The present application generally relates to computer assistance in positioning orthopedic implants on bones, using patient specific instrumentation.
Orthopedic implants often comprise an articular surface that replaces damaged bone surface. There are different ways to secure the implant to a bone, one of which involves the use of a cement. In some instances, such as in shoulder implant surgery, the bones are relatively thin and this is a parameter to take into consideration when implanting the implant. For example, cement bores that are defined in the bone are often deeper than the length of the implant portion for cement to be received therein. However, there is a risk that a bore extends through the bone, as the subsequent injection of cement could unknowingly penetrate the body and cause various types of ailments. It is therefore desirable to assist the procedure of positioning cement bores for subsequent re-altering the bone.
It is therefore an aim of the present invention to provide a novel method and system for assisting implant placement in thin bones.
Therefore, in accordance with a first embodiment of the present disclosure, there is provided a method for planning a creation of a cement bore in a bone, comprising: obtaining a virtual model of a bone, the model of the bone including a proximal bone surface, a distal bone surface, and a depth profile between the proximal bone surface and the distal bone surface; obtaining a planned positioning of a first implant selected to be implanted in the proximal bone surface; obtaining an identity of at least one tool used to alter the proximal bone surface to receive the first implant in the planned positioning and obtaining geometry data for the at least one tool; generating a cement bore required in the bone using the geometry data of the at least one tool and the planned positioning of the first implant; and outputting the virtual model of the bone with the cement bore indicative of a relation between the cement bore and the distal bone surface.
Further in accordance with the first embodiment, the method is repeated with a second implant if the cement bore for the first implant pierces through the distal bone surface.
Still further in accordance with the first embodiment, a jig model is generated and output and has a contour surface being a negative of a corresponding surface of the bone for complementary unique engagement, the jig model for creating the cement bore in the bone.
Still further in accordance with the first embodiment, generating the jig model comprises defining a stop on the jig model to limit a depth of the cement bore to that calculated.
Still further in accordance with the first embodiment, outputting the virtual model of the bone with the cement bore comprises outputting a virtually manipulable three-dimensional model.
Still further in accordance with the first embodiment, obtaining a virtual model of a bone comprises generating a three-dimensional virtual model of the bone using imaging.
Still further in accordance with the first embodiment, obtaining an identity of at least one tool comprises determining the identity of the at least one tool using an identity or geometry data of the first implant.
Still further in accordance with the first embodiment, obtaining a planned positioning of a first implant comprises generating a model of the first implant relative to a virtual model of the bone for navigated selection.
Still further in accordance with the first embodiment, generating the cement bore comprises calculating that the cement bore for the first implant pierces through the distal bone surface, and wherein outputting the virtual model of the bone with the cement bore comprises indicating that the first implant pierces through the distal bone surface.
Still further in accordance with the first embodiment, the method is for planning a creation of a cement bore in a scapula.
In accordance with a second embodiment of the present disclosure, there is provided a system for planning a creation of a cement bore in a bone comprising: a bone modeler module for obtaining a virtual model of a bone, the model of the bone including a proximal bone surface, a distal bone surface, and a depth profile between the proximal bone surface and the distal bone surface; and a depth image generator module for obtaining a planned positioning of a first implant selected to be implanted in the proximal bone surface, for obtaining an identity of at least one tool used to alter the proximal bone surface to receive the first implant in the planned positioning and obtaining geometry data for the at least one tool, and for calculating a cement bore required in the bone using the geometry data of the at least one tool and the planned positioning of the first implant, and for an outputting the virtual model of the bone with the cement bore indicative of a relation between the cement bore and the distal bone surface.
Still further in accordance with the second embodiment, a PSI jig module outputs a jig model having a contour surface being a negative of a corresponding surface of the bone for complementary unique engagement, the jig model for creating the cement bore in the bone.
Still further in accordance with the second embodiment, the jig model comprises a stop to limit a depth of the cement bore to that calculated.
Still further in accordance with the second embodiment, the jig model is a three-dimension printable model.
Still further in accordance with the second embodiment, the depth image generator module outputs a virtually manipulable three-dimensional model of the bone with the cement bore.
Still further in accordance with the second embodiment, the bone modeler module generates a three-dimensional virtual model of the bone from imaging data.
Still further in accordance with the second embodiment, the depth image generator module determines the identity of the at least one tool using an identity or geometry data of the first implant.
Still further in accordance with the second embodiment, the depth image generator module generates and outputs a model of the first implant relative to virtual model of the bone for navigated selection.
Still further in accordance with the second embodiment, a depth warning module calculates that the cement bore for the first implant pierces through the distal bone surface, the system indicating that the first implant pierces through the distal bone surface.
Still further in accordance with the second embodiment, the system is configured to plan the creation of the cement bore in a scapula.
Referring to the drawings, and more particularly to
According to 12, the bone is virtually modeled. Obtaining the model includes generating the virtual model using imaging. The imaging may be done by any appropriate technology such as CT scanning (computerized tomography), fluoroscopy, or like radiography methods, providing suitable resolution of images. The bone modeling may also be performed or supplemented by surface palpation, as an alternative or supplemental embodiment, using other tracking technology (e.g., optical, inertial sensors). The model of the bone comprises a surface geometry of parts of the bone with or without cartilage. As the present disclosure relates to thin bones, the modeling of the bone comprises generating opposed surfaces to illustrate the depth profile of the portion of the bone of interest, i.e., the depth variations between the bone surfaces. The expression “depth” is used, as the bone will be altered in depth (e.g., using a drill); however, the expression “thickness” could also be employed, as in the thickness of the bone is profiled. The bone surfaces may include a proximal surface, that is exposed during surgery and upon which alterations are made, and a distal surface, often hidden behind soft tissue during surgery. To render surgery as minimally invasive as possible, the distal surface remains hidden so as not to displace soft tissue. In the case of shoulder surgery, the proximal surface may be the glenoid (a.k.a., glenoid vault, glenoid cavity, glenoid fossa).
The bone modeling may comprise generating or refining a 3D surface of the bone if the bone modeling is not directly performed by the imaging equipment, or if not complete. Additional structures may be modeled as well, such as cartilage, etc.
According to 13, a cement bore model is generated, and is specific to the implant selected by the operator of the method 10. For example, based on the imaging, an implant model may be selected using sizing parameters and like information, according to a surgeon's preference, to an engineer's design considerations, etc. The cement bore model consists of a representation of the bone alterations that must be performed in the bone, for the implant to be received and anchored to the bone based on a planned positioning of the implant. As seen in
13 may be broken down into 13A to 13E, in accordance with an embodiment, to generate the cement bore model A. According to 13A, planned positioning and/or size data may obtained for the selected implant. The size data may be obtained using a data file associated with the implant model or with the implant selection. The size data may also be calculated using the virtual implant model. The size data is specific to the implant selection. The planned positioning may be selected by the operator or the surgeon, prior to or during the method 10. When the planned positioning is selected during the method 10, 13A may include generating a model of the implant relative to a virtual model of the bone for navigated selection, i.e., allowing the operator and/or surgeon to move the implant or part of it relative to the bone, until a desired positioning is reached, i.e., the planned positioning. The planned positioning may include a position and orientation of the implant relative to the bone, whereby the navigated selection may include rotating and translating the virtual model of the implant relative to the virtual model of the bone.
According to 13B, an identity of the tool(s) required to alter the bone is obtained, and it may be determined, based on the planned positioning of the selected implant, and the determination may be based on the size data of the selected implant. For example, if a peg of a given diameter and length is to be inserted in the bone, the identity of the tool will be as a function of making a hole of sufficient cross-section to receive the peg. The pairing of implants and altering tool(s) may be done before the generation of the cement bore model A, for example as part of the specifications of the implants. The specifications may indeed identify the tool(s) required or suggested to perform the alterations and prepare the bone to receive the selected implant. The identity may be part of a data file accompanying the implant model obtained by the system. The determination of identity may also be effected once the implant is selected, based on a condition or anatomical features of the bone.
According to 13C, geometry data is obtained for the tool(s) identified or paired to the selected implant. In particular, the geometry data is that of the working end of the tool(s), i.e., the part of the tool(s) that alter the bone. The geometry data may be in the form of a virtual tool model and/or quantitative data.
According to 13D, a cement bore A is generated by calculating the alterations to be made to the bone with the tool(s), to receive the selected implant. The generation of the cement bore A may include determining a depth of penetration of the tool(s) to create sufficient space for the insertion of any implant component (such as a peg). Therefore, the generation of the cement bore A may include a consideration of the implant geometry and of the tool geometry.
According to 14, a depth image or model is output, displaying the image or model of the cement bore relative to the virtual model of the bone. The image or model may also include the selected implant and/or tool associated to the cement bore model A. For instance, the images of
The generating of depth image/model of 14 may include indicating to the operator of the piercing of the distal surface, or may advise that the cement bore model A has reached a warning zone predefined in proximity to the distal surface. The warning may be in the form of a change of color of the cement bore model A, a message indicating a fault, a rejection of the implant selection. The outputting of the depth image/model may provide quantitative data representative of the distance to the distal surface, to guide the operator in selecting a different implant.
Any of these features allow the operator to be informed any risk in piercing through the thin dimension of the bone and causing hidden leaks of cement. 13 and 14 may be repeated until the operator finalizes the selection of the implant, based on the positioning and planning data generated in 13.
According to 15, once the operator has selected an implant as set forth above, a PSI jig model may be generated. The jig model will have a contact surface(s) defined to abut against the bone based in the planning visualized in 14, in a predictable and precise manner. Typically, the PSI jig is a cutting block or cutting guide that will guide the identified tool(s) of 13 to alter the bone to ensure the implant is positioned as planned, and to ensure that the alterations are as planned, including the cement bore planned to be as the cement bore model A in 13 and 14. The PSI jig model of 15 may therefore comprise cutting planes, drill guides, slots, or any other tooling interface or tool, oriented and/or positioned to allow bone alterations to be formed in a desired location of the bone, relative to the preplanned position. Moreover, as the depth of the cement bore must be as planned with the cement bore model A, the PSI jig model of 15 may feature a depth stop for the tool, or like tool abutment surfaces to limit the depth of machining of the tool as a function of the planned cement bore depth. The PSI jig model of 15 may be a 3D printable model (e.g., an STL file).
Alternatively, in 15, a navigation file may be created, which navigation file will be used during surgery to guide the operator in manipulating the tools to alter the bone as planned in 14. For example, inertial sensors or optical tracking technology may be used in the implant procedure, and the navigation file will be used by the computer-assisted surgery system to guide the operator to create the cement bore corresponding to the planned cement bore model A.
According to 16, once the PSI jig model has been generated, the PSI jig may be created, according to any appropriate method, such as 3D printing (additive manufacturing), NC machining, etc. The PSI jig created in 16 may then be used intra-operatively to allow alterations to be made on the bone, and to reproduce the planned cement bore model A. For example, to ensure a suitable depth is achieved, the PSI jig may be used to guide a drill (e.g., a cannulated drill) or a pressurizer.
Now that the method for planning a creation of a cement bore in a bone and designing and creating a PSI device for assisting implant placement and cement bore alteration in thin bones, a system is set forth.
A system for assisting implant placement in thin bones (including planning a creation of a cement bore in a bone and designing and creating a PSI device for assisting implant placement and cement bore alteration in thin bones) is generally shown at 20 in
The system 20 comprises a processor unit 40 (e.g., computer, laptop, etc.) that comprises different modules so as to ultimately produce a jig model or a navigation file. The processing unit 40 of the system 20 may therefore comprise a bone modeler 41 receiving images from sources 30 or 31 to generate a 3D model of the bone. In accordance with the method 10 of
The bone modeler 41 will create the 3D model of the bone that is then used by a depth image generator 42 of the processing unit 40. Alternatively, the depth image generator 42 may use a 3D model provided by the image source 31, provided the model obtained from the image source 31 comprises sufficient data, including the depth profile featuring both sides of a thin portion of a bone upon which alterations must be performed.
The depth image generator 42 obtains a planned positioning of an implant, which may include a model of an implant based for example on a selection made by an operator. In an embodiment, the implant model is selected in an implant database 42A. The implant model may include size data. The size data may also be calculated using the virtual implant model. The size data is specific to the implant selection. The depth image generator 42 may generate a model of the implant relative to a virtual model of the bone for navigated selection, by which a surgeon or operator may reach the planned positioning, as a depth model B. However, the planned positioning may have been previously done, and simply obtained by the depth image generator 42.
The depth image generator 42 also identifies the tool(s) required to alter the bone for receiving the implant, i.e., based on the selection made by the operator and the planned positioning. The depth image generator 42 may use the size data to identify a tool having the right dimensions to make a hole capable of receiving the implant. The pairing of implants and altering tool(s) may be provided as part of the specifications of the implants. The identification by the depth image generator 42 may include obtaining geometry data for the tool(s) identified or paired to the selected implant. In particular, the geometry data is that of the working end of the tool(s), i.e., the part of the tool(s) that alter the bone. The geometry data may be in the form of a virtual tool model and/or quantitative data.
With this data, the depth image generator 42 generates the virtual depth model B on any appropriate interface, featuring the cement bore A relative to the bone model. The depth image generator 42 outputs (generates) the depth images or models such as those shown in
A depth warning module 42C may be used in conjunction with the depth image generation 42 to warn the operator of the piercing of the distal surface, or may advise that the cement bore model A has reached a warning zone in too close proximity to the distal surface. The warning may be in the form of a change of colour of the cement bore model A, a message indicating a fault, a rejection of the implant selection. The depth warning module 42C may also provide quantitative data representative of the distance to the distal surface, to guide the operator in selecting a different implant
Once the operator is satisfied with the implant selection and position based on the data obtained from the depth image generator 42, a PSI jig model generator 43 will generate a jig model (e.g., such as a 3D printable model). As in 15 of the method 10, the jig model will have a contact surface(s) defined to abut against the bone in a predictable and precise manner, for performing alterations to the bone to lead to the planned implant position, including the planned position and depth of the cement bore model A planned. As the PSI jig will support a tool to perform alterations on the bone, the jig model comprises cutting planes, guides, slots, or any other tooling interface or tool, trackers (oriented and/or positioned to allow bone alterations to be formed in a desired location of the bone, relative to the contact surface(s), as well as a depth stop for the tool, or like tool abutment surfaces to limit the depth of machining of the tool as a function of the planned cement bore depth.
Thus, PSI model generator 43 may alternatively be a navigation file generator, the navigation file being used in computer-assisted surgery for assisting the operator in placing the implant as planned.
Accordingly, the system 20 outputs a PSI jig model or navigation file 50 that will be used to create the PSI jig. The PSI jig may be created, according to any appropriate method, such as 3D printing (additive manufacturing), NC machining, etc. The PSI jig or navigation file is then used intra-operatively to alter the bone for subsequent implant installation.
While the methods and systems described above have been described and shown with reference to particular steps performed in a particular order, these steps may be combined, subdivided or reordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, the order and grouping of the steps is not a limitation of the present disclosure.
The present application claims priority of U.S. Provisional Patent Application No. 62/138,165, filed on Mar. 25, 2015, and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4841975 | Woolson | Jun 1989 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5490854 | Fisher et al. | Feb 1996 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5871018 | Delp et al. | Feb 1999 | A |
5916219 | Matsuno et al. | Jun 1999 | A |
6648640 | Rubbert | Nov 2003 | B2 |
7357057 | Chiang | Apr 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7510557 | Bonutti | Mar 2009 | B1 |
7534263 | Burdulis | May 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7717956 | Lang | May 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7806897 | Bonutti | Oct 2010 | B1 |
7967868 | White et al. | Jun 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8070752 | Metzger et al. | Dec 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8092465 | Metzger et al. | Jan 2012 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8133234 | Meridew et al. | Mar 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8175683 | Roose | May 2012 | B2 |
8221430 | Park et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8282646 | Schoenefeld et al. | Oct 2012 | B2 |
8298237 | Schoenefeld | Oct 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8366771 | Burdulis et al. | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski | Sep 2013 | B2 |
8585708 | Fitz et al. | Sep 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
9737367 | Steines | Aug 2017 | B2 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040153079 | Tsougarakis et al. | Aug 2004 | A1 |
20040204644 | Tsougarakis et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20050234461 | Burdulis et al. | Oct 2005 | A1 |
20050267584 | Burdulis et al. | Dec 2005 | A1 |
20060111722 | Bouadi | May 2006 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070156171 | Lang et al. | Jul 2007 | A1 |
20070157783 | Chiang | Jul 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070226986 | Park et al. | Oct 2007 | A1 |
20070233141 | Park et al. | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070250169 | Lang | Oct 2007 | A1 |
20080114370 | Schoenefeld | May 2008 | A1 |
20080147072 | Park et al. | Jun 2008 | A1 |
20080161815 | Schoenefeld et al. | Jul 2008 | A1 |
20080195216 | Philipp | Aug 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20090024131 | Metzgu et al. | Jan 2009 | A1 |
20090088753 | Aram et al. | Apr 2009 | A1 |
20090088754 | Aker et al. | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090088758 | Bennett | Apr 2009 | A1 |
20090088759 | Aram et al. | Apr 2009 | A1 |
20090088760 | Aram et al. | Apr 2009 | A1 |
20090088761 | Roose et al. | Apr 2009 | A1 |
20090088763 | Aram et al. | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090099567 | Zajac | Apr 2009 | A1 |
20090110498 | Park et al. | Apr 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090131942 | Aker et al. | May 2009 | A1 |
20090138020 | Park et al. | May 2009 | A1 |
20090157083 | Park et al. | Jun 2009 | A1 |
20090222014 | Bojarksi et al. | Sep 2009 | A1 |
20090222016 | Park et al. | Sep 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090254093 | White et al. | Oct 2009 | A1 |
20090270868 | Park et al. | Oct 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090307893 | Burdulis, Jr. et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100042105 | Park et al. | Feb 2010 | A1 |
20100049195 | Park et al. | Feb 2010 | A1 |
20100054572 | Tsougarakis et al. | Mar 2010 | A1 |
20100082035 | Keefer | Apr 2010 | A1 |
20100087829 | Metzger et al. | Apr 2010 | A1 |
20100152741 | Park et al. | Jun 2010 | A1 |
20100152782 | Stone et al. | Jun 2010 | A1 |
20100160917 | Fitz et al. | Jun 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100174376 | Lang et al. | Jul 2010 | A1 |
20100185202 | Lester et al. | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100212138 | Carroll et al. | Aug 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217338 | Carroll et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100234849 | Bouadi | Sep 2010 | A1 |
20100256479 | Park et al. | Oct 2010 | A1 |
20100262150 | Lian | Oct 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100281678 | Burdulis, Jr. et al. | Nov 2010 | A1 |
20100286700 | Snider et al. | Nov 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305573 | Fitz et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110015636 | Katrana et al. | Jan 2011 | A1 |
20110015637 | De Smedt et al. | Jan 2011 | A1 |
20110015639 | Metzger et al. | Jan 2011 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110040168 | Arnaud et al. | Feb 2011 | A1 |
20110054478 | Vanasse et al. | Mar 2011 | A1 |
20110060341 | Angibaud et al. | Mar 2011 | A1 |
20110066193 | Lang et al. | Mar 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071533 | Metzger et al. | Mar 2011 | A1 |
20110071581 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110092977 | Salehi et al. | Apr 2011 | A1 |
20110093108 | Ashby et al. | Apr 2011 | A1 |
20110106093 | Romano et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110160736 | Meridew et al. | Jun 2011 | A1 |
20110160867 | Meridew et al. | Jun 2011 | A1 |
20110166578 | Stone et al. | Jul 2011 | A1 |
20110172672 | Dubeau et al. | Jul 2011 | A1 |
20110184419 | Meridew et al. | Jul 2011 | A1 |
20110196377 | Hodorek et al. | Aug 2011 | A1 |
20110213368 | Fitz et al. | Sep 2011 | A1 |
20110213373 | Fitz et al. | Sep 2011 | A1 |
20110213374 | Fitz et al. | Sep 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110213377 | Lang et al. | Sep 2011 | A1 |
20110213427 | Fitz et al. | Sep 2011 | A1 |
20110213428 | Fitz et al. | Sep 2011 | A1 |
20110213429 | Lang et al. | Sep 2011 | A1 |
20110213430 | Lang et al. | Sep 2011 | A1 |
20110213431 | Fitz et al. | Sep 2011 | A1 |
20110214279 | Park et al. | Sep 2011 | A1 |
20110218539 | Fitz et al. | Sep 2011 | A1 |
20110218545 | Catanzarite et al. | Sep 2011 | A1 |
20110218584 | Fitz et al. | Sep 2011 | A1 |
20110224674 | White et al. | Sep 2011 | A1 |
20110230888 | Lang et al. | Sep 2011 | A1 |
20110238073 | Lang et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110295329 | Fitz et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110313423 | Lang et al. | Dec 2011 | A1 |
20110313424 | Bono et al. | Dec 2011 | A1 |
20110319897 | Lang et al. | Dec 2011 | A1 |
20110319900 | Lang et al. | Dec 2011 | A1 |
20120010711 | Antonyshyn et al. | Jan 2012 | A1 |
20120029520 | Lang et al. | Feb 2012 | A1 |
20120041445 | Roose et al. | Feb 2012 | A1 |
20120041446 | Wong et al. | Feb 2012 | A1 |
20120065640 | Metzger et al. | Mar 2012 | A1 |
20120066892 | Lang et al. | Mar 2012 | A1 |
20120071881 | Lang et al. | Mar 2012 | A1 |
20120071882 | Lang et al. | Mar 2012 | A1 |
20120071883 | Lang et al. | Mar 2012 | A1 |
20120072185 | Lang et al. | Mar 2012 | A1 |
20120078254 | Ashby et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120078259 | Meridew | Mar 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120101503 | Lang et al. | Apr 2012 | A1 |
20120109138 | Meridew et al. | May 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120116562 | Agnihotri et al. | May 2012 | A1 |
20120123422 | Agnihotri et al. | May 2012 | A1 |
20120123423 | Fryman | May 2012 | A1 |
20120130382 | Iannotti et al. | May 2012 | A1 |
20120130687 | Otto et al. | May 2012 | A1 |
20120141034 | Iannotti et al. | Jun 2012 | A1 |
20120143197 | Lang et al. | Jun 2012 | A1 |
20120151730 | Fitz et al. | Jun 2012 | A1 |
20120158001 | Burdulis, Jr. et al. | Jun 2012 | A1 |
20120165820 | De Smedt et al. | Jun 2012 | A1 |
20120172884 | Zheng et al. | Jul 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120192401 | Pavlovskaia et al. | Aug 2012 | A1 |
20120197260 | Fitz et al. | Aug 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120201440 | Steines et al. | Aug 2012 | A1 |
20120209276 | Schuster | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120215226 | Bonutti | Aug 2012 | A1 |
20120221008 | Carroll et al. | Aug 2012 | A1 |
20120226283 | Meridew et al. | Sep 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski | Sep 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120245647 | Kunz et al. | Sep 2012 | A1 |
20120245699 | Lang et al. | Sep 2012 | A1 |
20120265208 | Smith | Oct 2012 | A1 |
20120271366 | Katrana et al. | Oct 2012 | A1 |
20120276509 | Iannotti et al. | Nov 2012 | A1 |
20120277751 | Catanzarite et al. | Nov 2012 | A1 |
20120289966 | Fitz et al. | Nov 2012 | A1 |
20120296337 | Fitz et al. | Nov 2012 | A1 |
20130018379 | Fitz et al. | Jan 2013 | A1 |
20130018380 | Fitz et al. | Jan 2013 | A1 |
20130018464 | Fitz et al. | Jan 2013 | A1 |
20130023884 | Fitz et al. | Jan 2013 | A1 |
20130024000 | Bojarski et al. | Jan 2013 | A1 |
20130030419 | Fitz et al. | Jan 2013 | A1 |
20130030441 | Fitz et al. | Jan 2013 | A1 |
20130079781 | Fitz et al. | Mar 2013 | A1 |
20130079876 | Fitz et al. | Mar 2013 | A1 |
20130081247 | Fitz et al. | Apr 2013 | A1 |
20130096562 | Fitz et al. | Apr 2013 | A1 |
20130103363 | Lang et al. | Apr 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130123792 | Fitz et al. | May 2013 | A1 |
20130184713 | Bojarski et al. | Jul 2013 | A1 |
20130197870 | Steines et al. | Aug 2013 | A1 |
20130211409 | Burdulis, Jr. et al. | Aug 2013 | A1 |
20130211410 | Landes et al. | Aug 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245803 | Lang | Sep 2013 | A1 |
20130253522 | Bojarski et al. | Sep 2013 | A1 |
20130289570 | Chao | Oct 2013 | A1 |
20130296874 | Chao | Nov 2013 | A1 |
20130297031 | Hafez | Nov 2013 | A1 |
20130317511 | Bojarski et al. | Nov 2013 | A1 |
20130331850 | Bojarski et al. | Dec 2013 | A1 |
20140005792 | Lang et al. | Jan 2014 | A1 |
20140029814 | Fitz et al. | Jan 2014 | A1 |
20140031826 | Bojarski et al. | Jan 2014 | A1 |
20140039631 | Bojarski et al. | Feb 2014 | A1 |
20140058396 | Fitz et al. | Feb 2014 | A1 |
20140058397 | Fitz et al. | Feb 2014 | A1 |
20140066935 | Fitz et al. | Mar 2014 | A1 |
20140066936 | Fitz et al. | Mar 2014 | A1 |
20140074441 | Fitz et al. | Mar 2014 | A1 |
20140086780 | Miller et al. | Mar 2014 | A1 |
20140244220 | McKinnon et al. | Aug 2014 | A1 |
20160015465 | Steines | Jan 2016 | A1 |
20160331467 | Slamin | Nov 2016 | A1 |
20170135706 | Frey | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2004293091 | Jun 2005 | AU |
2004293104 | Jun 2005 | AU |
2005309692 | Jun 2006 | AU |
2005311558 | Jun 2006 | AU |
2002310193 | Mar 2007 | AU |
2006297137 | Apr 2007 | AU |
2002310193 | May 2007 | AU |
2007202573 | Jun 2007 | AU |
2007212033 | Aug 2007 | AU |
2007226924 | Sep 2007 | AU |
2009221773 | Sep 2009 | AU |
2009246474 | Nov 2009 | AU |
2010201200 | Apr 2010 | AU |
2011203237 | Jul 2011 | AU |
2010217903 | Sep 2011 | AU |
2010236263 | Nov 2011 | AU |
2010264466 | Feb 2012 | AU |
2010289706 | Mar 2012 | AU |
2010315099 | May 2012 | AU |
2010327987 | Jun 2012 | AU |
2011203237 | Oct 2012 | AU |
2012216829 | Oct 2012 | AU |
2012217654 | Oct 2013 | AU |
2007212033 | Jan 2014 | AU |
2014200073 | Jan 2014 | AU |
2012289973 | Mar 2014 | AU |
2012296556 | Mar 2014 | AU |
2501041 | Apr 2004 | CA |
2505371 | May 2004 | CA |
2505419 | Jun 2004 | CA |
2506849 | Jun 2004 | CA |
2546958 | Jun 2005 | CA |
2546965 | Jun 2005 | CA |
2804883 | Jun 2005 | CA |
2588907 | Jun 2006 | CA |
2590534 | Jun 2006 | CA |
2623834 | Apr 2007 | CA |
2641241 | Aug 2007 | CA |
2646288 | Sep 2007 | CA |
2717760 | Sep 2009 | CA |
2765499 | Dec 2010 | CA |
2771573 | Mar 2011 | CA |
2779283 | May 2011 | CA |
2782137 | Jun 2011 | CA |
2546965 | Mar 2013 | CA |
1728976 | Feb 2006 | CN |
1729483 | Feb 2006 | CN |
1729484 | Feb 2006 | CN |
1913844 | Feb 2007 | CN |
101111197 | Jan 2008 | CN |
101384230 | Mar 2009 | CN |
101442960 | May 2009 | CN |
100502808 | Jun 2009 | CN |
102006841 | Apr 2011 | CN |
102125448 | Jul 2011 | CN |
102405032 | Apr 2012 | CN |
102448394 | May 2012 | CN |
101420911 | Jul 2012 | CN |
102599960 | Jul 2012 | CN |
1913844 | Sep 2012 | CN |
102711670 | Oct 2012 | CN |
102724934 | Oct 2012 | CN |
102805677 | Dec 2012 | CN |
1729483 | Oct 2013 | CN |
103476363 | Dec 2013 | CN |
60336002 | Mar 2011 | DE |
60239674 | May 2011 | DE |
602004032166 | May 2011 | DE |
602005027391 | May 2011 | DE |
1555962 | Jul 2005 | EP |
1558181 | Aug 2005 | EP |
1567985 | Aug 2005 | EP |
1575460 | Sep 2005 | EP |
1686930 | Aug 2006 | EP |
1686931 | Aug 2006 | EP |
1389980 | Apr 2007 | EP |
1814491 | Aug 2007 | EP |
1833387 | Sep 2007 | EP |
1686930 | Oct 2007 | EP |
1686931 | Jan 2008 | EP |
1928359 | Jun 2008 | EP |
1951136 | Aug 2008 | EP |
1981409 | Oct 2008 | EP |
1996121 | Dec 2008 | EP |
2114312 | Nov 2009 | EP |
2124764 | Dec 2009 | EP |
1928359 | Oct 2010 | EP |
2259753 | Dec 2010 | EP |
2265199 | Dec 2010 | EP |
1555962 | Feb 2011 | EP |
2292188 | Mar 2011 | EP |
2292189 | Mar 2011 | EP |
1389980 | Apr 2011 | EP |
1686930 | Apr 2011 | EP |
1833387 | Apr 2011 | EP |
2303193 | Apr 2011 | EP |
2316357 | May 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2403434 | Jan 2012 | EP |
2405865 | Jan 2012 | EP |
2419035 | Feb 2012 | EP |
2265199 | Mar 2012 | EP |
2303193 | Mar 2012 | EP |
2259753 | Apr 2012 | EP |
2292188 | May 2012 | EP |
2292189 | May 2012 | EP |
2445451 | May 2012 | EP |
2470126 | Jul 2012 | EP |
2496183 | Sep 2012 | EP |
2509539 | Oct 2012 | EP |
2512381 | Oct 2012 | EP |
2324799 | Jan 2013 | EP |
2419035 | Jan 2013 | EP |
2445451 | Mar 2013 | EP |
2403434 | Apr 2013 | EP |
2591756 | May 2013 | EP |
2496183 | Dec 2013 | EP |
2512381 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2649951 | Dec 2013 | EP |
2671520 | Dec 2013 | EP |
2671521 | Dec 2013 | EP |
2671522 | Dec 2013 | EP |
2114312 | Jan 2014 | EP |
2710967 | Mar 2014 | EP |
2484042 | Mar 2012 | GB |
2489884 | Oct 2012 | GB |
201213674 | Oct 2012 | GB |
2484042 | Mar 2014 | GB |
1059882 | Aug 2011 | HK |
1072710 | Aug 2011 | HK |
1087324 | Nov 2011 | HK |
1104776 | Nov 2011 | HK |
2006510403 | Mar 2006 | JP |
2007514470 | Jun 2007 | JP |
2011519713 | Jul 2011 | JP |
2011224384 | Nov 2011 | JP |
2012091033 | May 2012 | JP |
2012176318 | Sep 2012 | JP |
5053515 | Oct 2012 | JP |
2012187415 | Oct 2012 | JP |
2012523897 | Oct 2012 | JP |
5074036 | Nov 2012 | JP |
2012531265 | Dec 2012 | JP |
2013503007 | Jan 2013 | JP |
5148284 | Feb 2013 | JP |
5198069 | May 2013 | JP |
2014000425 | Jan 2014 | JP |
20050072500 | Jul 2005 | KR |
20050084024 | Aug 2005 | KR |
20120090997 | Aug 2012 | KR |
20120102576 | Sep 2012 | KR |
2012007140 | Jan 2013 | MX |
597261 | Nov 2013 | NZ |
173840 | Sep 2011 | SG |
175229 | Nov 2011 | SG |
176833 | Jan 2012 | SG |
178836 | Apr 2012 | SG |
193484 | Oct 2013 | SG |
200509870 | Mar 2005 | TW |
1231755 | May 2005 | TW |
200800123 | Jan 2008 | TW |
1330075 | Sep 2010 | TW |
9814128 | Apr 1998 | WO |
2004049981 | Jun 2004 | WO |
2004051301 | Jun 2004 | WO |
2005051239 | Jun 2005 | WO |
2005051240 | Jun 2005 | WO |
2006058057 | Jun 2006 | WO |
2006060795 | Jun 2006 | WO |
2006058057 | Jul 2006 | WO |
2007041375 | Apr 2007 | WO |
2007062103 | May 2007 | WO |
2007092841 | Aug 2007 | WO |
2007109641 | Sep 2007 | WO |
2007092841 | Nov 2007 | WO |
2007109641 | Dec 2007 | WO |
2008101090 | Aug 2008 | WO |
2008112996 | Sep 2008 | WO |
2008101090 | Nov 2008 | WO |
2008157412 | Dec 2008 | WO |
2007041375 | Apr 2009 | WO |
2008157412 | Apr 2009 | WO |
2009111626 | Sep 2009 | WO |
2009111639 | Sep 2009 | WO |
2009111656 | Sep 2009 | WO |
2009140294 | Nov 2009 | WO |
2009111626 | Jan 2010 | WO |
2010099231 | Sep 2010 | WO |
2010099353 | Sep 2010 | WO |
2010121147 | Oct 2010 | WO |
2010099231 | Nov 2010 | WO |
2011028624 | Mar 2011 | WO |
2011056995 | May 2011 | WO |
2011072235 | Jun 2011 | WO |
2011075697 | Jun 2011 | WO |
2011056995 | Sep 2011 | WO |
2011075697 | Oct 2011 | WO |
2011072235 | Dec 2011 | WO |
2012112694 | Aug 2012 | WO |
2012112694 | Aug 2012 | WO |
2012112698 | Aug 2012 | WO |
2012112701 | Aug 2012 | WO |
2012112702 | Aug 2012 | WO |
2012112694 | Jan 2013 | WO |
2012112701 | Jan 2013 | WO |
2012112702 | Jan 2013 | WO |
2013020026 | Feb 2013 | WO |
2013025814 | Feb 2013 | WO |
2012112698 | Mar 2013 | WO |
2013056036 | Apr 2013 | WO |
2013119790 | Aug 2013 | WO |
2013119865 | Aug 2013 | WO |
2013131066 | Sep 2013 | WO |
2013152341 | Oct 2013 | WO |
2013155500 | Oct 2013 | WO |
2013155501 | Oct 2013 | WO |
2014008444 | Jan 2014 | WO |
2014035991 | Mar 2014 | WO |
2014047514 | Mar 2014 | WO |
Entry |
---|
Taylor et al, “Computer-Integrated Surgery, Technology and Clinical Applications”, The MIT Press, Cambridge, MA, London, UK, pp. 451-463. |
Hofmann et al, “Natural-Knee II System”, Intermedics Orthopedics, Austin, TX, 1995. |
Number | Date | Country | |
---|---|---|---|
20160278867 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62138165 | Mar 2015 | US |