The present invention relates to methods and apparatus for creating small (micron and smaller) holes in transparent materials for the purpose of drilling, cutting, separating, perforating, or otherwise processing the materials, and, more particularly, to the arrangement of these holes to arrest crack propagation in the transparent materials.
In recent years, precision micromachining and its improvement of process development to meet customer demand to reduce the size, weight and material cost of leading-edge devices has led to fast pace growth in high-tech industries in flat panel displays for touch screens, tablets, smartphones and TVs, where ultrafast industrial lasers are becoming important tools for applications requiring high precision.
There are various known ways to cut glasses. In conventional laser glass cutting processes, the separation of glass relies on laser scribing or perforation followed by separation with mechanical force or thermal stress-induced crack propagation. Nearly all current laser cutting techniques exhibit one or more shortcomings, including: (1) limitations in their ability to perform a free form shaped cut of thin glass on a carrier due to a large heat-affected zone associated with the long laser pulses (nanosecond scale or longer) used for cutting; (2) production of thermal stress that often results in cracking of the glass surface near the region of laser illumination due to the generation of shock waves and uncontrolled material removal; (3) difficulties in controlling the depth of the cut (e.g., to within tens of microns); and/or (4) creation of sub-surface damage in the glass that extends hundreds of microns (or more) glass below the surface of the glass, resulting in defect sites at which crack propagation can initiate.
These micro-cracks, for example, most typically form at the edges of the glass, and the crack can then propagate into the bulk of the glass. While there are different techniques to deal with crack propagation, such as ion-exchange used to create a compressive stress (“CS”) at the edge of the glass sheet, these techniques are expensive and ineffective. Accordingly, there is a need to improve glass strength and stability by preventing or arresting crack propagation.
The embodiments disclosed herein relate to a method and an apparatus to create small (micron and smaller) “holes” in transparent materials (glass, sapphire, etc.) for the purpose of drilling, cutting, separating, perforating, or otherwise processing the materials. More particularly, an ultrashort (i.e., from 10−10 to 10−15 second) pulse laser beam (wavelengths such as 1064, 532, 355 or 266 nanometers) is focused to an energy density above the threshold needed to create a defect in the region of focus at the surface of or within the transparent material. By repeating the process, a series of laser-induced defects aligned along a predetermined path can be created. By spacing the laser-induced features sufficiently close together, a controlled region of mechanical weakness within the transparent material can be created and the transparent material can be precisely fractured or separated (mechanically or thermally) along the path defined by the series of laser-induced defects. The ultrashort laser pulse(s) may be optionally followed by a carbon dioxide (CO2) laser or other source of thermal stress to effect fully automated separation of a transparent material or part from a substrate, for example.
In certain applications where transparent materials are bonded together to form a stack or layered structure, it is often desirable to selectively “cut” to the boundary of a particular layer without disturbing underlying layers. This may be performed with the addition of a reflective or absorptive (for the desired wavelength) material or layer at the preferred depth of cut. A reflective layer may be formed by depositing a thin material (aluminum, copper, silver, gold, etc.). A reflective layer is preferential as it scatters the incident energy (as opposed to absorbing and thermally dissipating the incident energy). In this manner, the depth of the cut may be controlled with no damage to the underlying layers. In one application, a transparent material is bonded to a carrier substrate and a reflective or absorptive layer is formed between the transparent material and carrier substrate. The reflective or absorptive layer enables cutting of the transparent material without damage to the underlying carrier substrate, which may then be reused.
In one embodiment, a system for arresting propagation of an incident crack through a transparent material including: a laser assembly configured to selectively provide a pulsed laser beam; an optical assembly coupled to the laser assembly and configured to cause the pulsed laser beam to converge at a focal line, where the optical assembly is adjustable such that each focal line is characterized by a dimensional parameter and disposed at a position relative to the optical assembly; a workpiece holder configured to hold the transparent material at a position relative to the optical assembly, with either the workpiece holder or the optical assembly providing a relative motion between the transparent material and the optical assembly; and a controller coupled to the laser assembly, the optical assembly or the workpiece holder, the controller executing instructions representing a predetermined pattern designed to arrest an incident crack that propagates through the transparent material, the controller being configured to select the dimensional parameter for each pulsed laser beam, the controller being further configured to select the relative motion such that a plurality of the pulsed laser beam forms a plurality of defects corresponding to the predetermined pattern within the transparent material, each defect of the plurality of defects being substantially generated by induced absorption.
In another embodiment, the dimensional parameter has a focal line diameter, where the length of a defect corresponds to a portion of the focal line disposed within the laminated element when the defect is substantially generated by induced absorption.
In yet another embodiment, the predetermined pattern is designed to create a locking pattern such that the transparent material will not separate into two or more pieces if the crack propagates through the transparent material.
In one embodiment, a method for arresting propagation of an incident crack through a transparent material includes the steps of: focusing pulsed laser beams into a laser beam focal line directed into the transparent material, where each of the plurality of pulsed laser beams is directed into the transparent material at a different location corresponding to a predetermined pattern designed to arrest an incident crack that propagates through the transparent material; and generating, with the laser beam focal line, an induced absorption within the transparent material to produce a defect in the transparent material.
In another embodiment, the method also includes the step of determine the predetermined pattern based on a characteristic of the transparent material. The method can also include the additional step of filling, at least partially, the defect with a polymer.
According to one embodiment, the method includes the step of providing a laser beam assembly having: a laser assembly configured to selectively provide a pulsed laser beam; an optical assembly configured to cause the pulsed laser beam to converge at a focal line; a transparent material holder configured to hold the transparent material at a position relative to the optical assembly, where the transparent material holder or the optical assembly being provides a relative motion between the transparent material and the optical assembly; and a controller configured to execute instructions representing the predetermined pattern, and to select the relative motion such that a plurality of the pulsed laser beam forms a plurality of defects corresponding to the predetermined pattern within the transparent material.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments
The foregoing will be apparent from the following more particular description of the example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the representative embodiments.
A description of example embodiments follows.
The embodiment described herein relates to a method and apparatus for optically producing high precision cuts in or through transparent materials. Sub-surface damage may be limited to the order of 60 microns in depth or less, and the cuts may produce only low debris. Cutting of a transparent material with a laser in accordance with the present disclosure may also be referred to herein as drilling or laser drilling or laser processing. A material is substantially transparent to the laser wavelength when the absorption is less than about 10%, preferably less than about 1% per mm of material depth at this wavelength.
In accordance with methods described below, in a single pass, a laser can be used to create highly controlled full line perforation through the material, with extremely little (<75 μm, often <50 μm) subsurface damage and debris generation. This is in contrast to the typical use of spot-focused laser to ablate material, where multiple passes are often necessary to completely perforate the glass thickness, large amounts of debris are formed from the ablation process, and more extensive sub-surface damage (>100 μm) and edge chipping occur.
Thus, it is possible to create a microscopic (i.e., <0.5 μm and >100 nm in diameter) elongated “hole” (also called a perforation or a defect line) in transparent material using a single high energy burst pulse. These individual perforations can be created at rates of several hundred kilohertz (several hundred thousand perforations per second, for example). Thus, with relative motion between the source and the material these perforations can be placed adjacent to one another (spatial separation varying from sub-micron to several microns as desired). This spatial separation is selected in order to facilitate cutting. In some embodiments the defect line is a “through hole”, which is a hole or an open channel that extends from the top to the bottom of the transparent material. In some embodiments the defect line may not be a continuous channel, and may be blocked or partially blocked by portions or sections of solid material (e.g., glass). As defined herein, the internal diameter of the defect line is the internal diameter of the open channel or the air hole. For example, in the embodiments described herein the internal diameter of the defect line is <500 nm, for example ≤400 nm, or <300 nm. The disrupted or modified area (e.g., compacted, melted, or otherwise changed) of the material surrounding the holes in the embodiments disclosed herein, preferably has diameter of <50 μm (e.g., <0.10 μm).
In addition, through judicious selection of optics, selective cut individual layers of stacked transparent materials. Micromachining and selective cutting of a stack of transparent materials is accomplished with precise control of the depth of cut through selection of an appropriate laser source and wavelength along with beam delivery optics, and the placement of a beam disruption element at the boundary of a desired layer. The beam disruption element may be a layer of material or an interface. The beam disruption element may be referred to herein as a laser beam disruption element, disruption element or the like. Embodiments of the beam disruption element may be referred to herein as a beam disruption layer, laser beam disruption layer, disruption layer, beam disruption interface, laser beam disruption interface, disruption interface, or the like.
The beam disruption element reflects, absorbs, scatters, defocuses or otherwise interferes with an incident laser beam to inhibit or prevent the laser beam from damaging or otherwise modifying underlying layers in the stack. In one embodiment, the beam disruption element underlies the layer of transparent material in which laser drilling will occur. As used herein, the beam disruption element underlies the transparent material when placement of the beam disruption element is such that the laser beam must pass through the transparent material before encountering the beam disruption element. The beam disruption element may underlie and be directly adjacent to the transparent layer in which laser drilling will occur. Stacked materials can be micromachined or cut with high selectivity by inserting a layer or modifying the interface such that a contrast of optical properties exists between different layers of the stack. By making the interface between materials in the stack more reflective, absorbing, and/or scattering at the laser wavelengths of interest, cutting can be confined to one portion or layer of the stack.
The wavelength of the laser is selected so that the material within the stack to be laser processed (drilled, cut, ablated, damaged or otherwise appreciably modified by the laser) is transparent to the laser wavelength. In one embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 10% of the intensity of the laser wavelength per mm of thickness of the material. In another embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 5% of the intensity of the laser wavelength per mm of thickness of the material. In still another, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 2% of the intensity of the laser wavelength per mm of thickness of the material. In yet another embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 1% of the intensity of the laser wavelength per mm of thickness of the material.
The selection of the laser source is further predicated on the ability to induce multiphoton absorption (MPA) in the transparent material. MPA is the simultaneous absorption of multiple photons of identical or different frequencies in order to excite a material from a lower energy state (usually the ground state) to a higher energy state (excited state). The excited state may be an excited electronic state or an ionized state. The energy difference between the higher and lower energy states of the material is equal to the sum of the energies of the two photons. MPA is a third-order nonlinear process that is several orders of magnitude weaker than linear absorption. It differs from linear absorption in that the strength of absorption depends on the square of the light intensity, thus making it a nonlinear optical process. At ordinary light intensities, MPA is negligible. If the light intensity (energy density) is extremely high, such as in the region of focus of a laser source (particularly a pulsed laser source), MPA becomes appreciable and leads to measurable effects in the material within the region where the energy density of the light source is sufficiently high. Within the focal region, the energy density may be sufficiently high to result in ionization.
At the atomic level, the ionization of individual atoms has discrete energy requirements. Several elements commonly used in glass (e.g., Si, Na, K) have relatively low ionization energies (˜5 eV). Without the phenomenon of MPA, a wavelength of about 248 nm would be required to create linear ionization at ˜5 eV. With MPA, ionization or excitation between states separated in energy by ˜5 eV can be accomplished with wavelengths longer than 248 nm. For example, photons with a wavelength of 532 nm have an energy of ˜2.33 eV, so two photons with wavelength 532 nm can induce a transition between states separated in energy by ˜4.66 eV in two-photon absorption (TPA), for example.
Thus, atoms and bonds can be selectively excited or ionized in the regions of a material where the energy density of the laser beam is sufficiently high to induce nonlinear TPA of a laser wavelength having half the required excitation energy, for example. MPA can result in a local reconfiguration and separation of the excited atoms or bonds from adjacent atoms or bonds. The resulting modification in the bonding or configuration can result in non-thermal ablation and removal of matter from the region of the material in which MPA occurs. This removal of matter creates a structural defect (e.g. a defect line or “perforation”) that mechanically weakens the material and renders it more susceptible to cracking or fracturing upon application of mechanical or thermal stress. By controlling the placement of perforations, a contour or path along which cracking occurs can be precisely defined and precise micromachining of the material can be accomplished. The contour defined by a series of perforations may be regarded as a fault line and corresponds to a region of structural weakness in the material. In one embodiment, micromachining includes separation of a part from the material processed by the laser, where the part has a precisely defined shape or perimeter determined by a closed contour of perforations formed through MPA effects induced by the laser. As used herein, the term closed contour refers to a perforation path formed by the laser line, where the path intersects with itself at some location. An internal contour is a path formed where the resulting shape is entirely surrounded by an outer portion of material.
Perforations can be accomplished with a single “burst” of high energy short duration pulses spaced close together in time. The laser pulse duration may be 10−10 s or less, or 10−11 s or less, or 10−12 s or less, or 10−13 s or less. These “bursts” may be repeated at high repetition rates (e.g. kHz or MHz). The perforations may be spaced apart and precisely positioned by controlling the velocity of a substrate or stack relative to the laser through control of the motion of the laser and/or the substrate or stack.
As an example, in a thin transparent substrate moving at 200 mm/sec exposed to a 100 kHz series of pulses, the individual pulses would be spaced 2 microns apart to create a series of perforations separated by 2 microns. This defect (perforation) spacing is sufficient close to allow for mechanical or thermal separation along the contour defined by the series of perforations.
Thermal Separation:
In some cases, a fault line created along a contour defined by a series of perforations or defect lines is not enough to separate the part spontaneously, and a secondary step may be necessary. If so desired, a second laser can be used to create thermal stress to separate it, for example. In the case of sapphire, separation can be achieved, after the creation of a fault line, by application of mechanical force or by using a thermal source (e.g., an infrared laser, for example a CO2 laser) to create thermal stress and force a part to separate from a substrate. Another option is to have the CO2 laser only start the separation and then finish the separation manually. The optional CO2 laser separation can be achieved, for example, with a defocused continuous wave (cw) laser emitting at 10.6 μm and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing up to and including focused spot size) is used to vary the induced thermal stress by varying the spot size. Defocused laser beams include those laser beams that produce a spot size larger than a minimum, diffraction-limited spot size on the order of the size of the laser wavelength. For example, spot sizes of about 7 mm, 2 mm and 20 mm can be used for CO2 lasers, for example, whose emission wavelength is much smaller at 10.6 μm. Distance between adjacent defect lines 120 along the direction of the fault lines 110 can be greater than 0.5 μm and less than or equal to about 15 μm in some embodiments, for example.
Etching:
Acid etching can be used, for example, to separate a workpiece having a glass layer, for example. To enlarge the holes to a size useful for metal filling and electrical connections, parts can be acid etched. In one embodiment, for example, the acid used can be 10% HF/15% HNO3 by volume. The parts can be etched for 53 minutes at a temperature of 24-25° C. to remove about 100 μm of material, for example. The parts can be immersed in this acid bath, and ultrasonic agitation at a combination of 40 kHz and 80 kHz frequencies can used to facilitate penetration of fluid and fluid exchange in the holes. In addition, manual agitation of the part within the ultrasonic field can be made to prevent standing wave patterns from the ultrasonic field from creating “hot spots” or cavitation related damage on the part. The acid composition and etch rate can be intentionally designed to slowly etch the part—a material removal rate of only 1.9 um/minute, for example. An etch rate of less than about 2 μm/minute, for example, allows acid to fully penetrate the narrow holes and agitation to exchange fresh fluid and remove dissolved material from the holes which are initially very narrow.
In the embodiment shown in
In one embodiment, the beam disruption element is positioned immediately below the layer of the stack in which modification via two-photon absorption will occur. Such a configuration is shown in
The disruption element has different optical properties than the material to be cut. For example, the beam disruption element may be a defocusing element, a scattering element, a translucent element, or a reflective element. A defocusing element is an interface or a layer comprising a material that prevents the laser light from forming the laser beam focal line on or below the defocusing element. The defocusing element may be comprised of a material or interface with refractive index in homogeneities that scatter or perturb the wavefront of the optical beam. A translucent element is an interface or layer of material that allows light to pass through, but only after scattering or attenuating the laser beam to lower the energy density sufficiently to prevent formation of a laser beam focal line in portions of the stack on the side of the translucent element that are remote from the laser beam. In one embodiment, the translucent element effects scattering or deviating of at least 10% of the light rays of the laser beam.
More specifically, the reflectivity, absorptivity, defocusing, attenuation, and/or scattering of the disruption element can be employed to create a barrier or impediment to the laser radiation. The laser beam disruption element can be created by several means. If the optical properties of the overall stack system are not of a concern, then one or more thin films can be deposited as a beam disruption layer(s) between the desired two layers of the stack, where the one or more thin films absorb, scatter, defocus, attenuate, reflects, and/or dissipates more of the laser radiation than the layer immediately above it to protect layers below the thin film(s) from receiving excessive energy density from the laser source. If the optical properties of the entire stack system do matter, the beam disruption element can be implemented as a notch filter. This can be done by several methods:
It is not necessary that the absorption, reflection scattering, attenuation, defocusing etc. of the laser beam by the disruption element be complete. It is only necessary that the effect of the disruption element on the laser beam is sufficient to reduce the energy density or intensity of the focused laser beam to a level below the threshold required for cutting, ablation, perforating etc. of the layers in the stack protected by (underlying) the disruption element. In one embodiment, the disruption element reduces the energy density or intensity of the focused laser beam to a level below the threshold needed to induce two-photon absorption. The disruption layer or disruption interface may be configured to absorb, reflect, or scatter the laser beam, where the absorption, reflection, or scattering are sufficient to reduce the energy density or intensity of the laser beam transmitted to the carrier (or other underlying layer) to a level below the level needed to induce nonlinear absorption in the carrier or underlying layer.
Turning to
Layer 1 is the layer of a multilayer stack in which internal modifications by laser processing and two-photon absorption is to occur. Layer 1 is a component of a larger workpiece, which typically includes a substrate or carrier upon which a multilayer stack is formed. Layer 1 is the layer within the multilayer stack in which holes, cuts, or other features are to be formed through two-photon absorption assisted ablation or modification as described herein. The layer 1 is positioned in the beam path to at least partially overlap the laser beam focal line 2b of laser beam 2. Reference 1a designates the surface of the layer 1 facing (closest or proximate to) the optical assembly 6 or the laser, respectively, reference 1b designates the reverse surface of layer 1 (the surface remote, or further away from, optical assembly 6 or the laser). The thickness of the layer 1 (measured perpendicularly to the planes 1a and 1b, i.e., to the substrate plane) is labeled with d.
As
As
Representative optical assemblies 6, which can be applied to generate the focal line 2b, as well as a representative optical setup, in which these optical assemblies can be applied, are described below. All assemblies or setups are based on the description above so that identical references are used for identical components or features or those which are equal in their function. Therefore only the differences are described below.
To insure high quality (regarding breaking strength, geometric precision, roughness and avoidance of re-machining requirements) of the surface of separation after cracking along the contour defined by the series of perforations, the individual focal lines used to form the perforations that define the contour of cracking should be generated using the optical assembly described below (hereinafter, the optical assembly is alternatively also referred to as laser optics). The roughness of the separated surface is determined primarily by the spot size or the spot diameter of the focal line. A roughness of a surface can be characterized, for example, by an Ra surface roughness statistic (roughness arithmetic average of absolute values of the heights of the sampled surface). In order to achieve a small spot size of, for example, 0.5 μm to 2 μm in case of a given wavelength λ of laser 3 (interaction with the material of layer 1), certain requirements must usually be imposed on the numerical aperture of laser optics 6. These requirements are met by laser optics 6 described below.
In order to achieve the required numerical aperture, the optics must, on the one hand, dispose of the required opening for a given focal length, according to the known Abbé formulae (N.A.=n sin (theta), n: refractive index of the material to be processed, theta: half the aperture angle; and theta=arctan (D/2f); D: aperture, f: focal length). On the other hand, the laser beam must illuminate the optics up to the required aperture, which is typically achieved by means of beam widening using widening telescopes between the laser and focusing optics.
The spot size should not vary too strongly for the purpose of a uniform interaction along the focal line. This can, for example, be ensured (see the embodiment below) by illuminating the focusing optics only in a small, circular area so that the beam opening and thus the percentage of the numerical aperture only vary slightly.
According to
Lens 7 is centered on the central beam and is designed as a non-corrected, bi-convex focusing lens in the form of a common, spherically cut lens. The spherical aberration of such a lens may be advantageous. As an alternative, aspheres or multi-lens systems deviating from ideally corrected systems, which do not form an ideal focal point but a distinct, elongated focal line of a defined length, can also be used (i.e., lenses or systems which do not have a single focal point). The zones of the lens thus focus along a focal line 2b, subject to the distance from the lens center. The diameter of aperture 8 across the beam direction is approximately 90% of the diameter of the beam bundle (defined by the distance required for the intensity of the beam to decrease to 1/e of the peak intensity) and approximately 75% of the diameter of the lens of the optical assembly 6. The focal line 2b of a non-aberration-corrected spherical lens 7 generated by blocking out the beam bundles in the center is thus used.
One potential disadvantage of this type of focal line is that the conditions (spot size, laser intensity) may vary along the focal line (and thus along the desired depth in the material) and therefore the desired type of interaction (no melting, induced absorption, thermal-plastic deformation up to crack formation) may possibly occur only in selected portions of the focal line. This means in turn that possibly only a part of the incident laser light is absorbed by the material to be processed in the desired way. In this way, the efficiency of the process (required average laser power for the desired separation speed) may be impaired, and the laser light may also be transmitted into undesired regions (parts or layers adherent to the substrate or the substrate holding fixture) and interact with them in an undesirable way (e.g. heating, diffusion, absorption, unwanted modification).
In the case shown in
It is particularly advantageous to position the focal line 2b in such a way that at least one of surfaces 1a, 1b is covered by the focal line, so that the section of induced nonlinear absorption 2c starts at least on one surface of the layer or material to be processed. In this way it is possible to achieve virtually ideal cuts while avoiding ablation, feathering and particulation at the surface.
However, the depicted layout is subject to the following restrictions: Since the region of focal line 2b formed by axicon 9 begins within the axicon 9, a significant part of the laser energy is not focused into the section of induced absorption 2c of focal line 2b, which is located within the material, in the situation where there is a separation between axicon 9 and the material to be processed. Furthermore, length 1 of focal line 2b is related to the beam diameter through the refractive indices and cone angles of axicon 9. This is why, in the case of relatively thin materials (several millimeters), the total focal line is much longer than the thickness of the material to be processed, having the effect that much of the laser energy is not focused into the material.
For this reason, it may be desirable to use an optical assembly 6 that includes both an axicon and a focusing lens.
It is therefore advantageous if the focal line is formed at a certain distance from the laser optics, and if the greater part of the laser radiation is focused up to a desired end of the focal line. As described, this can be achieved by illuminating a primarily focusing element 11 (lens) only circularly (annularly) over a particular outer radial region, which, on the one hand, serves to realize the required numerical aperture and thus the required spot size, and, on the other hand, however, the circle of diffusion diminishes in intensity after the required focal line 2b over a very short distance in the center of the spot, as a basically circular spot is formed. In this way, the crack formation is stopped within a short distance in the required substrate depth. A combination of axicon 10 and focusing lens 11 meets this requirement. The axicon acts in two different ways: due to the axicon 10, a usually round laser spot is sent to the focusing lens 11 in the form of a ring, and the asphericity of axicon 10 has the effect that a focal line is formed beyond the focal plane of the lens instead of a focal point in the focal plane. The length 1 of focal line 2b can be adjusted via the beam diameter on the axicon. The numerical aperture along the focal line, on the other hand, can be adjusted via the distance z1 axicon-lens and via the cone angle of the axicon. In this way, the entire laser energy can be concentrated in the focal line.
If the crack formation is intended to continue to the back side of the layer or material to be processed, the circular (annular) illumination still has the advantage that (1) the laser power is used optimally in the sense that most of the laser light remains concentrated in the required length of the focal line, and (2) it is possible to achieve a uniform spot size along the focal line—and thus a uniform separation process along the perforations produced by the focal lines—due to the circularly illuminated zone in conjunction with the desired aberration set by means of the other optical functions.
Instead of the plano-convex lens depicted in
In order to generate very short focal lines 2b using the combination of an axicon and a lens depicted in
As shown in
The optical assembly 6 depicted in
In the depicted example it is possible to achieve a length of the focal line 1 of less than 0.5 mm using a typical laser beam diameter of 2 mm, a focusing lens 11 with a focal length f=25 mm, a collimating lens with a focal length f′=150 mm, and choosing distances Z1a=Z1b=140 mm and Z2=15 mm.
Note that, as shown in
In some of the embodiments described herein, the air gap is between 50 μm and 5 mm, for example is between 50 μm and 2 mm, or between 200 μm and 2 mm.
Exemplary disruption layers include polyethylene plastic sheeting (e.g., Visqueen). Transparent layers, as shown in
Arresting Crack Propagation:
According to an embodiment is a method and system for arresting propagation of an incident crack through a transparent material. For example, ultrashort pulse laser beams can be focused to an energy density above a threshold needed to create a defect in the region of focus at the surface of, and/or within, the transparent material. By repeating the process as the laser and/or the transparent material are moved, a controlled series of laser-induced defects aligned along a predetermined path or pattern can be created. By spacing the laser-induced features along the predetermined pattern, the defects can used for a variety of functions. For example, as described in detail above, by spacing the defects sufficiently close together, a controlled region of mechanical weakness within the transparent material can be created and the transparent material can be precisely fractured or separated (mechanically or thermally) along the path defined by the series of laser-induced defects. For example, the ultrashort laser pulses may be optionally followed by a CO2 laser or other source of thermal stress to effect fully automated separation of a transparent material or part from a substrate.
As yet another example, the predetermined pattern of laser-induced defects in the transparent material can be utilized to abate and/or arrest propagation of an incident crack in the transparent material. Often, the edge of a transparent material is the weakest point of that material, and it is subject to microcracks that form and propagate into the bulk of the material. While there are methods that attempt to deal with crack propagation, such as ion-exchange to create a compressive stress at the edge of the glass sheet, these existing methods are expensive, inefficient, and ineffective.
Accordingly, provided is an embodiment of system and method for creating a controlled series of laser-induced defects aligned along a predetermined pattern, including with a predetermined spacing, which is designed to abate and/or arrest propagation of an incident crack in the transparent material. The defects can, for example, be filled with a polymer that arrests the propagating crack, or can be shaped to create an interlocking pattern that requires a strong separation force to be applied in more than one direction in order for separation to occur. Additionally, according to yet another embodiment, the defects can be ion exchanged after they are created, which will further promote arrest of the propagating crack. If the perforating defect pattern is placed along the edge of the glass in the predetermined pattern, it can, for example, deflect a crack as it propagates into the center of the glass piece. If the crack is deflected, it could alternatively be stopped in a higher compressive stress zone.
As shown in
According to an embodiment, the defect will experience a hoop stress (represented by arrows) that has both compressive and tensile components. Placing the defects 1440 at a predetermined distance from each other create a weaker interface where the propagating crack reaching each location can go to. Depending on the original crack direction and the perforated interface, the propagating incident crack will have to change its propagation angle.
For example, as shown in
According to an embodiment, the condition for crack propagation into interface can be calculated, or analyzed, using the following formula:
Cos2(θ/2)>KIC/KICb
where KIC is fracture toughness for the interface, KICb is fracture toughness for bulk material, and θ is the angle between the incident crack and the weaker interface plane as shown in
The predetermined crack-abating or crack-arresting pattern is designed to generate a weak area that deflects a possible crack at a high angle, and creates an arresting point for the crack. By making a longer dissipation path for the crack, the pattern increases the amount of energy or stress required to move crack propagation forward. Thus, the incident crack will propagate along the weak interface and follow a more complicated (i.e., less straight) path, which dissipates additional energy.
According to one embodiment, the perforation can be created in glass capable of being ion-exchanged, where the perforation pattern is created either before the ion-exchange step or, alternatively, after the ion-exchange step. In the event where the perforation pattern is created before ion-exchange, the perforation pattern will increase the strength of the interface and, according to an embodiment, the defects may need to be placed with larger spacing. This treatment of the material can be done along the edge of the glass or in the body for higher strength applications.
In order to further strengthen the transparent material and further promote the abatement or arresting of an incident crack, the created defects can be infiltrated with a polymer, which may infiltrate the hole 1410 by capillary action. The polymer will significantly change one or more mechanical properties of the interface, and can significantly increase resistance to the crack propagation in that created weaker interface. Further, if the polymer refractive index is close to that of glass (such as, for example, 1.46-1.55), the visibility of the infiltrated defects will be significantly reduced. A variety of polymers can be used, either individually, in a combination, or in a mixture. For example, the polymer can include, but is not limited to, polyurethane, polyamide, polycarbonate, polyester, polypropylene, polyethylene, and/or polystyrene, among many others. According to one embodiment, the polymer has very low viscosity in order to infiltrate the defect passively, although active infiltration methods and systems can be utilized.
Similar to the embodiments envisioned above, the defects created for the interlocking pattern can be infiltrated with polymer to improve crack propagation resistance. In some embodiments the defects can be created on non-IOX glass, and then the defects can be ion exchanged to strengthen them. The strengthened defects then act as arresters with regard to crack propagation. In some other embodiments, the residual stresses in the region of the perforations are further manipulated (by tempering or localized heating) to influence the deflection of the crack and crack propagation arrest.
To create the interlocking predetermined perforation pattern 1480 depicted in
The methods and systems described and envisioned herein for arresting incident crack propagation have a wide variety of applications. As just one of many examples, the systems or methods could be utilized for defense applications to increase the strength of materials that are designed to receive an impact. The defense materials can be designed with crack arresting patterns in order to manage incident cracks that result from an impact, either directly or secondarily such as a blast wave, among other impacts. As another application, the systems or methods could be utilized for materials such as safety glass where it is desirable to manage incident cracks that result from an impact or other stress or energy source. These are just a few examples of applications where stress or energy may create a crack in a material. The systems and methods described herein could be useful for these, and other, applications.
Although the present invention has been described in connection with a preferred embodiment, it should be understood that modifications, alterations, and additions can be made to the invention without departing from the scope of the invention as defined by the claims.
This application claims the benefit of priority under 35 U.S.C. § 371 of International Application No. PCT/US2015/40241, filed on Jul. 14, 2015, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/024,059 filed on Jul. 14, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/040241 | 7/14/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/010943 | 1/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1790397 | Woods et al. | Jan 1931 | A |
2682134 | Stookey | Jun 1954 | A |
2749794 | O'Leary | Jun 1956 | A |
3647410 | Heaton et al. | Mar 1972 | A |
3695497 | Dear | Oct 1972 | A |
3695498 | Dear | Oct 1972 | A |
3729302 | Heaton | Apr 1973 | A |
3775084 | Heaton | Nov 1973 | A |
4226607 | Domken | Oct 1980 | A |
4441008 | Chan | Apr 1984 | A |
4546231 | Gresser et al. | Oct 1985 | A |
4646308 | Kafka et al. | Feb 1987 | A |
4764930 | Bille et al. | Aug 1988 | A |
4891054 | Bricker et al. | Jan 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4918751 | Pessot et al. | Apr 1990 | A |
4929065 | Hagerty et al. | May 1990 | A |
5035918 | Vyas | Jul 1991 | A |
5040182 | Spinelli et al. | Aug 1991 | A |
5104210 | Tokas | Apr 1992 | A |
5108857 | Kitayama et al. | Apr 1992 | A |
5112722 | Tsujino et al. | May 1992 | A |
5114834 | Nachshon | May 1992 | A |
5265107 | Delfyett | Nov 1993 | A |
5400350 | Galvanauskas et al. | Mar 1995 | A |
5434875 | Rieger et al. | Jul 1995 | A |
5436925 | Lin et al. | Jul 1995 | A |
5553093 | Ramaswamy et al. | Sep 1996 | A |
5574597 | Kataoka et al. | Nov 1996 | A |
5586138 | Yokayama | Dec 1996 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5676866 | In Den Baumen et al. | Oct 1997 | A |
5684642 | Zumoto et al. | Nov 1997 | A |
5696782 | Harter et al. | Dec 1997 | A |
5736709 | Neiheisel | Apr 1998 | A |
5776220 | Allaire et al. | Jul 1998 | A |
6016223 | Suzuki et al. | Jan 2000 | A |
6016324 | Rieger et al. | Jan 2000 | A |
6033583 | Musket et al. | Mar 2000 | A |
6038055 | Hansch et al. | Mar 2000 | A |
6055829 | Witzmann et al. | May 2000 | A |
6078599 | Everage et al. | Jun 2000 | A |
6156030 | Neev | Dec 2000 | A |
6160835 | Kwon | Dec 2000 | A |
6186384 | Sawada | Feb 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6259151 | Morrison | Jul 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6272156 | Reed et al. | Aug 2001 | B1 |
6301932 | Allen et al. | Oct 2001 | B1 |
6322958 | Hayashi | Nov 2001 | B1 |
6339208 | Rockstroh et al. | Jan 2002 | B1 |
6373565 | Kafka et al. | Apr 2002 | B1 |
6381391 | Islam et al. | Apr 2002 | B1 |
6396856 | Sucha et al. | May 2002 | B1 |
6407360 | Choo et al. | Jun 2002 | B1 |
6438996 | Cuvelier | Aug 2002 | B1 |
6445491 | Sucha et al. | Sep 2002 | B2 |
6449301 | Wu et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6489589 | Alexander | Dec 2002 | B1 |
6501578 | Bernstein et al. | Dec 2002 | B1 |
6552301 | Herman et al. | Apr 2003 | B2 |
6573026 | Aitken et al. | Jun 2003 | B1 |
6592703 | Habeck et al. | Jul 2003 | B1 |
6635849 | Okawa et al. | Oct 2003 | B1 |
6635850 | Amako et al. | Oct 2003 | B2 |
6720519 | Liu et al. | Apr 2004 | B2 |
6729161 | Miura et al. | May 2004 | B1 |
6744009 | Xuan et al. | Jun 2004 | B1 |
6787732 | Xuan et al. | Sep 2004 | B1 |
6800237 | Yamamoto et al. | Oct 2004 | B1 |
6800831 | Hoetzel | Oct 2004 | B1 |
6958094 | Ohmi et al. | Oct 2005 | B2 |
6992026 | Fukuyo et al. | Jan 2006 | B2 |
7009138 | Amako et al. | Mar 2006 | B2 |
7061583 | Mulkens et al. | Jun 2006 | B2 |
7353829 | Wachter et al. | Apr 2008 | B1 |
7402773 | Nomaru | Jul 2008 | B2 |
7511886 | Schultz et al. | Mar 2009 | B2 |
7535634 | Savchenkov et al. | May 2009 | B1 |
7633033 | Thomas et al. | Dec 2009 | B2 |
7642483 | You et al. | Jan 2010 | B2 |
7649153 | Haight et al. | Jan 2010 | B2 |
7726532 | Gonoe | Jun 2010 | B2 |
8104385 | Hayashi et al. | Jan 2012 | B2 |
8118971 | Hori et al. | Feb 2012 | B2 |
8132427 | Brown et al. | Mar 2012 | B2 |
8168514 | Garner et al. | May 2012 | B2 |
8245539 | Lu et al. | Aug 2012 | B2 |
8245540 | Abramov et al. | Aug 2012 | B2 |
8269138 | Garner et al. | Sep 2012 | B2 |
8283595 | Fukuyo et al. | Oct 2012 | B2 |
8292141 | Cox et al. | Oct 2012 | B2 |
8296066 | Zhao et al. | Oct 2012 | B2 |
8327666 | Harvey et al. | Dec 2012 | B2 |
8341976 | Dejneka et al. | Jan 2013 | B2 |
8347651 | Abramov et al. | Jan 2013 | B2 |
8358888 | Ramachandran | Jan 2013 | B2 |
8444906 | Lee et al. | May 2013 | B2 |
8448471 | Kumatani et al. | May 2013 | B2 |
8518280 | Hsu et al. | Aug 2013 | B2 |
8549881 | Brown et al. | Oct 2013 | B2 |
8584354 | Cornejo et al. | Nov 2013 | B2 |
8584490 | Garner et al. | Nov 2013 | B2 |
8592716 | Abramov et al. | Nov 2013 | B2 |
8604380 | Howerton et al. | Dec 2013 | B2 |
8607590 | Glaesemann et al. | Dec 2013 | B2 |
8616024 | Cornejo et al. | Dec 2013 | B2 |
8635887 | Black et al. | Jan 2014 | B2 |
8680489 | Martinez et al. | Mar 2014 | B2 |
8685838 | Fukuyo et al. | Apr 2014 | B2 |
8697228 | Carre et al. | Apr 2014 | B2 |
8720228 | Li | May 2014 | B2 |
8826696 | Brown et al. | Sep 2014 | B2 |
8847112 | Panarello | Sep 2014 | B2 |
8852698 | Fukumitsu | Oct 2014 | B2 |
8887529 | Lu et al. | Nov 2014 | B2 |
8916798 | Plüss et al. | Dec 2014 | B2 |
8943855 | Gomez et al. | Feb 2015 | B2 |
8951889 | Ryu et al. | Feb 2015 | B2 |
8971053 | Kariya et al. | Mar 2015 | B2 |
9138913 | Arai et al. | Sep 2015 | B2 |
9227868 | Matsumoto et al. | Jan 2016 | B2 |
9290407 | Barefoot et al. | Mar 2016 | B2 |
9296066 | Hosseini et al. | Mar 2016 | B2 |
9324791 | Tamemoto | Apr 2016 | B2 |
9327381 | Lee et al. | May 2016 | B2 |
9446590 | Chen et al. | Sep 2016 | B2 |
9481598 | Bergh | Nov 2016 | B2 |
20020046997 | Nam et al. | Apr 2002 | A1 |
20020082466 | Han | Jun 2002 | A1 |
20020097486 | Yamaguchi et al. | Jul 2002 | A1 |
20020110639 | Bruns | Aug 2002 | A1 |
20030006221 | Hong et al. | Jan 2003 | A1 |
20030007773 | Kondo et al. | Jan 2003 | A1 |
20040021615 | Postupack et al. | Nov 2004 | A1 |
20050024743 | Camy-Peyret | Feb 2005 | A1 |
20050098548 | Kobayashi et al. | May 2005 | A1 |
20050115938 | Sawaki et al. | Jun 2005 | A1 |
20050209898 | Asai | Sep 2005 | A1 |
20050274702 | Deshi | Dec 2005 | A1 |
20050277270 | Yoshikawa et al. | Dec 2005 | A1 |
20060011593 | Fukuyo | Jan 2006 | A1 |
20060028728 | Li | Feb 2006 | A1 |
20060109874 | Shiozaki et al. | May 2006 | A1 |
20060127679 | Gulati et al. | Jun 2006 | A1 |
20060151450 | You et al. | Jul 2006 | A1 |
20060227440 | Glukstad | Oct 2006 | A1 |
20060266744 | Nomaru | Nov 2006 | A1 |
20060289410 | Morita et al. | Dec 2006 | A1 |
20070091977 | Sohn et al. | Apr 2007 | A1 |
20070111390 | Komura et al. | May 2007 | A1 |
20070111480 | Maruyama et al. | May 2007 | A1 |
20070119831 | Kandt | May 2007 | A1 |
20070132977 | Komatsuda | Jun 2007 | A1 |
20070138151 | Tanaka et al. | Jun 2007 | A1 |
20070177116 | Amako | Aug 2007 | A1 |
20070202619 | Tamura et al. | Aug 2007 | A1 |
20070298529 | Maeda et al. | Dec 2007 | A1 |
20080000884 | Sugiura et al. | Jan 2008 | A1 |
20080079940 | Sezerman et al. | Apr 2008 | A1 |
20080099444 | Misawa et al. | May 2008 | A1 |
20090013724 | Koyo et al. | Jan 2009 | A1 |
20090176034 | Ruuttu et al. | Jul 2009 | A1 |
20090183764 | Meyer | Jul 2009 | A1 |
20090242528 | Howerton et al. | Oct 2009 | A1 |
20090250446 | Sakamoto | Oct 2009 | A1 |
20090294419 | Abramov et al. | Dec 2009 | A1 |
20090294422 | Lubatschowski et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20100025387 | Arai et al. | Feb 2010 | A1 |
20100029460 | Shojiya et al. | Feb 2010 | A1 |
20100032087 | Takahashi et al. | Feb 2010 | A1 |
20100086741 | Bovatsek et al. | Apr 2010 | A1 |
20100089631 | Sakaguchi et al. | Apr 2010 | A1 |
20100089882 | Tamura | Apr 2010 | A1 |
20100102042 | Garner et al. | Apr 2010 | A1 |
20100129603 | Blick et al. | May 2010 | A1 |
20100147813 | Lei et al. | Jun 2010 | A1 |
20100252540 | Lei et al. | Oct 2010 | A1 |
20100252959 | Lei et al. | Oct 2010 | A1 |
20100276505 | Smith | Nov 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100287991 | Brown et al. | Nov 2010 | A1 |
20100320179 | Morita et al. | Dec 2010 | A1 |
20100326138 | Kumatani et al. | Dec 2010 | A1 |
20110049764 | Lee et al. | Mar 2011 | A1 |
20110049765 | Lei et al. | Mar 2011 | A1 |
20110088324 | Wessel | Apr 2011 | A1 |
20110100401 | Fiorentini | May 2011 | A1 |
20110132881 | Liu | Jun 2011 | A1 |
20110139760 | Shah et al. | Jun 2011 | A1 |
20110183116 | Hung et al. | Jul 2011 | A1 |
20110210105 | Romashko et al. | Sep 2011 | A1 |
20110240611 | Sandstrom et al. | Oct 2011 | A1 |
20110277507 | Lu et al. | Nov 2011 | A1 |
20110318555 | Bookbinder et al. | Dec 2011 | A1 |
20120017642 | Teranishi et al. | Jan 2012 | A1 |
20120047951 | Dannoux et al. | Mar 2012 | A1 |
20120048604 | Cornejo et al. | Mar 2012 | A1 |
20120061440 | Roell | Mar 2012 | A1 |
20120064306 | Kang et al. | Mar 2012 | A1 |
20120067858 | Kangastupa et al. | Mar 2012 | A1 |
20120103018 | Lu et al. | May 2012 | A1 |
20120131962 | Mitsugi et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120135607 | Shimoi et al. | May 2012 | A1 |
20120135608 | Shimoi et al. | May 2012 | A1 |
20120145331 | Gomez et al. | Jun 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120205356 | Pluss | Aug 2012 | A1 |
20120234049 | Bolton | Sep 2012 | A1 |
20120234807 | Sercel et al. | Sep 2012 | A1 |
20120255935 | Kakui et al. | Oct 2012 | A1 |
20120299219 | Shimoi et al. | Nov 2012 | A1 |
20120302139 | Darcangelo et al. | Nov 2012 | A1 |
20130019637 | Sol et al. | Jan 2013 | A1 |
20130034688 | Koike et al. | Feb 2013 | A1 |
20130044371 | Rupp et al. | Feb 2013 | A1 |
20130056450 | Lissotschenko et al. | Mar 2013 | A1 |
20130061636 | Imai et al. | Mar 2013 | A1 |
20130068736 | Mielke et al. | Mar 2013 | A1 |
20130075480 | Yokogi et al. | Mar 2013 | A1 |
20130091897 | Fujii et al. | Apr 2013 | A1 |
20130122264 | Fujii et al. | May 2013 | A1 |
20130126573 | Hosseini et al. | May 2013 | A1 |
20130129947 | Harvey et al. | May 2013 | A1 |
20130133367 | Abramov et al. | May 2013 | A1 |
20130216573 | Hosseini et al. | May 2013 | A1 |
20130143416 | Norval | Jun 2013 | A1 |
20130149434 | Oh et al. | Jun 2013 | A1 |
20130149494 | Koike et al. | Jun 2013 | A1 |
20130167590 | Teranishi et al. | Jul 2013 | A1 |
20130174607 | Wootton et al. | Jul 2013 | A1 |
20130174610 | Teranishi et al. | Jul 2013 | A1 |
20130180285 | Kariya | Jul 2013 | A1 |
20130189806 | Hoshino | Jul 2013 | A1 |
20130192305 | Black et al. | Aug 2013 | A1 |
20130209731 | Nattermann et al. | Aug 2013 | A1 |
20130220982 | Thomas et al. | Aug 2013 | A1 |
20130221053 | Zhang | Aug 2013 | A1 |
20130224439 | Zhang et al. | Aug 2013 | A1 |
20130228918 | Chen et al. | Sep 2013 | A1 |
20130247615 | Boek et al. | Sep 2013 | A1 |
20130266757 | Giron et al. | Oct 2013 | A1 |
20130270240 | Kondo | Oct 2013 | A1 |
20130280495 | Matsumoto | Oct 2013 | A1 |
20130288010 | Akarapu et al. | Oct 2013 | A1 |
20130291598 | Saito et al. | Nov 2013 | A1 |
20130312460 | Kunishi et al. | Nov 2013 | A1 |
20130323469 | Abramov et al. | Dec 2013 | A1 |
20130334185 | Nomaru | Dec 2013 | A1 |
20130340480 | Nattermann et al. | Dec 2013 | A1 |
20140027951 | Srinivas et al. | Jan 2014 | A1 |
20140034730 | Lee | Feb 2014 | A1 |
20140042202 | Lee | Feb 2014 | A1 |
20140047957 | Wu | Feb 2014 | A1 |
20140102146 | Saito et al. | Apr 2014 | A1 |
20140110040 | Cok | Apr 2014 | A1 |
20140113797 | Yamada et al. | Apr 2014 | A1 |
20140133119 | Kariya et al. | May 2014 | A1 |
20140141217 | Gulati et al. | May 2014 | A1 |
20140147623 | Shorey et al. | May 2014 | A1 |
20140147624 | Streltsov et al. | May 2014 | A1 |
20140165652 | Saito | Jun 2014 | A1 |
20140174131 | Saito et al. | Jun 2014 | A1 |
20140199519 | Schillinger et al. | Jul 2014 | A1 |
20140216108 | Wiegel et al. | Aug 2014 | A1 |
20140290310 | Green | Oct 2014 | A1 |
20140320947 | Egerton et al. | Oct 2014 | A1 |
20140333929 | Sung et al. | Nov 2014 | A1 |
20140361463 | Desimone et al. | Dec 2014 | A1 |
20150034612 | Hosseini et al. | Feb 2015 | A1 |
20150038313 | Hosseini | Feb 2015 | A1 |
20150075221 | Kawaguchi et al. | Mar 2015 | A1 |
20150075222 | Mader | Mar 2015 | A1 |
20150110442 | Zimmel et al. | Apr 2015 | A1 |
20150118522 | Hosseini | Apr 2015 | A1 |
20150136743 | Hosseini | May 2015 | A1 |
20150140241 | Hosseini | May 2015 | A1 |
20150140735 | Hosseini | May 2015 | A1 |
20150151380 | Hosseini | Jun 2015 | A1 |
20150158120 | Courvoisier et al. | Jun 2015 | A1 |
20150165548 | Marjanovic et al. | Jun 2015 | A1 |
20150165560 | Hackert et al. | Jun 2015 | A1 |
20150165562 | Marjanovic et al. | Jun 2015 | A1 |
20150165563 | Manley et al. | Jun 2015 | A1 |
20150166391 | Marjanovic et al. | Jun 2015 | A1 |
20150166393 | Marjanovic et al. | Jun 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150166395 | Marjanovic et al. | Jun 2015 | A1 |
20150166396 | Marjanovic et al. | Jun 2015 | A1 |
20150166397 | Marjanovic et al. | Jun 2015 | A1 |
20150183679 | Saito | Jul 2015 | A1 |
20150232369 | Marjanovic et al. | Aug 2015 | A1 |
20150299018 | Bhuyan et al. | Oct 2015 | A1 |
20150360991 | Grundmueller et al. | Dec 2015 | A1 |
20150367442 | Bovatsek et al. | Dec 2015 | A1 |
20160008927 | Grundmueller et al. | Jan 2016 | A1 |
20160009066 | Neiber et al. | Jan 2016 | A1 |
20160023922 | Addiego et al. | Jan 2016 | A1 |
20160031745 | Ortner et al. | Feb 2016 | A1 |
20160060156 | Krueger et al. | Mar 2016 | A1 |
20160279895 | Marjanovic et al. | Sep 2016 | A1 |
20160280580 | Bohme | Sep 2016 | A1 |
20160290791 | Buono et al. | Oct 2016 | A1 |
20170169847 | Tamaki | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2388062 | Jul 2000 | CN |
1283409 | Nov 2006 | CN |
101386466 | Mar 2009 | CN |
101502914 | Aug 2009 | CN |
201357287 | Dec 2009 | CN |
101637849 | Feb 2010 | CN |
201471092 | May 2010 | CN |
102060437 | May 2011 | CN |
102248302 | Nov 2011 | CN |
102343631 | Feb 2012 | CN |
102649199 | Aug 2012 | CN |
102672355 | Sep 2012 | CN |
102898014 | Jan 2013 | CN |
102916081 | Feb 2013 | CN |
102923939 | Feb 2013 | CN |
103013374 | Apr 2013 | CN |
103143841 | Jun 2013 | CN |
203021443 | Jun 2013 | CN |
103273195 | Sep 2013 | CN |
103316990 | Sep 2013 | CN |
103359947 | Oct 2013 | CN |
103359948 | Oct 2013 | CN |
103531414 | Jan 2014 | CN |
10346027 | Apr 2014 | CN |
103746027 | Apr 2014 | CN |
203509350 | Apr 2014 | CN |
104344202 | Feb 2015 | CN |
2231330 | Jan 1974 | DE |
2231330 | Oct 1974 | DE |
10200635555 | Jan 2008 | DE |
102006035555 | Jan 2008 | DE |
102012010635 | Nov 2013 | DE |
102012110971 | May 2014 | DE |
102013223637 | May 2015 | DE |
0270897 | Jun 1988 | EP |
270897 | Feb 1992 | EP |
609978 | Aug 1994 | EP |
0609978 | Aug 1994 | EP |
656241 | Dec 1998 | EP |
938946 | Sep 1999 | EP |
949541 | Oct 1999 | EP |
1159104 | Aug 2004 | EP |
1609559 | Dec 2005 | EP |
1043110 | Aug 2006 | EP |
2133170 | Dec 2009 | EP |
2202545 | Jun 2010 | EP |
2574983 | Apr 2013 | EP |
2754524 | Jul 2014 | EP |
2781296 | Sep 2014 | EP |
2783784 | Oct 2014 | EP |
2859984 | Apr 2015 | EP |
298294 | Oct 2013 | FR |
2989294 | Oct 2013 | FR |
1242172 | Aug 1971 | GB |
1242172 | Aug 1971 | GB |
2481190 | Jan 2015 | GB |
1179770 | Jul 1989 | JP |
6318756 | Nov 1994 | JP |
6318756 | Nov 1994 | JP |
9106243 | Apr 1997 | JP |
09106243 | Apr 1997 | JP |
11197498 | Jul 1999 | JP |
11269683 | Oct 1999 | JP |
11269683 | Oct 1999 | JP |
11330597 | Nov 1999 | JP |
11347758 | Dec 1999 | JP |
11347758 | Dec 1999 | JP |
2001138083 | May 2001 | JP |
2002210730 | Jul 2002 | JP |
2002228818 | Aug 2002 | JP |
2003025085 | Jan 2003 | JP |
2003062756 | Mar 2003 | JP |
2003114400 | Apr 2003 | JP |
2003154517 | May 2003 | JP |
2003181668 | Jul 2003 | JP |
2003238178 | Aug 2003 | JP |
2004209675 | Jul 2004 | JP |
2005104819 | Apr 2005 | JP |
2005205440 | Aug 2005 | JP |
2005288503 | Oct 2005 | JP |
3775250 | May 2006 | JP |
3775410 | May 2006 | JP |
2006130691 | May 2006 | JP |
2006248885 | Sep 2006 | JP |
2007021548 | Feb 2007 | JP |
2007196277 | Aug 2007 | JP |
2007253203 | Oct 2007 | JP |
2009172633 | Aug 2009 | JP |
2010017990 | Jan 2010 | JP |
2010046761 | Mar 2010 | JP |
04592855 | Dec 2010 | JP |
4592855 | Dec 2010 | JP |
2011049398 | Mar 2011 | JP |
4672689 | Apr 2011 | JP |
04672689 | Apr 2011 | JP |
2011517299 | Jun 2011 | JP |
04880820 | Feb 2012 | JP |
4880820 | Feb 2012 | JP |
2012024782 | Feb 2012 | JP |
2012031018 | Feb 2012 | JP |
2012159749 | Aug 2012 | JP |
2012187618 | Oct 2012 | JP |
2013007842 | Jan 2013 | JP |
2013031879 | Feb 2013 | JP |
2013043808 | Mar 2013 | JP |
2013075802 | Apr 2013 | JP |
2013091578 | May 2013 | JP |
05274085 | Aug 2013 | JP |
5274085 | Aug 2013 | JP |
05300544 | Sep 2013 | JP |
5300544 | Sep 2013 | JP |
2013187247 | Sep 2013 | JP |
2013203630 | Oct 2013 | JP |
2013203631 | Oct 2013 | JP |
2013223886 | Oct 2013 | JP |
2012015366 | Feb 2002 | KR |
2009057161 | Jun 2009 | KR |
2009057161 | Jun 2009 | KR |
1020621 | Mar 2011 | KR |
1020621 | Mar 2011 | KR |
2012015366 | Feb 2012 | KR |
1120471 | Mar 2012 | KR |
2012074508 | Jul 2012 | KR |
2012074508 | Jul 2012 | KR |
2013031380 | Mar 2013 | KR |
2013031380 | Mar 2013 | KR |
1269474 | May 2013 | KR |
1269474 | May 2013 | KR |
2013124646 | Nov 2013 | KR |
2013124646 | Nov 2013 | KR |
1344368 | Dec 2013 | KR |
1344368 | Dec 2013 | KR |
2014022980 | Feb 2014 | KR |
2014022980 | Feb 2014 | KR |
2014022981 | Feb 2014 | KR |
2014022981 | Feb 2014 | KR |
2014064220 | May 2014 | KR |
1020140064220 | May 2014 | KR |
201139025 | Nov 2011 | TW |
201226345 | Jul 2012 | TW |
201226345 | Jul 2012 | TW |
1999029243 | Jun 1999 | WO |
1999029243 | Jun 1999 | WO |
1999063900 | Dec 1999 | WO |
1999063900 | Dec 1999 | WO |
2004110693 | Dec 2004 | WO |
2006073098 | Jul 2006 | WO |
2007094160 | Aug 2007 | WO |
2008049389 | May 2008 | WO |
2008080182 | Jul 2008 | WO |
2008128612 | Oct 2008 | WO |
2009114375 | Sep 2009 | WO |
2010035736 | Apr 2010 | WO |
2010111609 | Sep 2010 | WO |
2010129459 | Nov 2010 | WO |
2011025908 | Mar 2011 | WO |
2011056781 | May 2011 | WO |
2012006736 | Jan 2012 | WO |
2012075072 | Jun 2012 | WO |
2012166753 | Jun 2012 | WO |
2012108052 | Aug 2012 | WO |
2012166753 | Dec 2012 | WO |
2013022148 | Feb 2013 | WO |
2013043173 | Mar 2013 | WO |
2013138802 | Sep 2013 | WO |
2013150990 | Oct 2013 | WO |
2013153195 | Oct 2013 | WO |
2014028022 | Feb 2014 | WO |
2014064492 | May 2014 | WO |
2014079478 | May 2014 | WO |
2014079570 | May 2014 | WO |
2014085663 | Jun 2014 | WO |
2014111385 | Jul 2014 | WO |
2014111794 | Jul 2014 | WO |
2014161534 | Oct 2014 | WO |
2014161535 | Oct 2014 | WO |
2015077113 | May 2015 | WO |
2015095088 | Jun 2015 | WO |
2015095090 | Jun 2015 | WO |
2015095146 | Jun 2015 | WO |
2015127583 | Sep 2015 | WO |
2016005455 | Jan 2016 | WO |
2016010954 | Jan 2016 | WO |
2016154284 | Sep 2016 | WO |
Entry |
---|
“What is the difference between Ra and RMS?”; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016. |
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014. |
“Pharos High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2. |
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1-4, Aug. 2011. |
Abakians et al.“Evaporative Cutting of a Semitransparent Body With a Moving CW Laser”, J. Heat Transfer 110(4a), 924-930 (Nov. 1, 1988) (7 pages) doi:10.1115/1.3250594. |
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054. |
Ahmed et al. “Display glass cutting by femtosecond laser induced single shot periodic void array” Applied Physics A: Materials Science and Proccessing vol. 93 No. 1 (2008) pp. 189-192. |
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657. |
Bagchi et al. “Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces” Applied Physics B 88 (2007) p. 167-173. |
Bhuyan et al. “Laser micro- and nanostructuring using femtosecond Bessel beams”, Eur. Phys. J. Special Topics 199 (2011) p. 101-110. |
Bhuyan et al. “Single shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams” Applied Physics Letters 104 (2014) Feb. 11, 2007. |
Bhuyan et al. “Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass” Proc. of SPIE vol. 7728 77281V-1. |
Bhuyan et al., “Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation” by IEEE (2011). |
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, Aug. 11, 2002 (2010); doi: 10.1063/1.3479419. |
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574. |
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf ; archived on Oct. 6, 2013). |
Chiao et al. 9. “Self-trapping of optical beams,” Phys. Rev. Lett, vol. 13, Num. 15, p. 479 (1964). |
Corning Inc., “Corning® 1737 AM LCD Glass Substrates Material Information”, issued Aug. 2002. |
Corning Inc., “Corning® Eagle2000 TM AMLCD Glass Substrates Material Information”, issued Apr. 2005. |
Couairon et al. “Femtosecond filamentation in transparent media” Physics Reports 441 (2007) pp. 47-189. |
Courvoisier et al. “Applications of femtosecond Bessel beams to laser ablation” Applied Physics A (2013) 112, p. 29-34. |
Courvoisier et al. “Surface nanoprocessing with non-diffracting femtosecond Bessel beams” Optics Letters vol. 34 No. 20, (2009) p. 3163-3165. |
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455. |
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”; Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680. |
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America. |
Dong et al. “On-axis irradiance distribution of axicons illuminated by spherical wave”, Optics & Laser Technology 39 (2007) 1258-1261. |
Duocastella et al. “Bessel and annular beams for material processing”, Laser Photonics Rev. 6, 607-621, 2012. |
Durnin. “Exact solutions for nondiffracting beams I. The scaler theory” J. Opt. Soc. Am. A. 4(4) pp. 651-654. |
Eaton et al. “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rates”, Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006. |
Gattass et al. “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates” Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006. |
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98. |
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884. |
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892. |
Gori et al. “Analytical derivation of the optimum triplicator” Optics Communications 157 (1998) pp. 13-16. |
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155. |
Honda et al. “A Novel Polymer Film that Controls Light Transmission”, Progress in Pacific Polymer Science 3, 159-169 (1994). |
http://www.gtat.com/Collateral/Documents/English-US/Sapphire/12-21-12_GT_TouchScreen_V3_web.pdf. |
Hu et al. “5-axis laser cutting interference detection and correction based on STL model” (2009) Zhongguo Jiguang/Chinese Journal of Lasers, 36 (12), pp. 3313-3317. |
Huang et al., “Laser etching of glass substrates by 1064 nm laser irradiation”, Applied Physics, Oct. 2008, vol. 93, Issue 1, pp. 159-162. |
Juodkazis S. et al. Laser induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures., Phys. Rev. Lett. 96, 166101, 2006. |
Karlsson et al. “The technology of chemical glass strengthening—a review” Glass Technol: Eur. J. Glass Sci. Technol. A (2010) 51 (2) pp. 41-54. |
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031. |
Kruger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438. |
Kruger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898. |
Kruger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps”; SPIE vol. 2991, 0277-786X/97, pp. 40-47. |
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/s003399900300. |
Levy et al. “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett vol. 35, No. 6, p. 880-882 (2010). |
Liu X et al. “laser ablation and micromachining with ultrashort laser pulses”, IEEE J. Quantum Electronics, 22, 1706-1716, 1997. |
Maeda et al. “Optical performance of angle-dependent light-control glass”, Proc. SPIE 1536, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, 138 (Dec. 1, 1991). |
Mbise et al. “Angular selective window coatings: theory and experiments” J. Phys. D: Appl. Phys. 30 2103 (1997). |
McGloin et al.“Bessel beams: diffraction in a new light” Contemporary Physics, vol. 46 No. 1 (2005) pp. 15-28. |
Merola et al. “Characterization of Bessel beams generated by polymeric microaxicons” Meas. Sci. Technol. 23 (2012) 10 pgs. |
Mirkhalaf, M. et al., Overcoming the brittleness of glass through bio-inspiration and micro-achitecture, Nature Communications, 5:3166/ncomm4166(2014). |
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810. |
Perry et al., “Ultrashort-pulse laser machining”; UCRL-ID-132159, Sep. 1998, pp. 1-38. |
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24. |
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584. |
Romero et al. “Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings” J. Opt. Soc. Am. A/vol. 24 No. 8 (2007) pp. 2296-2312. |
Salleo A et al., Machining of transparent materials using IR and UV nanosecond laser pulses, Appl. Physics A 71, 601-608, 2000. |
Serafetinides et al., “Polymer ablation by ultra-short pulsed lasers” Proceedings of SPIE vol. 3885 (2000) http://proceedings.spiedigitallibrary.org/. |
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56. |
Shah et al. “Micromachining with a high repetition rate femtosecond fiber laser”, Journal of Laser Micro/Nanoengineering vol. 3 No. 3 (2008) pp. 157-162. |
Shealy et al. “Geometric optics-based design of laser beam shapers”,Opt. Eng. 42(11), 3123-3138 (2003). doi:10.1117/1.1617311. |
Stoian et al. “Spatial and temporal laser pulse design for material processing on ultrafast scales” Applied Physics A (2014) 114, p. 119-127. |
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses”; Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224. |
Thiele, “Relation between catalytic activity and size of particle” Industrial and Egineering Chemistry, vol. 31 No. 7, pp. 916-920. |
Toytman et al. “Optical breakdown in transparent media with adjustable axial length and location”, Optics Express vol. 18 No. 24, 24688-24698 (2010). |
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274. |
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997). |
Velpula et al.. “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams”, Proc. of SPIE vol. 8967 896711-1 (2014). |
Wang et al, “Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation”, Biomicrofluidics 6, 012820 (2012). |
Wu et al. “Optimal orientation of the cutting head for enhancing smoothness movement in three-dimensional laser cutting” (2013) Zhongguo Jiguang/Chinese Journal of Lasers, 40 (1), art. No. 0103005. |
Xu et al. “Optimization of 3D laser cutting head orientation based on the minimum energy consumption” (2014) International Journal of Advanced Manufacturing Technology, 74 (9-12), pp. 1283-1291. |
Yan et al. “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes” Optics Letters vol. 37 No. 16 (2012) pp. 3294-3296. |
Yoshino et al., “Micromachining with a high repetition rate femtosecond fiber laser”; JLMN-Journal of Laser Micro/Nanoengineering vol. 3, No. 3 (2008), pp. 157-162. |
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10. |
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364. |
Arimoto, R. et al.; Imaging properties of axicon in a scanning optical system; Applied Optics; Nov. 1, 1991; pp. 6653-6657; vol. 31, No. 31; Optical Society of America. |
Betriebsanleitung; TruMicro 5000; Aug. 2011; pp. 1-4. |
Bhuyan, M. et al.; High aspect ratio nanochannel machining using single shot femtosecond Bessel beams; Applied Physics Letters; Aug. 23, 2010; pp. 081102-1-081102-3; vol. 97. |
Bhuyan, M. et al.; High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams; Optics Express; Jan. 18, 2010; pp. 566-574; vol. 18, No. 2; Optical Society of America. |
Cubeddu, R. et al.; A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering; SPIE Conference on Optical Tomography and Spectroscopy of Tissue III; San Jose, California; Jan. 1999; pp. 450-455; vol. 3597; SPIE. |
Cubeddu, R. et al.; Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance; Applied Optics; Jun. 1, 1999; pp. 3670-3680; vol. 38, No. 16; Optical Society of America. |
Ding, Z. et al.; High-resolution optical coherence tomography over a large depth range with an axicon lens; Optics Letters; Feb. 15, 2002; pp. 243-245; vol. 27, No. 4; Optical Society of America. |
EagleEtch; TheAnti-glare Glass for Technical Display Applications; Glass and Polymer Technologies; pp. 1-8; EuropTec USA Inc. |
Girkin, J. et al.; Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers; SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers; San Jose, California; Jan. 1999; pp. 92-98; vol. 3616; SPIE. |
Glezer, E. et al.; Ultrafast-laser driven micro-explosions in transparent materials; Applied Physics Letters; 1997; pp. 882-884, vol. 71. |
Golub, I.; Fresnel axicon; Optics Letters; Jun. 15, 2006; pp. 1890-1892;. vol. 31, No. 12; Optical Society of America. |
Herman, P. et al.; Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains; SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers; San Jose, California; Jan. 1999; pp. 148-155; vol. 3616; SPIE. |
Kosareva, O. et al.; Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse; Quantum Electronics; 2005; pp. 1013-1014; vol. 35, No. 11; Kvantovaya Elektronika and Turpion Ltd. |
Kruger, J. et al.; Femtosecond-pulse visible laser processing of transparent materials; Applied Surface Science; 1996; pp. 430-438; Elsevier B.V. |
Kruger, J. et al.; Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps; Applied Surface Science; 1998; pp. 892-898; Elsevier B.V. |
Kruger, J. et al.; Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps; SPIE Proceedings; San Jose, California; Feb. 8, 1997; pp. 40-47 vol. 2991; SPIE. |
Lapczyna, M. et al.; Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses; Applied Physics A Materials Science & Processing; Dec. 28, 1999; pp. S883-S886; vol. 69 (Suppl.) Springer-Verlag. |
Perry, M. et al.; Ultrashort-Pulse Laser Machining; Lawrence Livermore National Laboratory; Sep. 1998; pp. 1-30. |
Perry, M. et al.; Ultrashort-Pulse Laser Machining; International Congress on Applications of Lasers and Electro-Optics; Orlando, Florida; Nov. 16-19, 1998; pp. 1-24. |
Perry, M. et al.; Ultrashort-pulse laser machining of dielectric materials; Journal of Applied Physics; May 1, 1999; pp. 6803-6810; vol. 85, No. 9; American Institute of Physics. |
Pharos High-power Femtosecond Laser System specification; Light Conversion; 2011; pp. 1-2. |
Polynkin, P. et al.; Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air; Optics Express; Jan. 19, 2009; pp. 575-584; vol. 17, No. 2; Optical Society of America. |
Serafetinides, A. et al.; Ultra-short pulsed laser ablation of polymers; Applied Surface Science; 2011; pp. 42-56; vol. 180; Elsevier Science B.V. |
Sundaram, S. et al.; Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses; Nature Materials; Dec. 2002; pp. 217-224; vol. 1; Nature Publishing Group. |
Vanagas, E. et al.; Glass cutting by femtosecond pulsed irradiation; Journal of Micro/Nanolithography, MEMS, and MOEMS; Mar. 31, 2004; pp. 1-18; vol. 3, Issue 2; SPIE. |
Varel, H. et al.; Micromachining of quartz with ultrashort laser pulses; Applied Physics A Materials Science & Processing; 1997; pp. 367-373; vol. 65. |
Yoshino, F. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN-Journal of Laser Micro/Nanoengineering; 2008; pp. 157-162; vol. 3, No. 3. |
Zeng, D. et al.; Characteristic analysis of refractive axicon system for optical trepanning; Optical Engineering; Sep. 2006; pp. 094302-1-094302-10; vol. 45, No. 9. |
Zhang, G. et al.; Design of diffractive-phase axicon illuminated by a Gaussian-profile beam; Acta Physica Sinica; May 1996; pp. 354-364; vol. 5, No. 5; Chin. Phys. Soc. |
Kerr. “Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical Analysis” Physical Review A. 4(3) 1971, pp. 1196-1218. |
Abakians, H. et al.; Evaporative Cutting of a Semitransparent Body With a Moving CW Laser; Journal of Heat Transfer; Nov. 1988; pp. 924-930; vol. 110; ASME. |
Ahmed, F. et al.; Display glass cutting by femtosecond laser induced single shot periodic void array; Applied Physics A Material Science & Processing; Jun. 3, 2008; pp. 189-192; vol. 93; Springer-Verlag. |
Bagchi, S. et al.; Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces; Applied Physics B Lasers and Optics; Jun. 27, 2007; pp. 167-173; vol. 88; Springer-Verlag. |
Bhuyan, M.K. et al.; Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation; ResearchGate Conference Paper; Sep. 2011; pp. 1-4. |
Bhuyan, M.K. et al.; Laser micro- and nanostructuring using femtosecond Bessel beams; The European Physical Journal Special Topics; Dec. 7, 2011; pp. 101-110; vol. 1999; EDP Sciences, Springer-Verlag. |
Bhuyan, M.K. et al.; Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams; Applied Physics Letters; Jan. 14, 2014; pp. 021107-1-021107-4; vol. 104; AIP Publishing LLC. |
Bhuyan, M.K. et al.; Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass; Nonlinear Optics and Applications IV; 2010; pp. 77281V-1-77281V-8; vol. 7728; SPIE. |
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc. |
Chiao, R. Y. et al.; Self-Trapping of Optical Beams; Physical Review Letters; Oct. 12, 1964; pp. 479-482; vol. 13, No. 15. |
Corning Eagle AMLCD Glass Substrates Material Information; Apr. 2005; pp. MIE 201-1-MIE 201-3; Corning Incorporated. |
Corning 1737 AMLCD Glass Substrates Material Information; Aug. 2002; pp. MIE 101-1-MIE 101-3; Corning Incorporated. |
Couairon, A. et al.; Femtosecond filamentation in transparent media; ScienceDirect Physical Reports; Feb. 6, 2007; pp. 47-189; vol. 441; Elsevier B.V. |
Courvoisier, F. et al.; Applications of femtosecond Bessel beams to laser ablation; Applied Physics A Materials Science & Processing; Sep. 6, 2012; pp. 29-34; vol. 112; Springer-Verlag. |
Courvoisier, F. et al.; Surface nanoprocessing with nondiffracting femtosecond Bessel beams; Optics Letters; Oct. 15, 2009; pp. 3163-3165; vol. 34, No. 20; Optical Society of America. |
Dong, M. et al.; On-axis irradiance distribution of axicons illuminated by spherical wave; ScienceDirect Optics & Laser Technology; Sep. 2007; pp. 1258-1261; vol. 39; Elsevier Ltd. |
Duocastella, M. et al.; Bessel and annular beams for materials processing; Laser & Photonics Reviews; 2012; pp. 607-621; vol. 6, No. 5. |
Durnin, J.; Exact solutions for nondiffracting beams. I. The scalar theory; J. Opt. Soc. Am. A; Apr. 1987; pp. 651-654; vol. 4, No. 4; Optical Society of America. |
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America. |
Gattass, R. et al.; Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates; Optics Express; Jun. 12, 2006; pp. 5279-5284; vol. 14, No. 12; Optical Society of America. |
Gori, F. et al.; Analytical derivation of the optimum triplicator; Optics Communications; Dec. 1, 1998; pp. 13-16; vol. 157; Elsevier B.V. |
Honda, M. et al.; A Novel Polymer Film that Controls Light Transmission; Progress in Pacific Polymer Science 3; 1994; pp. 159-169; Springer-Verlag Berlin Heidelberg. |
Hu, Z. et al.; 5-Axis Laser Cutting Interference Detection and Correction Based on STL Model; Chinese Journal of Lasers; Dec. 2009; pp. 3313-3317; vol. 36, No. 12. |
Huang, Z. et al.; Laser etching of glass substrates by 1064 nm laser irradiation; Applied Physics A Materials Science & Processing; Jun. 6, 2008; pp. 159-163; vol. 93; Springer-Verlag. |
Juodkazis, S. et al.; Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures; Physical Review Letters; Apr. 28, 2006; pp. 166101-1-166101-4; vol. 96; The American Physical Society. |
Karlsson, S. et al.; The Technology of Chemical Glass Strengthening—A Review; Glass Technology—European Journal of Glass Science and Technology Part A; Apr. 2010; pp. 41-54; vol. 51, No. 2. |
Levy, U. et al.; Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography; Optics Letters; Mar. 15, 2010; pp. 880-882; vol. 35, No. 6; Optical Society of America. |
Liu, X. et al.; Laser Ablation and Micromachining with Ultrashort Laser Pulses; IEEE Journal of Quantum Electronics; Oct. 1997; p. 1706-1716; vol. 33, No. 10; IEEE. |
Maeda, K. et al.; Optical performance of angle dependent light control glass; Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X; 1991; pp. 138-148; vol. 1536; SPIE. |
Mbise, G. et al.; Angular selective window coatings; theory and experiments; J. Phys. D: Appl. Phys.; 1997; pp. 2103-2122; vol. 30; IOP Publishing Ltd. |
McGloin, D. et al.; Bessel beams: diffraction in a new light; Contemporary Physics; Jan.-Feb. 2005; pp. 15-28; vol. 46; Taylor & Francis Ltd. |
Merola, F. et al.; Characterization of Bessel beams generated by polymeric microaxicons; Measurement Science and Technology; May 15, 2012; pp. 1-10; vol. 23; IOP Publishing Ltd. |
Mirkhalaf, M. et al.; Overcoming the brittleness of glass through bio-inspiration and micro-architecture; Nature Communications; Jan. 28, 2014; pp. 1-9; Macmillan Publishers Limited. |
Romero, L. et al.; Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings; J. Opt. Soc. Am. A; Aug. 2007; pp. 2296-2312; vol. 24, No. 8; Optical Society of America. |
Salleo, A. et al.; Machining of transparent materials using an IR and UV nanosecond pulsed laser; Applied Physics A Materials Science & Processing; Sep. 20, 2000; pp. 601-608; vol. 71; Springer-Verlag. |
Serafetinides, A. et al.; Polymer Ablation by Ultra-Short Pulsed Lasers; Proceedings of SPIE; 2000; pp. 409-415. |
Shah, L. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN-Journal of Laser Micro/Nanoengineering; Nov. 2008; pp. 157-162; vol. 3, No. 3. |
Shealy, D. et al.; Geometric optics-based design of laser beam shapers; Opt. Eng.; Nov. 2003; pp. 3123-3138; vol. 42, No. 11; Society of Photo-Optical Instrumentation Engineers. |
Yan, Y. et al.; Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes; Optics Letters; Aug. 15, 2012; pp. 3294-3296; vol. 37, No. 16; Optical Society of America. |
Abramov, A. et al.; Laser separation of chemically strengthened glass; ScienceDirect Physics Procedia; 2010; pp. 285-290; vol. 5; Elsevier B.V. |
Stoian, R. et al.; Spatial and temporal laser pulse design for material processing on ultrafast scales; Applied Physics A Materials Science & Processing; Jan. 1, 2014; pp. 119-127; vol. 114; Springer-Verlag Berlin Heidelberg. |
Thiele, E.; Relation between Catalytic Activity and Size of Particle; Industrial and Engineering Chemistry; Jul. 1939; pp. 916-920; vol. 31, No. 7. |
Toytman, I. et al.; Optical breakdown in transparent media with adjustable axial length and location; Optic Express; Nov. 22, 2010; pp. 24688-24698; vol. 18, No. 24; Optical Society of America. |
Velpula, P. et al.; Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams; Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX; Proc. of SPIE; 2014; pp. 896711-1-896711-8; vol. 8967; SPIE. |
Wang, Z. et al.; Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation; Biomicrofluidics; Mar. 12, 2012; pp. 012820-1-012820-12; vol. 6; American Institute of Physics. |
Ra & RMS: Calculating Surface Roughness; Harrison Eelectropolishing; 2012. |
Wu, W. et al.; Optimal Orientation of the Cutting Head for Enhancing Smoothness Movement in Three-Dimensional Laser Cutting; Chinese Journal of Lasers; Jan. 2013; pp. 0103005-1-0103005-7, vol. 10, No. 1. |
GT ASF Grown Sapphire Cover and Touch Screen Material; www.gtat.com; 2012; pp. 1-2; GTAT Corporation. |
Xu, H. et al.; Optimization of 3D laser cutting head orientation based on minimum energy consumption; Int J Adv Manuf Technol; Jun. 28, 2014; pp. 1283-1291; vol. 74; Springer-Verlag London. |
Number | Date | Country | |
---|---|---|---|
20170189999 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62024059 | Jul 2014 | US |