The invention relates to a method and system for adjusting the pitch of the light spots used to read macro-cell data of an information carrier.
The invention may be used in the field of optical data storage.
The use of optical storage is nowadays widespread for content distribution, for example in storage systems based on the DVD (Digital Versatile Disk) standards. Optical storage has a big advantage over hard-disk and solid-state storage in that information carriers are easy and cheap to duplicate.
However, due to the large amount of moving parts in the drives, known applications using this type of storage are not robust to shocks when performing read operations, considering the required stability of said moving parts during such operations. As a consequence, optical storage cannot easily be used in applications which are subject to shocks, such as in portable devices.
New optical storage solutions have thus been developed. These solutions combine the advantages of optical storage in that a cheap and removable information carrier is used, and the advantages of solid-state storage is that the information carrier is still and that its reading requires a limited number of moving elements.
A system aiming at reading data stored on an information carrier is known. The information carrier is intended to store binary data organized according to an array, as in a data matrix. If the information carrier is intended to be read in transmission, the states of binary data stored on the information carrier are represented by transparent areas and non-transparent areas (i.e. light-absorbing). Alternatively, if the information carrier is intended to be read in reflection, the states of binary data stored on the information carrier are represented by non-reflective areas (i.e. light-absorbing) and reflective areas. The areas are marked in a material such as glass, plastic or a material having magnetic properties.
In basic terms, the known system comprises:
In a first embodiment depicted in
The optical element 102 corresponds to a two-dimensional array of micro-lenses to the input of which the coherent input light beam 104 is applied. The array of micro-lenses 102 is placed parallel and distant from the information carrier 101 so that light spots are focussed on the information carrier. The numerical aperture and quality of the micro-lenses determines the size of the light spots. For example, a two-dimensional array of micro-lenses 102 having a numerical aperture which equals 0.3 can be used. The input light beam 104 can be realized by a waveguide (not represented) for expanding an input laser beam, or by a two-dimensional array of coupled micro lasers.
The light spots are applied on transparent or non-transparent areas of the information carrier 101. If a light spot is applied on a non-transparent area, no output light beam is generated in response by the information carrier. If a light spot is applied on a transparent area, an output light beam is generated in response by the information carrier, said output light beam being detected by the detector 105. The detector 105 is thus used for detecting the binary value of the data of the area to which the optical spot is applied.
The detector 105 is advantageously made of an array of CMOS or CCD pixels. For example, one pixel of the detector is placed opposite an elementary data area containing one data (i.e. one bit) of the information carrier. In that case, one pixel of the detector is intended to detect one data of the information carrier.
Advantageously, an array of micro-lenses (not represented) is placed between the information carrier 101 and the detector 105 for focusing the output light beams generated by the information carrier on the detector, for improving the detection of the data.
In a second embodiment depicted in
The optical element 202 corresponds to a two-dimensional array of apertures to the input of which the coherent input light beam 204 is applied. The apertures correspond for example to circular holes having a diameter of 1 μm or much smaller. The input light beam 204 can be realized by a waveguide (not represented) for expanding an input laser beam, or by a two-dimensional array of coupled micro lasers.
The light spots are applied to transparent or non-transparent areas of the information carrier 201. If a light spot is applied to a non-transparent area, no output light beam is generated in response by the information carrier. If a light spot is applied to a transparent area, an output light beam is generated in response by the information carrier, said output light beam being detected by the detector 205. Similarly as the first embodiment depicted in
The detector 205 is advantageously made of an array of CMOS and CCD pixels. For example, one pixel of the detector is placed opposite an elementary data area containing a data of the information carrier. In that case, one pixel of the detector is intended to detect one data of the information carrier.
Advantageously, an array of micro-lenses (not represented) is placed between the information carrier 201 and the detector 205 for focusing the output light beams generated by the information carrier on the detector, improving the detection of the data.
The array of light spots 203 is generated by the array of apertures 202 in exploiting the Talbot effect which is a diffraction phenomenon working as follows. When a coherent light beams, such as the input light beam 204, is applied to an object having a periodic diffractive structure (thus forming light emitters), such as the array of apertures 202, the diffracted lights recombine into identical images of the emitters at a plane located at a predictable distance z0 from the diffracting structure. This distance z0 is known as the Talbot distance. The Talbot distance z0 is given by the relation z0=2 .n.d2/λ, where d is the periodic spacing of the light emitters, λ is the wavelength of the input light beam, and n is the refractive index of the propagation space. More generally, re-imaging takes place at other distances z(m) spaced further from the emitters and which are a multiple of the Talbot distance z such that z(m)=2 .n.m.d2/λ, where m is an integer. Such a re-imaging also takes place for m=/2+an integer, but here the image is shifted over half a period. The re-imaging also takes place for m=¼+an integer, and for m=¾+an integer, but the image has a doubled frequency which means that the period of the light spots is halved with respect to that of the array of apertures.
Exploiting the Talbot effect allows to generate an array of light spots of high quality at a relatively large distance from the array of apertures 202 (a few hundreds of μm, expressed by z(m)), without the need for optical lenses. This allows to insert for example a cover layer between the array of aperture 202 and the information carrier 201 to prevent the latter from contamination (e.g. dust, finger prints . . . ). Moreover, this facilitates the implementation and allows to increase in a cost-effective manner, compared to the use of an array of micro-lenses, the density of light spots which are applied to the information carrier.
In this embodiment, one pixel of the detector is intended to detect a set of data, each elementary data among this set of data being successively read by a single light spot generated either by the array of micro-lenses 102 depicted in
Data stored on the information carrier 401 have two states indicated either by a black area (i.e. non-transparent) or white area (i.e. transparent). For example, a black area corresponds to a “0” binary state while a white area corresponds to a “1” binary state.
When a pixel of the detector 405 is illuminated by an output light beam generated by the information carrier 401, the pixel is represented by a white area. In that case, the pixel delivers an electric output signal (not represented) having a first state. On the contrary, when a pixel of the detector 405 does not receive any output light beam from the information carrier, the pixel is represented by a cross-hatched area. In that case, the pixel delivers an electric output signal (not represented) having a second state.
In this example, each set of data comprises four elementary data, and a single light spot is applied simultaneously to each set of data. The scanning of the information carrier 401 by the light spots 403 is performed for example from left to right, with an incremental lateral displacement which equals the distance between two elementary data.
In position A, all the light spots are applied to non-transparent areas so that all pixels of the detector are in the second state.
In position B, after displacement of the light spots to the right, the light spot to the left is applied to a transparent area so that the corresponding pixel is in the first state, while the two other light spots are applied to non-transparent areas so that the two corresponding pixels of the detector are in the second state.
In position C, after displacement of the light spots to the right, the light spot to the left is applied to a non-transparent area so that the corresponding pixel is in the second state, while the two other light spots are applied to transparent areas so that the two corresponding pixels of the detector are in the first state.
In position D, after displacement of the light spots to the right, the central light spot is applied to a non-transparent area so that the corresponding pixel is in the second state, while the two other light spots are applied to transparent areas so that the two corresponding pixels of the detector are in the first state.
The scanning of the information carrier 401 is complete when the light spots have been applied to all data of a set of data facing a pixel of the detector. It implies a two-dimensional scanning of the information carrier. Elementary data which compose a set of data opposite a pixel of the detector are read successively by a single light spot.
It is noted that the three-dimensional view of the system as depicted in
The scanning of the information carrier by the array of light spots is done in a plane parallel to the information carrier. A scanning device provides translational movement of the light spots in the two directions x and y for scanning all the surface of the information carrier. Alternatively, the information carrier may be scanned with respect to the array of light spots and the detector (which beneficially comprises a CMOS sensor).
However, thermal expansion and, for example, manufacturing problems in respect of the information carrier can result in a mismatch between the pitch of the array of light spots and the size of the macro-cells, whereas in order to have correct readout of the data bits, the pitch of the array of light spots (or “probe array”) and the size of the macro-cells need to be matched.
It is therefore an object of the invention to provide a system for adjusting the pitch of an array of light spots to correspond with the size of a data area of an information carrier having data stored in the form of an array of data areas
To this end, the system according to the invention comprises:
Adjusting the pitch of the probe array to match the size of the macro-cells so as to ensure correct data readout, is achieved by determining a degree of mismatch between the pitch of the probe array and the size of the macro-cells and then adjusting the illumination of the probe array generation device to make a corresponding adjustment to the pitch of the probe array to match the size of the macro-cells. Changing the degree of convergence or divergence of said input light beam allows to generate a non-collimated input light beam.
The invention also relates to a method comprising steps corresponding to various functionalities performed by the various means of the system according to the invention.
These and other aspects of the present invention will be apparent from and elucidated with reference to the embodiments described herein.
Embodiments of the present invention will now be described by way of examples only and with reference to the accompanying drawings, in which:
Thus, the present invention provides an arrangement whereby an amount of mismatch (caused, for example, by thermal expansion or manufacturing problems) between the pitch of the probes and the size of the macro-cells can be determined, and the pitch of the probes adjusted accordingly so as to match the pitch p of the probe array and the size of the macro-cells and ensure correct readout of the bits during a macro-cell scanning operation as described above in relation to
In the following, it will be appreciated that the focus of the light source means the virtual image print and not (necessarily) the light source itself.
In an exemplary embodiment of the invention, it is proposed to determine the amount of mismatch between the pitch of the probes and the size of the macro-cells by providing on the information carrier (or data card) a periodic structure that is intended to interfere with the probe array so as to generate a Moiré pattern on an area of the detector. The periodic structure 108 may, for example, be printed or glued on the information carrier and may be composed of transparent and non-transparent parallel stripes having a period referred to herein as “s”, as shown in
The Moiré effect is an optical phenomenon which occurs when an input image with a structure having a period s is sampled with a periodic sampling grid having a period p (i.e. the periodic array of light spots 103 in the present case) which is close or equal to the period s of the input image, which results in aliasing. The sampled image (i.e. the Moiré pattern) is magnified and rotated compared to the input image.
It can be shown that the magnification factor μ of the Moiré pattern, and the angle φ between the Moiré pattern and the period structure are expressed as follows:
where
p is the period of the array of light spots 103,
s is the period of the periodic structure 108,
θ is the angle between the periodic array of light spots 103 and the period structure.
For a situation without angular misalignment between the array of light spots 103 and the periodic structure 108 (i.e. with an angle θ=0), the magnification factor μ0 is expressed as follows:
In the example shown in
However, by choosing the period (or pitch) of the periodic structure so as to satisfy the relationship:
where c>2 and c<3, two Moiré blocks will be visible on the detector (instead of the single on (B1) shown in
In the known system described above, the probe array generation device is designed to create probes at a certain distance from the device, provided it is illuminated with a collimated beam. Thus, referring to
Having determined that there is a mismatch between the pitch p of the probe array 103 and the size of the macro-cells on the data card 101, it is proposed herein to match the pitch of the probe array to the pitch of the macro-cells on the data card by adjusting the illumination of the probe array generation device.
In general, a probe array generation device is designed to create probes at a certain distance from the device, provided it is illuminated with a collimated beam. It can be shown that by illuminating the device with a non-collimated beam, the image will be magnified according to
where
M is the magnification,
v is the distance from the device to the focus of the illuminating beam,
z is the distance from the device to the spots,
In (6), ε is −1 for a converging beam, and +1 for a diverging beam. Hence the pitch of the probe array changes from p to
M×p (7)
Therefore, by controlling v, the correct pitch of the probe array can be achieved. The illuminating beam can be made converging or diverging using standard optical techniques as for instance actuating the position of a lens in the illumination system along the optical axis;
Thus, in an exemplary embodiment, and referring to
The distance from the probe array generator 102 to the virtual source point 1 is defined as v. The distance between the probe array generator 102 and the data card 101 is defined as z. The pitch of the probe array is larger than in the arrangement of
A disadvantage of the non-collimated illumination may be the fact that some spherical aberrations and coma are introduced to the spots. These aberrations are however negligible when the magnification is in the order of 0.1%, which is also the order of magnitude of the thermal expansion of polycarbonate (of which the data card is commonly formed), when the temperature changes by approximately 50 degrees.
As illustrated in
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be capable of designing many alternative embodiments without departing from the scope of the invention as defined by the appended claims. In the claims, any reference signs placed in parentheses shall not be construed as limiting the claims. The word “comprising” and “comprises”, and the like, does not exclude the presence of elements or steps other than those listed in any claim or the specification as a whole. The singular reference of an element does not exclude the plural reference of such elements and vice-versa. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
200510124719.7 | Nov 2005 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/54173 | 11/9/2006 | WO | 00 | 5/8/2008 |