The present invention relates to adaptive computing machines, and more particularly to creating and programming an adaptive computing engine.
The electronics industry has become increasingly driven to meet the demands of high-volume consumer applications, which comprise a majority of the embedded systems market. Examples of consumer applications where embedded systems are employed include handheld devices, such as cell phones, personal digital assistants (PDAs), global positioning system (GPS) receivers, digital cameras, etc. By their nature, these devices are required to be small, low-power, light-weight, and feature-rich. Thus, embedded systems face challenges in producing performance with minimal delay, minimal power consumption, and at minimal cost. As the numbers and types of consumer applications where embedded systems are employed increases, these challenges become even more pressing.
Each of these applications typically comprises a plurality of algorithms which perform the specific function for a particular application. An algorithm typically includes multiple smaller elements called algorithmic elements which when performed produce a work product. An example of an algorithm is the QCELP (QUALCOMM Code Excited Linear Prediction) voice compression/decompression algorithm which is used in cell phones to compress and decompress voice in order to save wireless spectrum.
Conventional systems in hardware architectures provide a specific hardware accelerator typically for one or two algorithmic elements. This has typically sufficed in the past since most hardware acceleration has been performed in the realm of infrastructure base stations. There, many channels are processed (typically 64 or more) and having one or two hardware accelerations, which help accelerate the two algorithmic elements, can be justified. Best current practices are to place a Digital Signal Processing IC alongside the specific hardware acceleration circuitry and then arraying many of these together in order to process the workload. Since any gain in performance or power dissipation is multiplied by the number of channels (64), this approach is currently favored.
For example, in a base station implementation of the QCELP algorithm acceleration the pitch computation will result in a 20% performance/power savings per channel. 20% of the processing which is done across 64 channels results in a significantly large performance/power savings.
The shortcomings with this approach are revealed when attempts are made to accelerate an algorithmic element in a mobile terminal. There typically is only a single channel is processed and for significant performance and power saving to be realized then many algorithmic elements must be accelerated. The problem, however, is that the size of the silicon is bounded by cost constraints and a designer can not justify added specific acceleration circuitry for every algorithmic element. However, the QCELP algorithm itself consists of many individual algorithm elements (17 of the most frequently used algorithmic elements):
1. Pitch Search Recursive Convolution
2. Pitch Search Autocorrelation of Exx
3. Pitch Search Correlation of Exy
4. Pitch Search Autocorrelation of Eyy
5. Pitch Search Pitch Lag and Minimum Error
6. Pitch Search Sinc Interpolation of Exy
7. Pitch Search Interpolation of Eyy
8. Codebook Search Recursive convolution
9. Codebook Search Autocorrelation of Eyy
10. Codebook Search Correlation of Exy
11. Codebook Search Codebook index and Minimum Error
12. Pole Filter
13. Zero Filter
14. Pole 1 Tap Filter
15. Cosine
16. Line Spectral Pair Zero search
17. Divider
For example, in a mobile terminal implementation of the QCELP algorithm, if the pitch computation is accelerated, the performance/power dissipation is reduced by 20% for an increased cost of silicon area. By itself, the gain for the cost is not economically justifiable. However, if for the cost in silicon area of a single accelerator there was an IC that can adapt itself in time to be able to become the accelerator for each of the 17 algorithmic elements, it would be 80% of the cost for a single adaptable accelerator.
Normal design approaches for embedded systems tend to fall in one of three categories: an ASIC (application specific integrated circuit) approach; a microprocessor/DSP (digital signal processor) approach; and an FPGA (field programmable gate array) approach. Unfortunately, each of these approaches has drawbacks. In the ASIC approach, the design tools have limited ability to describe the algorithm of the system. Also, the hardware is fixed, and the algorithms are frozen in hardware. For the microprocessor/DSP approach, the general-purpose hardware is fixed and inefficient. The algorithms may be changed, but they have to be artificially partitioned and constrained to match the hardware. With the FPGA approach, use of the same design tools as for the ASIC approach result in the same problem of limited ability to describe the algorithm. Further, FPGAs consume significant power and are too difficult to reconfigure to meet the changes of product requirements as future generations are produced.
An alternative is to attempt to overcome the disadvantages of each of these approaches while utilizing their advantages. Accordingly, what is desired is a system in which more efficient consumer applications can be created and programmed than when utilizing conventional approaches.
A system for creating an adaptive computing engine (ACE) is disclosed. The system comprises a plurality of algorithmic elements capable of being configured into an adaptive computing engine, and means for mapping the operations of the plurality of algorithmic elements to non-homogenous nodes by using computational and data analysis. The system and method also includes means for utilizing the mapped algorithmic elements to provide the appropriate hardware function. A system and method in accordance with the present invention provides the ability to bring into existence efficient hardware accelerators for a particular algorithmic element and then to reuse the same silicon area to bring into existence a new hardware accelerator for the next algorithmic element.
With the ability to optimize operations of an ACE in accordance with the present invention, an algorithm is allowed to run on the most efficient hardware for the minimum amount of time required. Further, more adaptability is achieved for a wireless system to perform the task at hand during run time. Thus, algorithms are no longer required to be altered to fit predetermined hardware existing on a processor, and the optimum hardware required by an algorithm comes into existence for the minimum time that the algorithm needs to run.
The present invention provides a method and system for optimizing operations of an ACE. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein.
An approach that is dynamic both in terms of the hardware resources and algorithms is emerging and is referred to as an adaptive computing engine (ACE) approach. ACEs can be reconfigured upwards of hundreds of thousands of times a second while consuming very little power. The ability to reconfigure the logical functions inside the ACE at high speed and “on-the-fly”, i.e., while the device remains in operation, describes the dynamic hardware resource feature of the ACE. Similarly, the ACE operates with dynamic algorithms, which refers to algorithms with constituent parts that have temporal elements and thus are only resident in hardware for short portions of time as required.
While the advantages of on-the-fly adaptation in ACE approaches are easily demonstrated, a need exists for a tool that supports optimizing of the ACE architecture for a particular problem space.
A significant departure from the prior art, the ACE 100 does not utilize traditional (and typically separate) data and instruction busses for signaling and other transmission between and among the reconfigurable matrices 150, the controller 120, and the memory 140, or for other input/output (“I/O”) functionality. Rather, data, control and configuration information are transmitted between and among these elements, utilizing the matrix interconnection network 110, which may be configured and reconfigured, in real-time, to provide any given connection between and among the reconfigurable matrices 150, the controller 120 and the memory 140, as discussed in greater detail below.
The memory 140 may be implemented in any desired or preferred way as known in the art, and may be included within the ACE 100 or incorporated within another IC or portion of an IC. In the preferred embodiment, the memory 140 is included within the ACE 100, and preferably is a low power consumption random access memory (RAM), but also may be any other form of memory, such as flash, DRAM, SRAM, MRAM, ROM, EPROM or EEPROM. In the preferred embodiment, the memory 140 preferably includes direct memory access (DMA) engines, not separately illustrated.
The controller 120 is preferably implemented as a reduced instruction set (“RISC”) processor, controller or other device or IC capable of performing the two types of functionality discussed below. The first control functionality, referred to as “kernel” control, is illustrated as kernel controller (“KARC”) 125, and the second control functionality, referred to as “matrix” control, is illustrated as matrix controller (“MARC”) 130. The control functions of the KARC 125 and MARC 130 are explained in greater detail below, with reference to the configurability and reconfigurability of the various matrices 150, and with reference to the preferred form of combined data, configuration and control information referred to herein as a “silverware” module.
The matrix interconnection network 110 of
The various matrices 150 are reconfigurable and heterogeneous, namely, in general, and depending upon the desired configuration: reconfigurable matrix 150A is generally different from reconfigurable matrices 150B through 150N; reconfigurable matrix 150B is generally different from reconfigurable matrices 150A and 150C through 150N; reconfigurable matrix 150C is generally different from reconfigurable matrices 150A, 150B and 150D through 150N, and so on. The various reconfigurable matrices 150 each generally contain a different or varied mix of computation units, which in turn generally contain a different or varied mix of fixed, application specific computational elements, which may be connected, configured and reconfigured in various ways to perform varied functions, through the interconnection networks. In addition to varied internal configurations and reconfigurations, the various matrices 150 may be connected, configured and reconfigured at a higher level, with respect to each of the other matrices 150, through the matrix interconnection network 110.
The data and computational and analysis of the algorithmic mapping step 204 is provided through the use of a profiler. The operation of the profiler is described in more detail herein below in conjunction with the accompanying figure.
First code is provided to simulate the device, via step 302. From the design code hot spots are identified, via step 304. Hot spots are those operations which utilize high power and/or require a high amount of movement of data (data movement). The identification of hot spots, in particular the identification of data movement is important in optimizing the performance of the implemented hardware device. A simple example of the operation of the profiler is described below.
A code that is to be profiled is shown below:
This illustrates three streams of data, producer A on line 2, producer B on line 7 and a consumer of data on line 11. The producers or consumers may be variables, may be pointers, may be arrays, or may be physical devices such as Analog to Data Converters (ADC) or Data to Analog Converters (DAC). Traditional profilers would identify line 8 as a computational hot spot—an area of the code which consumes large amounts of computations. Line 8 consists of a multiply followed by an accumulation which, on some hardware architecture may take many clock cycles to perform. What this invention will identify which is not performed in existing profiles is identify not only the computation hot spots, but also memory hot spots as well as data movement hotspots. Line 7 and line 11 are identified as data movement hot spots since the data will be input from the producer B on line 7 and the sum will be sent to consumer C in line 11. Also identified by the profiler as a secondary data movement hot spot is line 2 where 1024 values from Producer A will be moved into the array X. Finally, line 9 is identified as a data movement hot spot since an element of the array x and the temp value are summed with the variable sum and the result placed back into the variable sum. The profile will also identify on line 9, the array x, as a memory hotspot followed, secondarily, by line 2, array x, as a memory hotspot.
With this information from the profiler, the ACE can instantiate the following hardware circuitry to accelerate the performance as well as lower the power dissipation of this algorithmic fragment (algorithmic element) by putting the building block elements together. Data movements will be accelerated by constructing from the low level ACE building blocks DMA (Direct Memory Address) hardware to perform the data movement on lines 2, 9, 7, and 11. A specific hardware accelerator to perform the computation on line 9 will be constructed from the lower level ACE building blocks to construct a Multiply Accumulate hardware accelerator. Finally, the information from the profiler on the memory hot spots on lines 2 and 9 will allow the ACE to either build a memory array of exactly 1024 elements from the low level ACE building blocks or ensure that the smallest possible memory which can fit 1024 elements is used. Optimal sizing of memory is mandatory to ensure low power dissipation. In addition, the profiling information on the memory hot spot on line 9 is used to ensure that the ACE will keep the circuitry for the multiply accumulate physically local to the array x to ensure the minimum physical distance which is directly proportional to the effective capacitance—the greater the distance between where data is kept and where data is processed means greater capacitance, which is one of the prime elements which dictates power consumption.
The resources needed for implementing the algorithmic elements specify the types of composite blocks needed for a given problem, the number of each of the types that are needed, and the number of composite blocks per minimatrix. The composite blocks and their types are preferably stored in a database. By way of example, one type of composite block may be labeled linear composite blocks and include multipliers, adders, double adders, multiply double accumulators, radix 2, DCT, FIR, IIR, FFT, square root, divides. A second type may include Taylor Series approximation, CORDIC, sines, cosines, polynomial evaluations. A third type may be labeled FSM (finite status machine) blocks, while a fourth type may be termed FPGA blocks. Bit processing blocks may form a fifth type, and memory blocks may form a sixth type of composite block.
Once the chosen performance metrics are met, the information about which composite blocks were combined to achieve the particular design code is stored in a database, via step 410. In this manner, subsequent utilization of that design code to optimize an ACE is realized by accessing the saved data. For purposes of this discussion, these combinations are referred to as dataflow graphs.
To implement the flow chart of
As mentioned before, the ACE can be segmented spatially and temporally to ensure that a particular task is performed in the optimum manner. By adapting the architecture over and over, a slice of ACE material builds and dismantles the equivalent of hundreds or thousands of ASIC chips, each optimized to a specific task. Since each of these ACE “architectures” is optimized so explicitly, conventional silicon cannot attempt its recreation, conventional ASIC chips would be far too large, and microprocessors/DSPs far too customized. Further, the ACE allows software algorithms to build and then embed themselves into the most efficient hardware possible for their application. This constant conversion of “software” into “hardware” allows algorithms to operate faster and more efficiently than with conventional chip technology. ACE technology also extends conventional DSP functionality by adding a greater degree of freedom to such applications as wireless designs that so far have been attempted by changing software.
Adapting the ACE chip architecture as necessary introduces many new system features within reach of a single ACE-based platform. For example, with an ACE approach, a wireless handset can be adapted to become a handwriting or voice recognition system or to do on-the-fly cryptography. The performance of these and many other functions at hardware speeds may be readily recognized as a user benefit while greatly lowering power consumption within battery-driven products.
In a preferred embodiment, the hardware resources of an ACE are optimized to provide the necessary resources for those parts of the design that most need those resources to achieve efficient and effective performance. By way of example, the operations of a vocoder, such as the QCELP, provide a design portion of a cellular communication device that benefits from the optimizing of an ACE. As a vector quantizer-based speed codec, a QCELP coding speech compression engine has eight inner loops/algorithms that consume most of the power. These eight algorithms include code book search, pitch search, line spectral pairs (LSP) computation, recursive convolution and four different filters. The QCELP engine thus provides an analyzer/compressor and synthesizer/decompressor with variable compression ranging from 13 to 4 kilobits/second (kbit/s).
With the analyzer operating on a typical DSP requiring about 26 MHz of computational power, 90 percent of the power and performance is dissipated by 10 percent of the code, since the synthesizer needs only about half that performance. For purposes of this disclosure, a small portion of code that requires a large portion of the power and performance dissipated is referred to as a hot spot in the code. The optimization of an ACE in accordance with the present invention preferably occurs such that it appears that a small piece of silicon is time-sliced to make it appear as an ASIC solution in handling the hot spots of coding. Thus, for the example QCELP vocoder, when data comes into the QCELP speech codec every 20 milliseconds, each inner loop is applied 50 times a second. By optimizing the ACE, the hardware required to run each inner loop algorithm 400 times a second is brought into existence.
With the ability to optimize operations of an ACE in accordance with the present invention, an algorithm is allowed to run on the most efficient hardware for the minimum amount of time required. Further, more adaptability is achieved for a wireless system to perform the task at hand during run time. Thus, algorithms are no longer required to be altered to fit predetermined hardware existing on a processor, and the optimum hardware required by an algorithm comes into existence for the minimum time that the algorithm needs to run.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 10/437,800, filed May 13, 2003, which claims priority to U.S. Provisional application Ser. No. 60/378,088, filed May 13, 2002. The disclosures of each of the aforementioned applications are hereby incorporated by reference in their entirety as if set forth in full herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3409175 | Byrne | Nov 1968 | A |
3666143 | Weston | May 1972 | A |
3938639 | Birrell | Feb 1976 | A |
3949903 | Benasutti et al. | Apr 1976 | A |
3960298 | Birrell | Jun 1976 | A |
3967062 | Dobias | Jun 1976 | A |
3991911 | Shannon et al. | Nov 1976 | A |
3995441 | McMillin | Dec 1976 | A |
4076145 | Zygiel | Feb 1978 | A |
4143793 | McMillin et al. | Mar 1979 | A |
4172669 | Edelbach | Oct 1979 | A |
4174872 | Fessler | Nov 1979 | A |
4181242 | Zygiel et al. | Jan 1980 | A |
RE30301 | Zygiel | Jun 1980 | E |
4218014 | Tracy | Aug 1980 | A |
4222972 | Caldwell | Sep 1980 | A |
4237536 | Enelow et al. | Dec 1980 | A |
4252253 | Shannon | Feb 1981 | A |
4302775 | Widergren et al. | Nov 1981 | A |
4333587 | Fessler et al. | Jun 1982 | A |
4354613 | Desai et al. | Oct 1982 | A |
4377246 | McMillin et al. | Mar 1983 | A |
4380046 | Frosch et al. | Apr 1983 | A |
4393468 | New | Jul 1983 | A |
4413752 | McMillin et al. | Nov 1983 | A |
4458584 | Annese et al. | Jul 1984 | A |
4466342 | Basile et al. | Aug 1984 | A |
4475448 | Shoaf et al. | Oct 1984 | A |
4509690 | Austin et al. | Apr 1985 | A |
4520950 | Jeans | Jun 1985 | A |
4549675 | Austin | Oct 1985 | A |
4553573 | McGarrah | Nov 1985 | A |
4560089 | McMillin et al. | Dec 1985 | A |
4577782 | Fessler | Mar 1986 | A |
4578799 | Scholl et al. | Mar 1986 | A |
RE32179 | Sedam et al. | Jun 1986 | E |
4633386 | Terepin et al. | Dec 1986 | A |
4649512 | Nukiyama | Mar 1987 | A |
4658988 | Hassell | Apr 1987 | A |
4694416 | Wheeler et al. | Sep 1987 | A |
4711374 | Gaunt et al. | Dec 1987 | A |
4713755 | Worley, Jr. et al. | Dec 1987 | A |
4719056 | Scott | Jan 1988 | A |
4726494 | Scott | Feb 1988 | A |
4747516 | Baker | May 1988 | A |
4748585 | Chiarulli et al. | May 1988 | A |
4758985 | Carter | Jul 1988 | A |
4760525 | Webb | Jul 1988 | A |
4760544 | Lamb | Jul 1988 | A |
4765513 | McMillin et al. | Aug 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4781309 | Vogel | Nov 1988 | A |
4800492 | Johnson et al. | Jan 1989 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4824075 | Holzboog | Apr 1989 | A |
4827426 | Patton et al. | May 1989 | A |
4850269 | Hancock et al. | Jul 1989 | A |
4856684 | Gerstung | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4901887 | Burton | Feb 1990 | A |
4905231 | Leung et al. | Feb 1990 | A |
4921315 | Metcalfe et al. | May 1990 | A |
4930666 | Rudick | Jun 1990 | A |
4932564 | Austin et al. | Jun 1990 | A |
4936488 | Austin | Jun 1990 | A |
4937019 | Scott | Jun 1990 | A |
4960261 | Scott et al. | Oct 1990 | A |
4961533 | Teller et al. | Oct 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4974643 | Bennett et al. | Dec 1990 | A |
4982876 | Scott | Jan 1991 | A |
4993604 | Gaunt et al. | Feb 1991 | A |
5007560 | Sassak | Apr 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5040106 | Maag | Aug 1991 | A |
5044171 | Farkas | Sep 1991 | A |
5090015 | Dabbish et al. | Feb 1992 | A |
5099418 | Pian et al. | Mar 1992 | A |
5129549 | Austin | Jul 1992 | A |
5139708 | Scott | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5156301 | Hassell et al. | Oct 1992 | A |
5156871 | Goulet et al. | Oct 1992 | A |
5165023 | Gifford | Nov 1992 | A |
5165575 | Scott | Nov 1992 | A |
5190083 | Gupta et al. | Mar 1993 | A |
5190189 | Zimmer et al. | Mar 1993 | A |
5193151 | Jain | Mar 1993 | A |
5193718 | Hassell et al. | Mar 1993 | A |
5202993 | Tarsy et al. | Apr 1993 | A |
5203474 | Haynes | Apr 1993 | A |
5218240 | Camarota et al. | Jun 1993 | A |
5240144 | Feldman | Aug 1993 | A |
5245227 | Furtek et al. | Sep 1993 | A |
5261099 | Bigo et al. | Nov 1993 | A |
5263509 | Cherry et al. | Nov 1993 | A |
5269442 | Vogel | Dec 1993 | A |
5280711 | Motta et al. | Jan 1994 | A |
5297400 | Benton et al. | Mar 1994 | A |
5301100 | Wagner | Apr 1994 | A |
5303846 | Shannon | Apr 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5339428 | Burmeister et al. | Aug 1994 | A |
5343716 | Swanson et al. | Sep 1994 | A |
5361362 | Benkeser et al. | Nov 1994 | A |
5367651 | Smith et al. | Nov 1994 | A |
5367687 | Tarsy et al. | Nov 1994 | A |
5368198 | Goulet | Nov 1994 | A |
5379343 | Grube et al. | Jan 1995 | A |
5381546 | Servi et al. | Jan 1995 | A |
5381550 | Jourdenais et al. | Jan 1995 | A |
5388062 | Knutson | Feb 1995 | A |
5388212 | Grube et al. | Feb 1995 | A |
5392960 | Kendt et al. | Feb 1995 | A |
5428754 | Baldwin | Jun 1995 | A |
5437395 | Bull et al. | Aug 1995 | A |
5450557 | Kopp et al. | Sep 1995 | A |
5454406 | Rejret et al. | Oct 1995 | A |
5465368 | Davidson et al. | Nov 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5479055 | Eccles | Dec 1995 | A |
5490165 | Blakeney, II et al. | Feb 1996 | A |
5491823 | Ruttenberg | Feb 1996 | A |
5504891 | Motoyama et al. | Apr 1996 | A |
5507009 | Grube et al. | Apr 1996 | A |
5515519 | Yoshioka et al. | May 1996 | A |
5517600 | Shimokawa | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5522070 | Sumimoto | May 1996 | A |
5530964 | Alpert et al. | Jun 1996 | A |
5534796 | Edwards | Jul 1996 | A |
5542265 | Rutland | Aug 1996 | A |
5553755 | Bonewald et al. | Sep 1996 | A |
5555417 | Odnert et al. | Sep 1996 | A |
5560028 | Sachs et al. | Sep 1996 | A |
5560038 | Haddock | Sep 1996 | A |
5570587 | Kim | Nov 1996 | A |
5572572 | Kawan et al. | Nov 1996 | A |
5590353 | Sakakibara et al. | Dec 1996 | A |
5594657 | Cantone et al. | Jan 1997 | A |
5600810 | Ohkami | Feb 1997 | A |
5600844 | Shaw et al. | Feb 1997 | A |
5602833 | Zehavi | Feb 1997 | A |
5603043 | Taylor et al. | Feb 1997 | A |
5607083 | Vogel et al. | Mar 1997 | A |
5608643 | Wichter et al. | Mar 1997 | A |
5611867 | Cooper et al. | Mar 1997 | A |
5623545 | Childs et al. | Apr 1997 | A |
5625669 | McGregor et al. | Apr 1997 | A |
5626407 | Westcott | May 1997 | A |
5630206 | Urban et al. | May 1997 | A |
5635940 | Hickman et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5647512 | Assis Mascarenhas de Oliveira et al. | Jul 1997 | A |
5667110 | McCann et al. | Sep 1997 | A |
5684793 | Kiema et al. | Nov 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5687236 | Moskowitz et al. | Nov 1997 | A |
5694613 | Suzuki | Dec 1997 | A |
5694794 | Jerg et al. | Dec 1997 | A |
5699328 | Ishizaki et al. | Dec 1997 | A |
5701398 | Glier et al. | Dec 1997 | A |
5701482 | Harrison et al. | Dec 1997 | A |
5704053 | Santhanam | Dec 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5706976 | Purkey | Jan 1998 | A |
5712996 | Schepers | Jan 1998 | A |
5720002 | Wang | Feb 1998 | A |
5721693 | Song | Feb 1998 | A |
5721854 | Ebcioglu et al. | Feb 1998 | A |
5729754 | Estes | Mar 1998 | A |
5732563 | Bethuy et al. | Mar 1998 | A |
5734808 | Takeda | Mar 1998 | A |
5737631 | Trimberger | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5742821 | Prasanna | Apr 1998 | A |
5745366 | Higham et al. | Apr 1998 | A |
RE35780 | Hassell et al. | May 1998 | E |
5751295 | Becklund et al. | May 1998 | A |
5754227 | Fukuoka | May 1998 | A |
5758261 | Wiedeman | May 1998 | A |
5768561 | Wise | Jun 1998 | A |
5771362 | Bartkowiak et al. | Jun 1998 | A |
5778439 | Trimberger et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5784699 | McMahon et al. | Jul 1998 | A |
5787237 | Reilly | Jul 1998 | A |
5790817 | Asghar et al. | Aug 1998 | A |
5791517 | Avital | Aug 1998 | A |
5791523 | Oh | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5794067 | Kadowaki | Aug 1998 | A |
5802055 | Krein et al. | Sep 1998 | A |
5802278 | Isfeld et al. | Sep 1998 | A |
5812851 | Levy et al. | Sep 1998 | A |
5818603 | Motoyama | Oct 1998 | A |
5819255 | Celis et al. | Oct 1998 | A |
5822308 | Weigand et al. | Oct 1998 | A |
5822313 | Malek et al. | Oct 1998 | A |
5822360 | Lee et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5829085 | Jerg et al. | Nov 1998 | A |
5835753 | Witt | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838894 | Horst | Nov 1998 | A |
5845815 | Vogel | Dec 1998 | A |
5854929 | Van Pract et al. | Dec 1998 | A |
5860021 | Klingman | Jan 1999 | A |
5862961 | Motta et al. | Jan 1999 | A |
5870427 | Tiedemann, Jr. et al. | Feb 1999 | A |
5873045 | Lee et al. | Feb 1999 | A |
5881106 | Cartier | Mar 1999 | A |
5884284 | Peters et al. | Mar 1999 | A |
5886537 | Macias et al. | Mar 1999 | A |
5887174 | Simons et al. | Mar 1999 | A |
5889816 | Agrawal et al. | Mar 1999 | A |
5889989 | Robertazzi et al. | Mar 1999 | A |
5890014 | Long | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5892950 | Rigori et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894473 | Dent | Apr 1999 | A |
5901884 | Goulet et al. | May 1999 | A |
5903886 | Heimlich et al. | May 1999 | A |
5907285 | Toms et al. | May 1999 | A |
5907580 | Cummings | May 1999 | A |
5910733 | Bertolet et al. | Jun 1999 | A |
5912572 | Graf, III | Jun 1999 | A |
5913172 | McCabe et al. | Jun 1999 | A |
5917852 | Butterfield et al. | Jun 1999 | A |
5920801 | Thomas et al. | Jul 1999 | A |
5931918 | Row et al. | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5940438 | Poon et al. | Aug 1999 | A |
5949415 | Lin et al. | Sep 1999 | A |
5950011 | Albrecht et al. | Sep 1999 | A |
5950131 | Vilmur | Sep 1999 | A |
5951674 | Moreno | Sep 1999 | A |
5953322 | Kimball | Sep 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5956967 | Kim | Sep 1999 | A |
5959811 | Richardson | Sep 1999 | A |
5959881 | Trimberger et al. | Sep 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991302 | Berl et al. | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5993739 | Lyon | Nov 1999 | A |
5999734 | Willis et al. | Dec 1999 | A |
6005943 | Cohen et al. | Dec 1999 | A |
6006249 | Leong | Dec 1999 | A |
6016395 | Mohamed | Jan 2000 | A |
6018783 | Chiang | Jan 2000 | A |
6021186 | Suzuki et al. | Feb 2000 | A |
6021492 | May | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6028610 | Deering | Feb 2000 | A |
6036166 | Olson | Mar 2000 | A |
6039219 | Bach et al. | Mar 2000 | A |
6041322 | Meng et al. | Mar 2000 | A |
6041970 | Vogel | Mar 2000 | A |
6046603 | New | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6052600 | Fette et al. | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6056194 | Kolls | May 2000 | A |
6059840 | Click, Jr. | May 2000 | A |
6061580 | Altschul et al. | May 2000 | A |
6073132 | Gehman | Jun 2000 | A |
6076174 | Freund | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6088043 | Kelleher et al. | Jul 2000 | A |
6091263 | New et al. | Jul 2000 | A |
6091765 | Pietzold, III et al. | Jul 2000 | A |
6094065 | Tavana et al. | Jul 2000 | A |
6094726 | Gonion et al. | Jul 2000 | A |
6111893 | Volftsun et al. | Aug 2000 | A |
6111935 | Hughes-Hartogs | Aug 2000 | A |
6115751 | Tam et al. | Sep 2000 | A |
6119178 | Martin et al. | Sep 2000 | A |
6120551 | Law et al. | Sep 2000 | A |
6122670 | Bennett et al. | Sep 2000 | A |
6128307 | Brown | Oct 2000 | A |
6134605 | Hudson et al. | Oct 2000 | A |
6134629 | L'Ecuyer | Oct 2000 | A |
6138693 | Matz | Oct 2000 | A |
6141283 | Bogin et al. | Oct 2000 | A |
6150838 | Wittig et al. | Nov 2000 | A |
6154492 | Araki et al. | Nov 2000 | A |
6154494 | Sugahara et al. | Nov 2000 | A |
6157997 | Oowaki et al. | Dec 2000 | A |
6158031 | Mack et al. | Dec 2000 | A |
6173389 | Pechanek et al. | Jan 2001 | B1 |
6175854 | Bretscher | Jan 2001 | B1 |
6175892 | Sazzad et al. | Jan 2001 | B1 |
6181981 | Varga et al. | Jan 2001 | B1 |
6185418 | MacLellan et al. | Feb 2001 | B1 |
6192070 | Poon et al. | Feb 2001 | B1 |
6192255 | Lewis et al. | Feb 2001 | B1 |
6192388 | Cajolet | Feb 2001 | B1 |
6195788 | Leaver et al. | Feb 2001 | B1 |
6198924 | Ishii et al. | Mar 2001 | B1 |
6199181 | Rechef et al. | Mar 2001 | B1 |
6202130 | Scales, III et al. | Mar 2001 | B1 |
6202189 | Hinedi et al. | Mar 2001 | B1 |
6216252 | Dangelo et al. | Apr 2001 | B1 |
6219697 | Lawande et al. | Apr 2001 | B1 |
6219756 | Kasamizugami | Apr 2001 | B1 |
6219780 | Lipasti | Apr 2001 | B1 |
6223222 | Fijolek et al. | Apr 2001 | B1 |
6226387 | Tewfik et al. | May 2001 | B1 |
6230307 | Davis et al. | May 2001 | B1 |
6237029 | Master et al. | May 2001 | B1 |
6246883 | Lee | Jun 2001 | B1 |
6247125 | Noel-Baron et al. | Jun 2001 | B1 |
6249251 | Chang et al. | Jun 2001 | B1 |
6258725 | Lee et al. | Jul 2001 | B1 |
6263057 | Silverman | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6272579 | Lentz et al. | Aug 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6281703 | Furuta et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6289375 | Knight et al. | Sep 2001 | B1 |
6289434 | Roy | Sep 2001 | B1 |
6289488 | Dave et al. | Sep 2001 | B1 |
6292822 | Hardwick | Sep 2001 | B1 |
6292827 | Raz | Sep 2001 | B1 |
6292830 | Taylor et al. | Sep 2001 | B1 |
6292938 | Sarkar et al. | Sep 2001 | B1 |
6301653 | Mohamed et al. | Oct 2001 | B1 |
6305014 | Roediger et al. | Oct 2001 | B1 |
6311149 | Ryan et al. | Oct 2001 | B1 |
6321985 | Kolls | Nov 2001 | B1 |
6326806 | Fallside et al. | Dec 2001 | B1 |
6346824 | New | Feb 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349394 | Brock et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6356994 | Barry et al. | Mar 2002 | B1 |
6359248 | Mardi | Mar 2002 | B1 |
6360256 | Lim | Mar 2002 | B1 |
6360259 | Bradley | Mar 2002 | B1 |
6360263 | Kurtzberg et al. | Mar 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366999 | Drabenstott et al. | Apr 2002 | B1 |
6377983 | Cohen et al. | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6381293 | Lee et al. | Apr 2002 | B1 |
6381735 | Hunt | Apr 2002 | B1 |
6385751 | Wolf | May 2002 | B1 |
6405214 | Meade, II | Jun 2002 | B1 |
6408039 | Ito | Jun 2002 | B1 |
6410941 | Taylor et al. | Jun 2002 | B1 |
6411612 | Halford et al. | Jun 2002 | B1 |
6421372 | Bierly et al. | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6426649 | Fu et al. | Jul 2002 | B1 |
6430624 | Jamtgaard et al. | Aug 2002 | B1 |
6433578 | Wasson | Aug 2002 | B1 |
6434590 | Blelloch et al. | Aug 2002 | B1 |
6438737 | Morelli et al. | Aug 2002 | B1 |
6446258 | McKinsey et al. | Sep 2002 | B1 |
6449747 | Wuytack et al. | Sep 2002 | B2 |
6456996 | Crawford, Jr. et al. | Sep 2002 | B1 |
6459883 | Subramanian et al. | Oct 2002 | B2 |
6467009 | Winegarden et al. | Oct 2002 | B1 |
6469540 | Nakaya | Oct 2002 | B2 |
6473609 | Schwartz et al. | Oct 2002 | B1 |
6483343 | Faith et al. | Nov 2002 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6510138 | Pannell | Jan 2003 | B1 |
6510510 | Garde | Jan 2003 | B1 |
6526570 | Click, Jr. et al. | Feb 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6563891 | Eriksson et al. | May 2003 | B1 |
6570877 | Kloth et al. | May 2003 | B1 |
6577678 | Scheuermann | Jun 2003 | B2 |
6587684 | Hsu et al. | Jul 2003 | B1 |
6590415 | Agrawal et al. | Jul 2003 | B2 |
6601086 | Howard et al. | Jul 2003 | B1 |
6601158 | Abbott et al. | Jul 2003 | B1 |
6604085 | Kolls | Aug 2003 | B1 |
6604189 | Zemlyak et al. | Aug 2003 | B1 |
6606529 | Crowder, Jr. et al. | Aug 2003 | B1 |
6611906 | McAllister et al. | Aug 2003 | B1 |
6615333 | Hoogerbrugge et al. | Sep 2003 | B1 |
6618434 | Heidari-Bateni et al. | Sep 2003 | B2 |
6618777 | Greenfield | Sep 2003 | B1 |
6640304 | Ginter et al. | Oct 2003 | B2 |
6647429 | Semal | Nov 2003 | B1 |
6653859 | Sihlbom et al. | Nov 2003 | B2 |
6675265 | Barroso et al. | Jan 2004 | B2 |
6675284 | Warren | Jan 2004 | B1 |
6684319 | Mohamed et al. | Jan 2004 | B1 |
6691148 | Zinky et al. | Feb 2004 | B1 |
6694380 | Wolrich et al. | Feb 2004 | B1 |
6711617 | Bantz et al. | Mar 2004 | B1 |
6718182 | Kung | Apr 2004 | B1 |
6718541 | Ostanevich et al. | Apr 2004 | B2 |
6721286 | Williams et al. | Apr 2004 | B1 |
6721884 | De Oliveira Kastrup Pereira et al. | Apr 2004 | B1 |
6732354 | Ebeling et al. | May 2004 | B2 |
6735621 | Yoakum et al. | May 2004 | B1 |
6738744 | Kirovski et al. | May 2004 | B2 |
6748360 | Pitman et al. | Jun 2004 | B2 |
6751723 | Kundu et al. | Jun 2004 | B1 |
6754470 | Hendrickson et al. | Jun 2004 | B2 |
6760587 | Holtzman et al. | Jul 2004 | B2 |
6760833 | Dowling | Jul 2004 | B1 |
6766165 | Sharma et al. | Jul 2004 | B2 |
6778212 | Deng et al. | Aug 2004 | B1 |
6785341 | Walton et al. | Aug 2004 | B2 |
6807590 | Carlson et al. | Oct 2004 | B1 |
6819140 | Yamanaka et al. | Nov 2004 | B2 |
6823448 | Roth et al. | Nov 2004 | B2 |
6829633 | Gelfer et al. | Dec 2004 | B2 |
6832250 | Coons et al. | Dec 2004 | B1 |
6836839 | Master et al. | Dec 2004 | B2 |
6859434 | Segal et al. | Feb 2005 | B2 |
6865664 | Budrovic et al. | Mar 2005 | B2 |
6871236 | Fishman et al. | Mar 2005 | B2 |
6883074 | Lee et al. | Apr 2005 | B2 |
6883084 | Donohoe | Apr 2005 | B1 |
6894996 | Lee | May 2005 | B2 |
6901440 | Bimm et al. | May 2005 | B1 |
6907598 | Fraser | Jun 2005 | B2 |
6912515 | Jackson et al. | Jun 2005 | B2 |
6941336 | Mar | Sep 2005 | B1 |
6980515 | Schunk et al. | Dec 2005 | B1 |
6985517 | Matsumoto et al. | Jan 2006 | B2 |
6986021 | Master et al. | Jan 2006 | B2 |
6986142 | Ehlig et al. | Jan 2006 | B1 |
6988139 | Jervis et al. | Jan 2006 | B1 |
7032229 | Flores et al. | Apr 2006 | B1 |
7044741 | Leem | May 2006 | B2 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7124064 | Thurston | Oct 2006 | B1 |
7139910 | Ainsworth et al. | Nov 2006 | B1 |
7142731 | Toi | Nov 2006 | B1 |
7249242 | Ramchandran | Jul 2007 | B2 |
20010003191 | Kovacs et al. | Jun 2001 | A1 |
20010023482 | Wray | Sep 2001 | A1 |
20010029515 | Mirsky | Oct 2001 | A1 |
20010034795 | Moulton et al. | Oct 2001 | A1 |
20010039654 | Miyamoto | Nov 2001 | A1 |
20010048713 | Medlock et al. | Dec 2001 | A1 |
20010048714 | Jha | Dec 2001 | A1 |
20010050948 | Ramberg et al. | Dec 2001 | A1 |
20020010848 | Kamano et al. | Jan 2002 | A1 |
20020013799 | Blaker | Jan 2002 | A1 |
20020013937 | Ostanevich et al. | Jan 2002 | A1 |
20020015435 | Rieken | Feb 2002 | A1 |
20020015439 | Kohli et al. | Feb 2002 | A1 |
20020023210 | Tuomenoksa et al. | Feb 2002 | A1 |
20020024942 | Tsuneki et al. | Feb 2002 | A1 |
20020024993 | Subramanian et al. | Feb 2002 | A1 |
20020031166 | Subramanian et al. | Mar 2002 | A1 |
20020032551 | Zakiya | Mar 2002 | A1 |
20020035623 | Lawande et al. | Mar 2002 | A1 |
20020041581 | Aramaki | Apr 2002 | A1 |
20020042875 | Shukla | Apr 2002 | A1 |
20020042907 | Yamanaka et al. | Apr 2002 | A1 |
20020061741 | Leung et al. | May 2002 | A1 |
20020069282 | Reisman | Jun 2002 | A1 |
20020072830 | Hunt | Jun 2002 | A1 |
20020078337 | Moreau et al. | Jun 2002 | A1 |
20020083305 | Renard et al. | Jun 2002 | A1 |
20020083423 | Ostanevich et al. | Jun 2002 | A1 |
20020087829 | Snyder et al. | Jul 2002 | A1 |
20020089348 | Langhammer | Jul 2002 | A1 |
20020101909 | Chen et al. | Aug 2002 | A1 |
20020107905 | Roe et al. | Aug 2002 | A1 |
20020107962 | Richter et al. | Aug 2002 | A1 |
20020119803 | Bitterlich et al. | Aug 2002 | A1 |
20020120672 | Butt et al. | Aug 2002 | A1 |
20020133688 | Lee et al. | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020141489 | Imaizumi | Oct 2002 | A1 |
20020147845 | Sanchez-Herrero et al. | Oct 2002 | A1 |
20020159503 | Ramachandran | Oct 2002 | A1 |
20020162026 | Neuman et al. | Oct 2002 | A1 |
20020168018 | Scheuermann | Nov 2002 | A1 |
20020181559 | Heidari-Bateni et al. | Dec 2002 | A1 |
20020184275 | Dutta et al. | Dec 2002 | A1 |
20020184291 | Hogenauer | Dec 2002 | A1 |
20020184498 | Qi | Dec 2002 | A1 |
20020191790 | Anand et al. | Dec 2002 | A1 |
20030007606 | Suder et al. | Jan 2003 | A1 |
20030012270 | Zhou et al. | Jan 2003 | A1 |
20030018446 | Makowski et al. | Jan 2003 | A1 |
20030018700 | Giroti et al. | Jan 2003 | A1 |
20030023830 | Hogenauer | Jan 2003 | A1 |
20030026242 | Jokinen et al. | Feb 2003 | A1 |
20030030004 | Dixon et al. | Feb 2003 | A1 |
20030046421 | Horvitz et al. | Mar 2003 | A1 |
20030061260 | Rajkumar | Mar 2003 | A1 |
20030061311 | Lo | Mar 2003 | A1 |
20030063656 | Rao et al. | Apr 2003 | A1 |
20030074473 | Pham et al. | Apr 2003 | A1 |
20030076815 | Miller et al. | Apr 2003 | A1 |
20030099223 | Chang et al. | May 2003 | A1 |
20030102889 | Master et al. | Jun 2003 | A1 |
20030105949 | Master et al. | Jun 2003 | A1 |
20030110485 | Lu et al. | Jun 2003 | A1 |
20030131162 | Secatch et al. | Jul 2003 | A1 |
20030142818 | Raghunathan et al. | Jul 2003 | A1 |
20030154357 | Master et al. | Aug 2003 | A1 |
20030163723 | Kozuch et al. | Aug 2003 | A1 |
20030172138 | McCormack et al. | Sep 2003 | A1 |
20030172139 | Srinivasan et al. | Sep 2003 | A1 |
20030200538 | Ebeling et al. | Oct 2003 | A1 |
20030212684 | Meyer et al. | Nov 2003 | A1 |
20030229864 | Watkins | Dec 2003 | A1 |
20040006584 | Vandeweerd | Jan 2004 | A1 |
20040010645 | Scheuermann et al. | Jan 2004 | A1 |
20040015970 | Scheuermann | Jan 2004 | A1 |
20040025159 | Scheuermann et al. | Feb 2004 | A1 |
20040057505 | Valio | Mar 2004 | A1 |
20040062300 | McDonough et al. | Apr 2004 | A1 |
20040081248 | Parolari | Apr 2004 | A1 |
20040093479 | Ramchandran | May 2004 | A1 |
20040133745 | Ramchandran | Jul 2004 | A1 |
20040168044 | Ramchandran | Aug 2004 | A1 |
20050044344 | Stevens | Feb 2005 | A1 |
20050166038 | Wang et al. | Jul 2005 | A1 |
20050166073 | Lee | Jul 2005 | A1 |
20050198199 | Dowling | Sep 2005 | A1 |
20060031660 | Master et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
100 18 374 | Oct 2001 | DE |
1 189 358 | Jul 1981 | EP |
0 301 169 | Feb 1989 | EP |
0 166 586 | Jan 1991 | EP |
0 236 633 | May 1991 | EP |
0 478 624 | Apr 1992 | EP |
0 479 102 | Apr 1992 | EP |
0 661 831 | Jul 1995 | EP |
0 668 659 | Aug 1995 | EP |
0 690 588 | Jan 1996 | EP |
0 691 754 | Jan 1996 | EP |
0 768 602 | Apr 1997 | EP |
0 817 003 | Jan 1998 | EP |
0 821 495 | Jan 1998 | EP |
0 866 210 | Sep 1998 | EP |
0 923 247 | Jun 1999 | EP |
0 926 596 | Jun 1999 | EP |
1 056 217 | Nov 2000 | EP |
1 061 437 | Dec 2000 | EP |
1 061 443 | Dec 2000 | EP |
1 126 368 | Aug 2001 | EP |
1 150 506 | Oct 2001 | EP |
2 067 800 | Jul 1981 | GB |
2 237 908 | May 1991 | GB |
62-249456 | Oct 1987 | JP |
63-147258 | Jun 1988 | JP |
4-51546 | Feb 1992 | JP |
7-064789 | Mar 1995 | JP |
7066718 | Mar 1995 | JP |
10233676 | Sep 1998 | JP |
10254696 | Sep 1998 | JP |
11296345 | Oct 1999 | JP |
2000315731 | Nov 2000 | JP |
2001-053703 | Feb 2001 | JP |
WO 8905029 | Jun 1989 | WO |
WO 8911443 | Nov 1989 | WO |
WO 9100238 | Jan 1991 | WO |
WO 9313603 | Jul 1993 | WO |
WO 9511855 | May 1995 | WO |
WO 9633558 | Oct 1996 | WO |
WO 9832071 | Jul 1998 | WO |
WO 9903776 | Jan 1999 | WO |
WO 9921094 | Apr 1999 | WO |
WO 9926860 | Jun 1999 | WO |
WO 9965818 | Dec 1999 | WO |
WO 0019311 | Apr 2000 | WO |
WO 0065855 | Nov 2000 | WO |
WO 0069073 | Nov 2000 | WO |
WO 0111281 | Feb 2001 | WO |
WO 0122235 | Mar 2001 | WO |
WO 0176129 | Oct 2001 | WO |
WO 0212978 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080134108 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60378088 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10437800 | May 2003 | US |
Child | 12011340 | US |