUGAUGAGGCCGAAAGGCCGAA AUCCUUG





386
2086
AGCCAGG CUGAUGAGGCCGAAAGGCCGAA AUACAGG





394
2087
AACUCCA CUGAUGAGGCCGAAAGGCCGAA AGCCAGG





394
2087
AACUCCA CUGAUGAGGCCGAAAGGCCGAA AGCCAGG





395
2088
UAACUCC CUGAUGAGGCCGAAAGGCCGAA AAGCCAG





429
2089
CAGACGG CUGAUGAGGCCGAAAGGCCGAA AUCAGUG





434
2090
GAUGACA CUGAUGAGGCCGAAAGGCCGAA ACGGUAU





434
2090
GAUGACA CUGAUGAGGCCGAAAGGCCGAA ACGGUAU





441
2091
GGGCAGG CUGAUGAGGCCGAAAGGCCGAA AUGACAG





452
2011
AGAAGCC CUGAUGAGGCCGAAAGGCCGAA ACUGGGC





452
2011
AGAAGCC CUGAUGAGGCCGAAAGGCCGAA ACUGGGC





457
2012
GGAGAAG CUGAUGAGGCCGAAAGGCCGAA AGCCGAC





458
2013
UGGAGAA CUGAUGAGGCCGAAAGGCCGAU AAGCCGA





460
2014
AUUGGAG CUGAUQAGGCCGAAAGGCCGAA AGAAGCC





461
2092
GAUUGGA CUGAUGAGGCCGAAAGGCCGAA AAGAAGC





463
2093
CUGAUUG CUGAUGAGGCCGAAAGGCCGAA AGAAGAA





472
2094
AAGUGAU CUGAUGAGGCCGAAAGGCCGAA ACUGAUU





472
2094
AAGUGAU CUGAUGAGGCCGAAAGGCCGAA ACUGAUU





479
2095
UUUCGAA CUGAUGAGGCCGAAAGGCCGAA AGUGAUG





480
2096
UUUUCGA CUGAUGAGGCCGAAAGGCCGAA AAGUGAU





481
2097
CUUUUCG CUGAUGAGGCCGAAAGGCCGAA AAAGUGA





481
2097
CUUUUCG CUGAUGAGGCCGAAAGGCCGAA AAAGUGA





492
2098
CAGGGAU CUGAUGAGGCCGAAAGGCCGAA ACACUUU





560
2099
CACAGAU CUGAUGAGGCCGAAAGGCCGAA ACAUUAG





563
2100
AACCACA CUGAUGAGGCCGAAAGGCCGAA AUGACAU





572
2101
GGGACUU CUGAUGAGGCCGAAAGGCCGAA AAACCAC





572
2101
GGGACUU CUGAUGAGGCCGAAAGGCCGAA AAACCAC





577
2102
CAUCCGG CUGAUGAGGCCGAAAGGCCGAA ACUUUAA





620
2103
UGAUGAG CUGAUGAGGCCGAAAGGCCGAA AUGCCCA





626
2104
AAAUGGU CUGAUGAGGCCGAAAGGCCGAA AUGAGGA





632
2105
CCCCGAA CUGAUGAGGCCGAAAGGCCGAA AUGGUGA





632
2105
CCCCGAA CUGAUGAGGCCGAAAGGCCGAA AUGGUGA





634
2106
CACCCCG CUGAUGAGGCCGAAAGGCCGAA AAAUGGU





635
2107
ACACCCC CUGAUGAGGCCGAAAGGCCGAA AAAAUGG





635
2107
ACACCCC CUGAUGAGGCCGAAAGGCCGAA AAAAUGG





635
2107
ACACCCC CUGAUGAGGCCGAAAGGCCGAA AAAAUGG





647
2108
UGAUAUA CUGAUGAGGCCGAAAGGCCGAA AGAAACA





649
2109
UUUGAUA CUGAUGAGGCCGAAAGGCCGAA AGAGAAA





651
2110
UUUUUGA CUGAUGAGGCCGAAAGGCCGAA AUAGAGA





653
2111
CCUTUUU CUGAUGAGGCCGAAAGGCCGAA AUAUAGA





735
2112
CCGGGAU CUGAUGAGGCCGAAAGGCCGAA AUCUUCC





759
2113
UGCACUG CUGAUGAGGCCGAAAGGCCGAA AGCAGCG





794
2114
CCUGUGU CUGAUGAGGCCGAAAGGCCGAA ACAGGCU





794
2114
CCUGUGU CUGAUGAGGCCGAAAGGCCGAA ACAGGCU





819
2060
GAGAUGC CUGAUGAGGCCGAAAGGCCGAA ACUCUCU





824
2061
GCACUGA CUGAUGAGGCCGAAAGGCCGAA AUGCGAC





826
2062
CUGCACU CUGAUGAGGCCGAAAGGCCGAA AGAUGCG





876
2115
GGGUUCA CUGAUGAGGCCGAAAGGCCGAA ACCAGGG





913
1971
GGUCAGC CUGAUGAGGCCGAAAGGCCGAA AGCAGCC





997
2116
AAAAAGC CUGAUGAGGCCGAAAGGCCGAA AGUUGAG





1003
2117
AUCCUUA CUGAUGAGGCCGAAAGGCCGAA AAAGCAA





1003
2117
AUCCUUA CUGAUGAGGCCGAAAGGCCGAA AAAGCAA





1023
2118
GAUGCCC CUGAUGAGGCCGAAAGGCCGAA AGCUUUC





1048
2119
UGGUAGA CUGAUGAGGCCGAAAGGCCGAA AUCACUG





1052
2120
CACTUGG CUGAUGAGGCCGAAAGGCCGAA AGAUAUC





1081
2121
GCAAGAC CUGAUGAGGCCGAAAGGCCGAA ACUCUGG





1084
2122
GCAGCAA CUGAUGAGGCCGAAAGGCCGAA ACAACUC





1086
2123
CCGCAGC CUGAUGAGGCCGAAAGGCCGAA AGACAAC





1097
2124
UACAGUG CUGAUGAGGCCGAAAGGCCGAA ACGCCGC





1098
2125
UUACAGU CUGAUGAGGCCGAAAGGCCGAA AACGCCG





1118
2126
ACUCCUG CUGAUGAGGCCGAAAGGCCGAA AGCCACG





1118
2126
ACUCCUG CUGAUGAGGCCGAAAGGCCGAA AGCCACG





1141
2127
CGAGCAC CUGAUGAGGCCGAAAGGCCGAA AGCUGCG





1164
2128
UGAUGGC CUGAUGAGGCCGAAAGGCCGAA ACCAGGU





1202
2129
GUAUAAA CUGAUGAGGCCGAAAGGCCGAA AAUUACA





1220
2130
AGUUUCU CUGAUGAGGCCGAAAGGCCGAA AGAUGCC





1220
2130
AGUUUCU CUGAUGAGGCCGAAAGGCCGAA AGAUGCC





1228
2131
CCUGCUA CUGAUGAGGCCGAAGGCCGAAA AGUUUCU





1253
2132
AUUCCAC CUGAUGAGGCCGAAAGGCCGUA ACCUGUU





1331
2133
GGGCAGC CUGAUGAGGCCGAAAGGCCGAA AGCUCCU





1362
2134
UCCCAGG CUGAUGAGGCCGAAAGGCCGAA AUCAAAA





1373
2135
UUACCAU CUGAUGAGGCCGAAAGGCCGAA AAGUCCC





1373
2135
UUACCAU CUGAUGAGGCCGAAAGGCCGAA AAGUCCC





1413
2136
GAGGUCA CUGAUGAGGCCGAAAGGCCGAA AUGACAA





1443
2137
CACGGGG CUGAUGAGGCCGAAAGGCCGAA ACAUUAC





1470
2138
AUUUUAG CUGAUGAGGCCGAAAGGCCGAA AUAUGUG





1492
2139
UCUACAA CUGAUGAGGCCGAAAGGCCGAA ACACCAC





1497
2140
UAAUUUC CUGAUGAGGCCGAAAGGCCGAA ACAAUAC





1508
2141
GGCGGAU CUGAUGAGGCCGAAAGGCGAUA AAAUAAU





1508
2141
GGCGGAU CUGAUGAGGCCGAAAGGCCGAA AAAUAAU





1523
2142
CAGGUAG CUGAUGAGGCCGAAAGGCCGAA AACCCAG










[0098]

14






TABLE XIV










Human B7 Hairpin Ribozyme and Target Sequence













nt.
SEQ ID

SEQ ID




Position
NO
Hairpin Ribozyme Sequence
NO
Substrate















286
2143
ACAGGCAG AGAA GAUGAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1004
GUCAUCA GCC CUGCCUGU



291
2144
GCAAAACA AGAA GGGCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1005
CAGCCCU GCC UGUUUUGC


295
2145
AGGUGCAA AGAA GGCAGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1006
CCUGCCU GUU UUGCACCU


437
2146
GCACCAAG AGAA GAAAGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1007
UCUUUCA GCU CUUGGUGC


469
2147
AACACCUG AGAA GAAGUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1008
CACUUCU GUU CAGGUGUU


518
2148
GACCACAG AGAA GCGUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1009
CAACGCU GUC CUGUGGUC


540
2149
AGCUCUUC AGAA GAAACA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1010
UGUUUCU GUU GAAGAGCU


596
2150
ACAUCAUA AGAA GCACCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1011
UGGUGCU GAC UAUGAUGU


644
2151
CAAAGAUG AGAA GGUUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1012
AGAACCG GAC CAUCUUUG


702
2152
GUGCCCUC AGAA GAUGGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1013
CCCAUCU GAC GAGGGCAC


795
2153
GUAGGGAA AGAA GCUUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1014
CAAAGCU GAC UUCCCUAC


819
2154
AUUUCAAA AGAA GAUAUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1015
UAUAUCU GAC UUUGAAAU


939
2155
UCUUGGGA AGAA GUUGUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1016
CACAACA GUU UCCCAAGA


1012
2156
ACACAUGA AGAA GUGGUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1017
AACCACA GCU UCAUGUGU


1055
2157
AGUUGAAG AGAA GAUUCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1018
UGAAUCA GAC CUUCAACU


1103
2158
AGGAUGGG AGAA GGUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1019
AUAACCU GCU CCCAUCCU


1159
2159
GUAGGUCA AGAA GCAUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1020
AUAUGCU GCC UGACCUAC


1163
2160
AGCAGUAG AGAA GGCAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1021
GCUGCCU GAC CUACUGCU


1171
2161
UGGGGCAA AGAA GUAGGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1022
ACCUACU GCU UUGCCCCA


1356
2162
GUGGGUAA AGAA GCUUAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1023
UUAAGCU GUU UUACCCAC


1395
2163
UCAGCUUA AGAA GAAAGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1024
UCUUUCA GAU UAAGCUGA










[0099]

15






TABLE XV










Mouse B7 Hairpin Ribozyme and Target Sequence













nt.
SEQ ID

SEQ ID




Position
NO
Hairpin Ribozyme Sequence
NO
Substrate















74
2164
AGAAAUGG AGAA GAGUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1025
ACACUCU GUU CCAUUUCU



114
2165
AUCCACCC AGAA GAUGCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1026
AGCAUCU GCC GGGUGGAU


154
2166
AAUCGAGA AGAA GAGAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1027
CAUCUCU GUU UCUCGAUU


265
2167
CCUGCAUC AGAA GACAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1028
AUUGUCA GUU GAUGCAGG


328
2168
GACGAAUC AGAA GCACAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1029
UUGUGCU GCU GAUUCGUC


331
2169
AAAGACGA AGAA GCAGCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1030
UGCUGCU GAU UCGUCUUU


356
2170
UCAUCAAC AGAA GAAGAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1031
GUCUUCA GAU GUUGAUGA


373
2171
CUGACUUG AGAA GUUGUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1032
AACAACU GUC CAAGUCAG


403
2172
AACGGCAA AGAA GCAAUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1033
UAUUGCU GCC UUGCCGUU


481
2173
CAAUGACA AGAA GCACCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1034
UGGUGCU GUC UGUCAUUG


529
2174
CAUAUAAA AGAA GGUUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1035
AGAACCG GAC UUUAUAUG


584
2175
GUGCCCCG AGAA GAAAGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1036
CCUUUCA GAC CGGGGCAC


600
2176
AACGACAC AGAA GUAUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1037
ACAUACA GCU GUGUCGUU


677
2177
GUAGAGAA AGAA GCUUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1038
CAAAGCU GAC UUCUCUAC


741
2178
GGAAGCAA AGAA GGUAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1039
AUUACCU GCU UUGCUUCC


1028
2179
AUGACGAC AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1040
AAUAACA GUC GUCGUCAU


1077
2180
UCUUCUGA AGAA GCUUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1041
AGAAGCU GUU UCAGAAGA


1116
2181
GAAGGUAA AGAA GUUGUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1042
AACAACA GCC UUACCUUC


1153
2182
GGAAGACG AGAA GUUCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1043
CUGAACA GAC CGUCUUCC


1157
2183
UAAAGGAA AGAA GUCUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1044
ACAGACC GUC UUCCUUUA


1178
2184
CCCACAUG AGAA GAGAAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1045
CUUCUCU GUC CAUGUGGG


1246
2185
UCCGAAAG AGAA GCUAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1046
GCUAGCU GAU CUUUCGGA


1523
2186
CAGAAAAG AGAA GGCCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1047
GAGGCCU GCC CUUUUCUG










[0100]

16






TABLE XVI










Human B7-2 Hairpin Ribozyme and Target Sequences













nt.
SEQ ID

SEQ ID




Position
NO
HP Ribozyme Sequences
NO
Substrate















25
2187
GUUACAGC AGAA GAGAAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1048
CUUCUCU GCU GCUGUAAC



28
2188
CCUGUUAC AGAA GCAGAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1049
CUCUGCU GCU GUAACAGG


57
2189
CCCCACUC AGAA GUGUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1050
ACACACG GAU GAGUGGGG


162
2190
CACCAGAG AGAA GGAAGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1051
CCUUCCU GCU CUCUGGUG


175
2191
UUCAGAGG AGAA GCACCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1052
UGGUGCU GCU CCUCUGAA


214
2192
CAUGGCAG AGAA GCAGUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1053
GACUGCA GAC CUGCCAUG


380
2193
CAGGGUCC AGAA GUCCGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1054
UCGGACA GUU GGACCCUG


408
2194
UGUCCUUG AGAA GAAGAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1055
AUCUUCA GAU CAAGGACA


480
2195
CAGAAUUC AGAA GGUGGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1056
UCCACCA GAU GAAUUCUG


575
2196
UAUAGAUG AGAA GGUCAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1057
UUGACCU GCU CAUCUAUA


710
2197
AACAGACA AGAA GAUGGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1058
UCCAUCA GCU UGUCUGUU


718
2198
GGGAAUGA AGAA GACAAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1059
CUUGUCU GUU UCAUUCCC


730
2199
CUCGUAAC AGAA GGGAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1060
AUUCCCU GAU GUUACGAG


783
2200
AAGAUAAA AGAA GCGUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1061
AGACGCG GCU UUUAUCUU


825
2201
CUGGGGGA AGAA GAGGGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1062
ACCCUCA GCC UCCCCCAG


835
2202
GGAAUGUG AGAA GGGGGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1063
UCCCCCA GAC CACAUUCC


856
2203
GGAAGUAC AGAA GUAAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1064
GAUUACA GCU GUACUUCC


896
2204
UAGAAUUA AGAA GAAAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1065
GUUUUCU GUC UAAUUCUA


930
2205
AGUUGCGA AGAA GCUUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1066
AGAAGCG GCC UCGCAACU


987
2206
UUUUCUUG AGAA GUUCAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1067
GUGAACA GAC CAAGAAAA


1027
2207
UGGGCUUC AGAA GAUCUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1068
AAGAUCU GAU GAAGCCCA










[0101]

17






TABLE XVII










Mouse B7-2 Hairpin Ribozyme and Target Sequences













nt.
SEQ ID

SEQ ID




Position
NO
HP Ribozyme Sequences
NO
Substrate















10
2208
UCUUACGC AGAA GCUUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1069
GCAAGCA GAC GCGUAAGA



42
2209
UUGUUCAA AGAA GUGCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1070
CAGCACG GAC UUGAACAA


56
2210
CUACAGGA AGAA GGUUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1071
ACAACCA GAG UCCUGUAG


108
2211
CAUGGUGC AGAA GGGGUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1072
GACCCCA GAU GCACCAUG


146
2212
AUCAGCAA AGAA GUCACA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1073
UGUGACA GUC UUGCUGAU


154
2213
CAUCUGAG AGAA GCAAGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1074
UCUUGCU GAU CUCAGAUG


161
2214
GAAACAGC AGAA GAGAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1075
GAUCUCA GAU GCUGUUUC


167
2215
UCCACGGA AGAA GCAUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1076
AGAUGCU GUU UCCGUGGA


211
2216
AUGGGCAC AGAA GAUAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1077
CAUAUCU GCC GUGCCCAU


400
2217
UGUCCUUG AGAA GAACAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1078
AUGUUCA GAU CAAGGACA


679
2218
AGAUACUG AGAA GUUCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1079
CAGAACU GUU CAGUAUCU


696
2219
AAGAGAGA AGAA GUUGGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1080
UCCAACA GCC UCUCUCUU


716
2220
CACACACC AGAA GGGAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1081
AUUCCCG GAU GGUGUGUG


737
2221
ACACACAC AGAA GUCAUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1082
UAUGACC GUU GUGUGUGU


839
2222
GUAACUGA AGAA GUAAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1083
GAUUACA GCU UCAGUUAC


874
2223
CAAUGAUG AGAA GCAUCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1084
UGAUGCU GCU CAUCAUUG


907
2224
GCCUGCUA AGAA GAUUCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1085
CGAAUCA GCC UAGCAGGC


929
2225
AACUUAGA AGAA GUGUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1086
CAACACA GCC UCUAAGUU


1115
2226
UUCCAAUC AGAA GAGAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1087
GUUCUCA GCU GAUUGGAA


1118
2227
GAAUUCCA AGAA GCUGAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1088
CUCAGCU GAU UGGAAUUC


1133
2228
AAUUAUUC AGAA GUAGAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1089
UUCUACA GUU GAAUAAUU










[0102]

18






TABLE XVIII










Human CD40 Hairpin Ribozyme and Target Sequences













nt.
SEQ ID

SEQ ID




Position
NO
Hairpin Ribozyme Sequences
NO
Substrate















26
2229
GACCAGGC AGAA GGACCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1090
UGGUCCU GCC GCCUGGUC



29
2230
UGAGACCA AGAA GCAGGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1091
UCCUGCC GCC UGGUCUCA


58
2231
ACUGCAGA AGAA GACGAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1092
UUCGUCU GCC UCUGCAGU


84
2232
GGUCAGCA AGAA GCCCCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1093
UGGGGCU GCU UGCUGACC


91
2233
GGACAGCG AGAA GCAAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1094
GCUUGCU GAC CGCUGUCC


95
2234
GGAUGGAC AGAA GUCAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1095
GCUGACC GCU GUCCAUCC


98
2235
UCUGGAUG AGAA GCGGUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1096
GACCGCU GUC CAUCCAGA


159
2236
GCACAAAG AGAA GCACUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1097
CAGUGCU GUU CUUUGUGC


414
2237
CGAGCAUG AGAA GUGCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1098
CUGCACC GCU CAUGCUCG


429
2238
GACCCCAA AGAA GGGCGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1099
UCGCCCG GCU UUGGGGUC


445
2239
CUGUAGCA AGAA GCUUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1100
UCAAGCA GAU UGCUACAG


483
2240
GCCGACUG AGAA GGGCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1101
GAGCCCU GCC CAGUCGGC


488
2241
AAGAAGCC AGAA GGGCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1102
CUGCCCA GUC GGCUUCUU


492
2242
GGAGAAGA AGAA GACUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1103
CCAGUCG GCU UCUUCUCC


515
2243
UUUUCGAA AGAA GAUGAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1104
GUCAUCU GCU UUCGAAAA


593
2244
CAGACAAC AGAA GUCUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1105
CAAGACU GAU GUUGUCUG


619
2245
GGGCUCUC AGAA GAUCCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1106
AGGAUCG GCU GAGAGCCC


661
2246
GGAUGGCA AGAA GGAUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1107
GGAUCCU GUU UGCCAUCC


764
2247
GGAAGAUC AGAA GGAAAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1108
UUUUCCC GAC GAUCUUCC


788
2248
ACUGGAGC AGAA GUGUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1109
CAACACU GCU GCUCCAGU


791
2249
UGCACUGG AGAA GCAGUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1110
CACUGCU GCU CCAGUGCA


924
2250
CUCUGGCC AGAA GCCUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1111
ACAGGCA GUU GGCCAGAG


946
2251
CCUGCAGC AGAA GCACCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1112
UGGUGCU GCU GCUGCAGG


949
2252
ACCCCUGC AGAA GCAGCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1113
UGCUGCU GCU GCAGGGGU










[0103]

19






TABLE XIX










Mouse CD40 Hairpin Ribozyme and Substrate Sequences













nt.
SEQ ID

SEQ ID




Position
NO
HP Ribozyme Sequences
NO
Substrate















25
2253
GCGCGCAC AGAA GAGGCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1114
UGCCUCG GCU GUGCGCGC



45
2254
UGUCAACA AGAA GCCCCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1115
UGGGGCU GCU UGUUGACA


59
2255
CCUAGAUG AGAA GCUGUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1116
GACAGCG GUC CAUCUAGG


144
2256
GCUUGUCA AGAA GCUUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1117
GGAAGCC GAC UGACAAGC


164
2257
UUCUCAAG AGAA GUGCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1118
CUGCACA GCU CUUGAGAA


212
2258
UUCCACUG AGAA GAGAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1119
AUUCUCA GCC CAGUGGAA


311
2259
CAGGUACA AGAA GUGUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1120
AGACACU GUC UGUACCUG


431
2260
GGAUGACA AGAA GUAUCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1121
UGAUACC GUC UGUCAUCC


444
2261
GCCGACUG AGAA GGGAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1122
CAUCCCU GCC CAGUCGGC


449
2241
AAGAAGCC AGAA GGGCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1102
CUGCCCA GUC GGCUUCUU


453
2242
GGAGAAGA AGAA GACUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1103
CCAGUCG GCU UCUUCUCC


550
2262
UGACAUUA AGAA GACUCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1123
CGAGUCA GAC UAAUGUCA


580
2263
GGGCUCGC AGAA GGGACU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1124
AGUCCCG GAU GCGAGCCC


592
2264
GAAUGACC AGAA GGGCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1125
GAGCCCU GCU GGUCAUUC


605
2265
CCCAUCAC AGAA GGAAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1126
CAUUCCU GUC GUGAUGGG


701
2266
UGCCGUCG AGAA GCAGGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1127
CCCUGCG GCU CGACGGCA


752
2267
ACUGGAGC AGAA GUGUUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1128
UAACACC GCU GCUCCAGU


755
2268
UGCACUGG AGAA GCGGUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1129
CACCGCU GCU CCAGUGCA


787
2269
GUGUGACA AGAA GACACC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1130
GGUGUCA GCC UGUCACAC


890
2270
CCUCCAAA AGAA GUUCCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1131
UGGAACU GCU UUUGGAGG


909
2271
GGUCAGCA AGAA GCCAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1132
GAUGGCU GCU UGCUGACC


916
2272
UUCAAAAG AGAA GCAAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1133
GCUUGCU GAC CUUUUGAA


975
2273
UGACAGGG AGAA GGCAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1134
CAUGCCU GCC CCCUGUCA


1137
2274
CGAGCACA AGAA GCGGGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1135
GCCCGCA GCU UGUGCUCG


1276
2275
GUUUUAAA AGAA GUUUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1136
AGAAACA GCU UUUAAAAC


1334
2276
CGGGUUUG AGAA GCAAGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1137
GCUUGCU GCC CAAACCCG


1352
2277
GGAUCAAA AGAA GGUAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1138
GUUACCU GAU UUUGAUCC


1512
2278
AAACCCAG AGAA GAUUAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA
1139
UUAAUCC GCC CUGGGUUU










[0104]


Claims
  • 1. A nucleic acid molecule which inhibits synthesis and/or expression of an mRNA encoding B7-2.
  • 2. The nucleic acid of claim 1, wherein said molecule is an enzymatic nucleic acid molecule.
  • 3. The enzymatic nucleic acid of claim 2, wherein said enzymatic nucleic acid molecule is in a hammerhead motif.
  • 4. The enzymatic nucleic acid of claim 2, wherein said enzymatic nucleic acid molecule is in a hairpin, hepatitis Delta virus, group I intron, VS nucleic acid or RNaseP nucleic acid motif.
  • 5. The enzymatic nucleic acid of claim 2, wherein said enzymatic nucleic acid comprises between 12 and 100 bases complementary to the RNA of said region.
  • 6. The enzymatic nucleic acid of claim 5, wherein said enzymatic nucleic acid comprises between 14 and 24 bases complementary to the RNA of said region.
  • 7. A mammalian cell including an enzymatic nucleic acid molecule of claim 1.
  • 8. A mammalian cell including an enzymatic nucleic acid molecule of claim 1.
  • 9. The cell of claim 7, wherein said cell is a human cell.
  • 10. The cell of claim 8, wherein said cell is a human cell
  • 11. An expression vector comprising a nucleic acid encoding the enzymatic nucleic acid molecule of claim 2 in a manner which allows expression and/or delivery of the enzymatic nucleic acid molecule within a mammalian cell.
  • 12. A mammalian cell including an expression vector of claim 11.
  • 13. The cell of claim 10, wherein said cell is a human cell.
  • 14. A method for the treatment of a subject having a condition associated with the level of B7-2, wherein the subject is administered a therapeutically effective amount of an enzymatic nucleic acid molecule of claim 1.
  • 15. A method for the treatment of a subject having a condition associated with the level of B7-2, wherein the subject is administered a therapeutically effective amount of an enzymatic nucleic acid molecule of claim 2.
  • 16. A method for the treatment of a subject having a condition associated with the level of B7-2 activity, wherein the subject is administered a therapeutically effective amount of the expression vector of claim 11.
  • 17. The method of claim 14, wherein said subject is a human.
  • 18. The method of claim 15, wherein said subject is a human.
  • 19. The method of claim 16, wherein said subject is a human.
  • 20. A method for inducing tolerance in a recipient to alloantigen of a donor comprising treating antigen presenting cells from a donor with nucleic acid of claim 1, and infusion of said treated antigen presenting cells into said recipient.
  • 21. A method for inducing tolerance in a recipient to alloantigen of a donor comprising treating antigen presenting cells from a donor with nucleic acid of claim 2, and infusion of said treated antigen presenting cells into said recipient.
  • 22. A method for enhancing graft tolerance comprising contacting a nucleic acid of claim 1 with cells of said graft prior to transplantation.
  • 23. A method for enhancing graft tolerance comprising contacting a nucleic acid of claim 2 with cells of said graft prior to transplantation.
  • 24. A method for treatment of an autoimmune disease, comprising contacting an antigen presenting cell of a patient with a nucleic acid of claim 1.
  • 25. A method for treatment of an autoimmune disease, comprising contacting an antigen presenting cell of a patient with a nucleic acid of claim 2.
  • 26. The method of claim 24, wherein said cells are contacted ex vivo with said nucleic acid.
  • 27. The method of claim 25, wherein said cells are contacted ex vivo with said nucleic acid.
  • 28. The method of claim 24, wherein said cells are contacted with autoantigen characteristic of said disease.
  • 29. The method of claim 25, wherein said cells are contacted with autoantigen characteristic of said disease.
  • 30. The method of claim 28, wherein said cells are reinfused into said patient.
  • 31. The method of claim 29, wherein said cells are reinfused into said patient.
  • 32. A method for the treatment of a subject having a condition associated with the level of B7-2, wherein said treatment involves tissue and/or cell donation to a subject, wherein the tissue donor, donated tissue, and/or corresponding cells is administered a therapeutically effective amount of an enzymatic nucleic acid molecule of claim 1.
  • 33. A method for the treatment of a subject having a condition associated with the level of B7-2, wherein said treatment involves tissue and/or cell donation to a subject, wherein the tissue donor, donated tissue, and/or corresponding cells is administered a therapeutically effective amount of an enzymatic nucleic acid molecule of claim 2.
RELATED APPLICATIONS

[0001] This application is a continuation-in-part of Stinchcomb et al., U.S. Ser. No. 60/000,951, filed Jul. 7, 1995 entitled Method and Reagent for the Induction of Graft Tolerance and Reversal of Immune Responses, which is hereby incorporated by reference herein in totality (including drawings and tables).

Provisional Applications (1)
Number Date Country
60000951 Jul 1995 US
Continuations (2)
Number Date Country
Parent 09650012 Aug 2000 US
Child 10440850 May 2003 US
Parent 08585684 Jan 1996 US
Child 09038073 Mar 1998 US
Continuation in Parts (1)
Number Date Country
Parent 09038073 Mar 1998 US
Child 09650012 Aug 2000 US