1. Field of the Disclosure
The present invention relates to a method and a system for determining a vertical load to which a tyre mounted on a vehicle is subjected, during running of the vehicle.
Inflation pressure is a convenient measurement to make on a tyre fitted on a vehicle wheel and it is becoming a standard by which tyres are monitored. Tyre load, i.e., the supported weight, is a more difficult measurement but, unlike pressure, is a direct measurement of tyre stress. Tyres are selected for a particular vehicle based on the physical strength of their structure and/or material, as well as on the normal range of vehicle weight that they should support at specified nominal temperature and pressure. If the vehicle applies a load to a tyre in excess of the load range for which the tyre has been designed, the tyre is subjected to excessive stress and may fail or have its expected lifetime shortened.
Furthermore, it has to be considered that tyre maintenance is mainly based on the duty, by the vehicle driver, of maintaining tyre pressure near a nominal value, defined by the vehicle and tyre manufacturers. Although it is well known by the tyre industry that the requisite pressure is dependent on the supported load, this load-dependent pressure information is not provided to the driver, since real-time load is unknown. As a result, should the load vary from that assumed by the manufacturer, the tyres may be improperly inflated. Since the requisite pressure increases with load, the only option left is to assume the maximum load and specify a pressure accordingly. However, this maximum pressure can: 1) give a very hard ride; 2) reduce the tyre-to-road contact area available for braking; 3) wear out the center of the tyre tread prematurely. Thus, tyre load information is needed to properly inflate tyres.
Moreover, vehicle electronic control systems, such as for example a vehicle brake control system, a traction control system, an anti-lock braking system, an electronic braking system, a steering control system, an active roll control system, a vehicle stability control system, may use information related to the tyre load, in order to control actuators that move, control and stop the vehicle.
This tyre information may be used within the vehicle, or it can be used remotely, i.e. outside the vehicle. As the telematic capability of vehicles increases, they are capable of wirelessly communicating with a remote facility for monitoring the vehicle health (diagnostics), for prediction of maintenance (prognostics), and to monitor the vehicle as it passes on the road. The information may be also historically important to understand the cause of accidents.
2. Description of Related Art
U.S. Pat. No. 5,793,285 discloses a method and apparatus for monitoring tyres on a vehicle, by continuously measuring the distance between the associated vehicle axle (or a vehicle body part rigidly connected thereto) and the road, while the vehicle is in operation. From this measurement, the tyre deflection is determined. According to the authors, the measured tyre deflection represents a comparatively exact measure of the respective tyre load. When the tyre deflection determined leaves a predetermined desired range, a warning signal is transmitted.
PCT patent application no. WO 03/016115 discloses a method for determining the charge or load exerted on a tyre of a motor vehicle and/or for monitoring tyre pressure, wherein the pressure in each tyre is detected during operation of the vehicle and the rotational behavior of the individual wheels is observed. Load distribution parameters are also determined by comparing the rotational behavior and/or changes in said rotational behavior of the individual wheels during given driving states, taking into account preset and/or predetermined and/or learned variables. Tyre pressure and load distribution parameters are used to determine the load or charge exerted on the tyres and/or pressure loss. In one example, a pressure-measuring system based on the use of pressure sensors (such as TPMS=Tyre Pressure Measuring System), is used to determine the tyre pressure, whilst characteristic variables representing the load distribution are determined using a system based on an evaluation of wheel speed data operating in the manner of a system (Deflation Detecting System=DDS) used to determine conditions relating to the dynamic rolling circumferences of the individual tyres. Consequently, the function of detecting capacity utilization can be set up using existing systems. In another example, the number of revolutions of a front wheel is compared with the number of revolutions of a rear wheel at the same vehicle speed or at approximately the same vehicle speed (e.g. vehicle reference speed), evaluated to obtain a load distribution characteristic variable, and the value and/or the change in the load distribution characteristic variables in defined driving situations is/are used as a means of calculating the capacity utilization or load of the tyres and/or the pressure loss.
US patent application no. 2003/0058118 discloses a vehicle and vehicle tyre monitoring system, apparatus and method for determining the load-induced deflection or deformation of a vehicle tyre. Based thereon, deflection-related information, such as tyre load, molar air content, total vehicle mass and distribution of vehicle mass, are provided. The tyre deflection region or contact region of the loaded tyre is detected by sensing the acceleration of the rotating tyre by means of an accelerometer mounted on the tyre, preferably on an inner surface such as the tread lining thereof. As the tyre rotates and the accelerometer is off of the contact region, a high centrifugal acceleration is sensed. Conversely, when the accelerometer is on the contact region and not rotating, a low acceleration is sensed. The deflection points delimiting the contact region are determined at the points where the sensed acceleration transitions between the high and low values. From a measurement of the rotation rate of the tyre, of the time between detections of the deflection points and from the tyre radius, the contact length (contactLength) can be determined. In order to determine the tyre load, the following formula is suggested:
load=α×treadWidth×contactLength×pressure+forceSidewall
where treadWidth is the width of the tread, treadWidth×contactLength is the area of applied pressure, forceSidewall is the effective resiliency of the tyre sidewall to collapse, and α is a proportionality constant near to 1. Alternatively, the load can be determined from a disclosed relationship between air moles, pressure, temperature and contact length, derived from the Ideal Gas Law.
According to the Applicant, the methods disclosed in the above U.S. Pat. No. 5,793,285 and in the above PCT patent application no. WO 03/016115 may not give reliable real-time determinations of the tyre load, since they are not based on measurements performed directly on the tyre. Thus, they may suffer from an “averaging effect”, which can cause a loss of important tyre load data, especially in rapidly varying conditions.
On the other hand, the approach disclosed in the above US patent application no. 2003/0058118 is quite theoretical and could not fit with a complex system such as a tyre. For example, considering the rectangle treadWidth×contactLength as the area of applied pressure is a strong approximation, as the contact area between the tyre tread and the road is quite different from a rectangle. Furthermore, the value forceSidewall is generally not determined with high precision, so that a further approximation would be included in the tyre load determination.
The Applicant has faced the problem of determining in real-time, i.e. during the running of the vehicle, and in a reliable way, the load to which a tyre fitted on the vehicle is subjected.
The Applicant has found that such problem can be solved by measuring the amplitude of the deformation in radial direction to which a portion of the tread area of the tyre is subjected when such portion passes in correspondence of the contact region between the tyre and the road, and by relating such amplitude to the rotation speed and to the inflation pressure of the tyre. Hereinafter, the deformation in radial direction will be referred as “radial deformation”. Such radial deformation can be detected, for example, by means of a radial accelerometer secured to the inner liner of the tyre.
In a first aspect, the invention relates to a method for determining a load exerted on a tyre fitted on a vehicle during a running of said vehicle on a rolling surface, the method comprising the following steps:
Said first signal may comprise a radial acceleration signal. Said step of measuring said amplitude can be performed by measuring a difference between a maximum value of said first signal and a minimum value of said first signal in said first signal portion.
For the purposes of the present invention, the expression “estimating a rotation speed and an inflation pressure of said tyre corresponding to said radial deformation” may include either a measurement from which the tyre inflation pressure value and/or the rotation speed value in the time interval in which the radial deformation of the first tread portion occurred can be inferred (even if such measurement is performed in a subsequent time interval), or a measurement of the tyre inflation pressure value and/or of the rotation speed value performed in real time, i.e. during the occurrence of the radial deformation of the first tread area portion.
The method may further comprise, before said step of measuring said amplitude, a further step of low-pass filtering said first signal.
Said step of estimating said rotation speed of the tyre may comprise measuring an average value of said first signal in a second signal portion, outside from said first signal portion.
Alternatively, said step of estimating said rotation speed of the tyre may comprise measuring an average value of said first signal in a whole turn of said tyre.
In a preferred embodiment, the method further comprises a step of acquiring a second signal representative of a radial acceleration to which a second tread area portion of said tyre is subjected. In such preferred embodiment, said step of estimating said rotation speed of the tyre may comprise measuring a value of said second signal during said passage of said first tread area portion in said contact region between said tyre and a rolling surface.
The method may further comprise, before said step of measuring said amplitude, a further step of sampling said first signal at a frequency of at least 5 kHz, preferably of at least 7 kHz.
The method may further comprise a step of providing characteristic functions describing an expected radial deformation amplitude versus rotation speed, corresponding to predetermined conditions of tyre load and inflation pressure. Said characteristic functions may comprise polynomial functions.
Preferably, said step of deriving said tyre load may comprise:
More preferably, said step of deriving said tyre load may further comprise:
In a second aspect, the invention relates to a method of controlling a vehicle having at least one tyre fitted thereon, comprising:
The vehicle control system may comprise a brake control system, and said step of adjusting at least one parameter may comprise adjusting a braking force on said tyre.
Alternatively or in combination, the vehicle control system may comprise a steering control system, and said step of adjusting at least one parameter may comprise selecting a maximum variation allowed from steering commands.
Alternatively or in combination, the vehicle control system may comprise a suspension control system, and said step of adjusting at least one parameter may comprise adjusting a stiffness of a suspension spring associated to said tyre.
Typically, the vehicle comprises at least one tyre fitted on its right and at least one tyre fitted on its left. Alternatively to or in combination with the previous embodiments, the vehicle control system may comprise an active roll control system, and said step of adjusting at least one parameter comprises compensating an unequal load distribution between said left fitted tyre and said right fitted tyre.
In a third aspect, the invention relates to a system for determining a load exerted on a tyre fitted on a vehicle during a running of said vehicle on a rolling surface, the system comprising:
In a preferred embodiment, said measuring device comprises a radial accelerometer.
The device for estimating the rotation speed of said tyre may be the same processing unit.
The system of the invention may further comprise a filtering device adapted for low-pass filtering said signal.
The measuring device may further comprise a sampling device adapted to sample said signal at a frequency of at least 5 kHz, preferably of at least 7 kHz.
At least one memory can be associated to said processing unit. Said at least one memory may comprise pre-stored characteristic functions describing an expected radial deformation amplitude versus rotation speed, corresponding to predetermined conditions of tyre load and inflation pressure. Said functions may comprise polynomial functions.
Said at least one memory may further comprise pre-stored instructions for said processing unit. Said pre-stored instructions may comprise at least a first set of instructions being adapted to:
Said pre-stored instructions may further comprise at least a second set of instructions being adapted to:
Said measuring device may be included in a sensor device located in a tread area portion of said tyre. Preferably, said sensor device may be disposed substantially in correspondence of an equatorial plane of the tyre.
Preferably, said sensor device may be secured to an inner liner of the tyre. In this embodiment, a damping element may be interposed between said sensor and said inner liner.
The sensor may further comprise a power source. Said power source may comprise a battery or, preferably, a self-powering device, being adapted to generate electrical power as a result of mechanical stresses undergone by said sensor device during running of said vehicle. Said self-powering device may, for example, comprise a piezoelectric element. Furthermore, said self-powering device may comprise an electrical storage circuit, typically comprising a resistor and a capacitor.
Preferably, the processing unit is included within said sensor device.
Typically, the sensor device further includes a transmitting device. Said transmitting device may be operatively connected to a first antenna.
The system according to the invention may further comprise a fixed unit located on the vehicle, comprising a receiving device for receiving data from said sensor device. Said receiving unit typically comprises a second antenna.
Said first antenna and said second antenna are typically adapted for data transmission at a frequency comprised between 400 and 450 MHz.
Further features and advantages of the present invention will be better illustrated by the following detailed description, herein given with reference to the enclosed drawings, in which:
a and 5b exemplarily disclose two sets of curves of radial deformation peak amplitude versus tyre rotation speed, corresponding to different tyre loads, respectively for a first and second value of tyre inflation pressure;
a and 6b schematically show a radial deformation signal and a filtered radial deformation signal, respectively;
The tyre 11 includes a carcass 16, terminating in two beads 14 and 14a, each formed along an inner circumferential edge of the carcass 16, for fixing the tyre 11 to the corresponding supporting rim 12. The beads 14, 14a, comprise respective reinforcing annular cores 15 and 15a, known as bead cores. The carcass 16 is formed by at least one reinforcing ply, including textile or metallic cords, extending axially from one bead 14 to the other 14a in a toroidal profile, and having its ends associated with a respective bead core 15 and 15a. In tyres of the type known as radial, the aforesaid cords lie essentially in planes containing the axis of rotation of the tyre. An annular structure 17, known as belt structure, is placed in a radially external position with respect to the carcass 16. Typically, the belt structure 17 includes one or more strips of elastomeric material incorporating metal and/or textile cords, overlapping with each other. A tread band 18 of elastomeric material is wound around the belt structure 17 and impressed with a relief pattern for the rolling contact of the tyre with the ground. Two sidewalls 19 and 19a of elastomeric material, each extending radially outwards from the outer edge of the corresponding bead 14 and 14a, are also placed on the carcass 16 in axially opposed lateral positions. In tubeless tyres the inner surface of the carcass 16 is normally covered with a liner 111, i.e. with one or more layers of air-impermeable elastomeric material. Other known elements, such as for example bead fillers may be provided, according to the specific design of the tyre 11.
A sensor device 3, that will be described in detail in the remainder of the description, is included within the tyre 11. The sensor device 3 is located in a portion of the tread area of the tyre 11, i.e. the region of the tyre 11 axially extended between the sidewalls of the tyre 11. Preferably, the sensor device is disposed substantially in correspondence of the equatorial plane of the tyre 11. In the preferred embodiment shown in
In a preferred embodiment of the present invention (not shown), a plurality of sensor devices are associated to a tyre 11. More particularly, the sensor devices may be located in a circumferential position spaced one from each other of substantially the same angle. For example, three sensor devices may be located within the tyre, circumferentially spaced from each other of an angle of substantially 120°. As far as the securing of the plurality of the sensor devices to the tyre 11, reference is made to what said above.
As it will be clarified in the following, the use of a plurality of sensor devices allows to achieve more accuracy and reliability of the measurements performed, as well as a better monitoring of the tyre load during the entire wheel turn.
The sensor device 3 is adapted to communicate with a unit external to the tyre 11. Such external unit will be referred in the following as “fixed” unit. Typically, the fixed unit may be located on the vehicle on which the tyre 11 is fitted. Alternatively or in combination with a fixed unit located on the vehicle, a fixed unit may be a hand-held unit usable by an operator, or a unit located along a roadway (e.g. in a service station).
For example,
The sensor device 3, an exemplary block diagram of which is shown in
The sensor device 3 may further include a processing unit (CPU) 34, associated to a memory device 35. The memory device 35 may contain re-writable memory locations in which information about the measurements taken by the measuring device 32 can be stored. Furthermore, it may also contain pre-stored instructions for the processing unit 34, suitable for pre-processing the signals coming from the measuring unit 32 before transmission, in order to reduce the quantity of information sent out of the tyre 11. More particularly, the deformation signal may be pre-processed in order to detect characteristic points, such as for example maxima and minima, the coordinates of which can be sent to the transmission device 31 for transmission to the fixed unit. This allows to save transmission bandwidth and required power for transmission. Furthermore, a filtering device 38 may be interposed between the measuring unit 32 and the processing unit 34, in order to low-pass filter the deformation signal and discriminate the useful signal from high-frequency noise caused by the interaction between the tread band and the road. However, such filtering may be provided by electronics included within the measuring device 32 or as further pre-processing instruction stored within the memory 35.
A power source 33 allows to energize the sensor device 3. The sensor device 3 may be powered by a battery. However, for a real-time determination of the tyre load a great electrical power consumption may be requested by the measuring device 32 (in particular by a high frequency sampling device), by the processing unit 34 and by the transmission device 31, so that a battery could have short lifetime, as compared to the entire life of the tyre. Thus, in preferred embodiments the power source 33 includes a self-powering device, which generates electricity as a result of the mechanical stresses to which said self-powering device is subjected (for example, centrifugal force, or the deformations of the liner, or movements due to traveling on uneven roads). As an example, piezoelectric materials may be used in the self-powering device for such purpose. The self-powering device also includes an electrical energy storage circuit (not shown), typically including a resistor and a capacitor. As a further alternative, the sensor device 3 may be energized by the fixed unit by means of a suitable receiving device (not shown), connected to the mobile antenna 37.
A device for distributing the electrical power 36 preferably distributes appropriately the electrical power provided by the power source 33 to said processing unit 34, to said memory device 35, to said transmitting device 31 and to said measuring device 32, according to their requirements.
It has to be noticed that it is not necessary to include the measuring device, the transmission portion to the fixed unit and the control electronics within a single packaged sensor device. For example, the control electronics and the transmission portion to the fixed unit could be packaged in a separated device secured to other parts of the tyre or of the wheel (e.g. the rim, or the sidewall), associated by a wired or wireless (e.g. optical or by radio-frequency) connection to a measuring device located in the tread area portion of the tyre.
By analyzing radial acceleration curves in different conditions of rotation speed, load and inflation pressure, the Applicant has observed that:
Summarizing the above results, the Applicant has plotted different curves of radial deformation (peak) amplitude versus rotation speed, corresponding to different tyre loads, on the same graph, at constant inflation pressure.
On the other hand, since aradial=V2/R or aradial=ω2R (wherein R is the radius of the tyre), the average level of acceleration to which the tread area portion corresponding to the position of the radial accelerometer is subjected outside the contact patch increases with increasing rotation speed, substantially without any dependency on the tyre load and inflation pressure. This means that the rotation speed of the tyre can be derived by measuring the average radial acceleration level in the portion of the radial acceleration signal corresponding to the outside of the contact patch, for any tyre load and inflation pressure. Thus, advantageously, a signal furnished by a radial accelerometer disposed in a tread area portion of the tyre can give two of the parameters needed for estimating the tyre load, i.e. the amplitude of the radial deformation peak and the rotation speed. The third parameter, i.e. the inflation pressure, can be provided by a conventional pressure sensor. However, it has to be noticed that also the tyre rotation speed may be provided by a separate device, such as for example by a measurement performed in other parts of the vehicle, different from the tyre (e.g., the wheel hub).
In a preferred method for determining the tyre load, each of the curves shown in
The values y—1(q,p,ω), . . . , y_n(q,p,ω) calculated with equations [1] represent expected radial deformation peak values, at given conditions of tyre load, pressure and rotation speed.
In an initial step of characterization of a tyre, graphs similar to those shown in
The fit coefficients [2], as well as the pressure values to which they are related, can be stored within the memory included within the sensor device 3 located in the tread area of the tyre. The above described characterization of the tyre can be performed once per tyre model, for example in indoor tests.
With reference to
In order to derive the rotation speed of the tyre, the average acceleration level a in a portion outside the signal variation caused by the passage of the accelerometer under the contact patch can also be measured. The radius of the tyre should also be known for the above purpose. In an alternative embodiment, the average signal value in a whole turn of the tyre could be used as a measure of the average acceleration level a. In a further alternative embodiment, using a plurality of sensor devices located within the tyre at different circumferential positions, a first sensor device located outside the contact patch could be used in order to measure the average acceleration level a (and derive the rotation speed of the tyre), in real-time, in the same time interval in which a second sensor device passes under the contact patch. Simple control electronics can be implemented within the sensor devices in order to trigger the needed measurements. The needed algorithms for the above described analysis of the signal generated by the accelerometer can also be stored within the memory of the sensor device, in order to be used by the associated processing unit.
The pressure p is also measured during running of the tyre. By using the measured pressure p, the correct set of fit coefficients of the tyre load curves can be identified (see equations [2]), as indicated at 82 in
pressure px: [(a1q1,p1)γ, (b1q1,p1)γ, (c1q1,p1)γ], . . . , [anqn.p1)γ, (bnqn.p1)γ, (cnqn,p1)γ]
Then, by using the measured rotation speed Vm (or ωm) and the identified fit coefficients, different expected radial deformation peak values y—1(ωm, q1, px), y—2(ωm, q2, px), . . . , y_n(ωm, qn, px) can be determined, as indicated at 84 in
actual tyre load: Pp=q3:y—3
and then:
actual tyre load=Pp×q3/y—3 [3]
The above described formulas for calculation of the actual tyre load can also be stored within the memory of the sensor device, in order to be used by the associated processing unit.
The Applicant has performed a series of measurements by using a radial accelerometer secured to the inner liner of a tyre model PIRELLI® P7®, having a radius of 0.31 m.
y—1=0.034ω2+0.031ω+0.27 for q1=250 kg
y—2=0.041ω2+0.049ω+0.30 for q2=300 kg
y—3=0.049ω2+0.053ω+0.23 for q3=450 kg
y—4=0.055ω2+0.030ω+0.29 for q4=600 kg [4]
After the characterization, a measurement at a tyre load different from the above values was performed. From the radial acceleration signal, a radial deformation peak amplitude value of 210 g and a rotation speed of 75 km/h were derived. The inflation pressure was 2.2 bar.
By using equations [4], the following expected deformation peak amplitudes can be calculated at a rotation speed of 75 km/h: y—1=156 g; y—2=189 g; y—3=225 g y—4=251 g. Thus, the closer peak amplitude value is y—3, corresponding to a tyre load of 450 kg. By using equation [3], it could be derived the actual tyre load, i.e. 420 kg.
It has to be understood that the above described method for determining the tyre load could be modified without departing from the general teachings of the invention. For example, a database comprising values of expected radial deformation peaks corresponding to predetermined tyre inflation pressures, tyre rotation speeds and tyre loads intervals can be stored within the memory of the sensor device 3, in place of the above mentioned fit coefficients. The values stored in the database could be inferred by characterization curves obtained as disclosed above. From such database, an estimation of the tyre load could be done, after having gained knowledge of the radial deformation amplitude, of the tyre rotation speed and of the tyre inflation pressure.
The real-time determination of the load acting on a tyre mounted on a vehicle is an important parameter that can be passed to a vehicle control system, in order to control the behavior of the vehicle, particularly in critical conditions. A vehicle control system may comprise a brake controller (for example, an anti-lock brake unit), and/or a steering controller, and/or a suspension controller, and/or an engine controller, and/or a transmission controller.
For example, a vehicle brake control system may adjust the braking force on each tyre according to the load on the tyre.
As another example, the loads on each tyre may be used to determine the vehicle stability envelope and to select the maximum variation allowed from steering commands. This information may be applicable to a steering control system (Electrically Assisted Steering Systems) to limit the yaw rate.
As another example, a vehicle suspension control system may adjust the stiffness of the suspension springs for each tyre according to the load on the tyre. Furthermore, a sensed unequal load distribution between left fitted tyres and right fitted tyres could be compensated by an Active Roll Control system, that currently use sensed lateral acceleration to increase the hydraulic pressure to move stabilizer bars, in order to remove a vehicle lean when cornering.
The conditions of the vehicle may indicate that the performance of the vehicle is reduced and that the driver should restrict his driving maneuvers. The vehicle control system itself can take action, for example in order to limit the maximum vehicle speed to maintain stability and not exceed the tyre specifications, or to limit steering yaw rate in order to keep rollovers from occurring. The driver may be alerted to the current vehicle control system condition and of the actions that the vehicle control system has taken on his behalf to safe the vehicle (reducing the maximum attainable speed, steering rate, engine power), as needed on a display device. On the same display device it may also be shown whether he should take further action on his own (change the distribution of mass, restrict driving maneuvers and speed). The display device may comprise a visual and/or an audible unit, for example located in the dashboard of the vehicle.
This application is a divisional of U.S. application Ser. No. 10/563,370, filed May 26, 2006 now U.S. Pat. No. 7,945,361, which is a national phase entry under 35 U.S.C. §371 from PCT International Application No. PCT/EP2003/007185, filed Jul. 4, 2003, in the European Patent Office, the contents of which are relied upon and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3500681 | Shively | Mar 1970 | A |
4334215 | Frazier et al. | Jun 1982 | A |
4966034 | Bock et al. | Oct 1990 | A |
5230243 | Erich | Jul 1993 | A |
5274355 | Galan | Dec 1993 | A |
5297424 | Sackett | Mar 1994 | A |
5513525 | Schurmann | May 1996 | A |
5587698 | Genna | Dec 1996 | A |
5591906 | Okawa et al. | Jan 1997 | A |
5629478 | Nakajima et al. | May 1997 | A |
5749984 | Frey et al. | May 1998 | A |
5793285 | Wehinger | Aug 1998 | A |
6218936 | Imao | Apr 2001 | B1 |
6271748 | Derbyshire et al. | Aug 2001 | B1 |
6518875 | DeZorzi | Feb 2003 | B2 |
6538566 | Morand et al. | Mar 2003 | B1 |
6539295 | Katzen et al. | Mar 2003 | B1 |
6545599 | Derbyshire et al. | Apr 2003 | B2 |
6561018 | Mancosu et al. | May 2003 | B2 |
6722193 | Conway | Apr 2004 | B1 |
6724301 | Ginman et al. | Apr 2004 | B2 |
6725713 | Adamson et al. | Apr 2004 | B2 |
6758088 | Claussen et al. | Jul 2004 | B2 |
6779392 | Bell et al. | Aug 2004 | B2 |
6823728 | Barnes | Nov 2004 | B1 |
6882270 | Stewart et al. | Apr 2005 | B2 |
6897770 | Lill | May 2005 | B2 |
6952160 | Bennie et al. | Oct 2005 | B1 |
6958684 | Lin et al. | Oct 2005 | B2 |
6958686 | Okubo | Oct 2005 | B2 |
7404317 | Mancosu et al. | Jul 2008 | B2 |
7404318 | Merino-Lopez et al. | Jul 2008 | B2 |
7546764 | Morinaga et al. | Jun 2009 | B2 |
7918131 | Matsuda et al. | Apr 2011 | B2 |
7945361 | Brusarosco et al. | May 2011 | B2 |
8316700 | Brusarosco et al. | Nov 2012 | B2 |
20020044050 | Derbyshire et al. | Apr 2002 | A1 |
20020075144 | DeZorzi | Jun 2002 | A1 |
20020166373 | Mancosu et al. | Nov 2002 | A1 |
20020196138 | Kogure et al. | Dec 2002 | A1 |
20030010107 | Giustino et al. | Jan 2003 | A1 |
20030010108 | Goslar et al. | Jan 2003 | A1 |
20030058118 | Wilson | Mar 2003 | A1 |
20030062994 | Morand et al. | Apr 2003 | A1 |
20030070477 | Fischer et al. | Apr 2003 | A1 |
20030080860 | Stewart et al. | May 2003 | A1 |
20030121318 | Bell et al. | Jul 2003 | A1 |
20030121319 | Kojima et al. | Jul 2003 | A1 |
20040164855 | Okubo | Aug 2004 | A1 |
20050085987 | Yokota et al. | Apr 2005 | A1 |
20070010928 | Brusarosco et al. | Jan 2007 | A1 |
20070205879 | Matsuda et al. | Sep 2007 | A1 |
20070240501 | Mancosu et al. | Oct 2007 | A1 |
20070240502 | Morinaga et al. | Oct 2007 | A1 |
20080016955 | Merino-Lopez et al. | Jan 2008 | A1 |
20090184814 | Lee et al. | Jul 2009 | A1 |
20100126263 | Brusarosco et al. | May 2010 | A1 |
20110257902 | Melzi et al. | Oct 2011 | A1 |
20140005956 | Patel et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
3916176 | Nov 1990 | DE |
4009540 | Sep 1991 | DE |
4228894 | Mar 1994 | DE |
196 11 364 | Oct 1997 | DE |
198 07 880 | Sep 1999 | DE |
199 17 034 | Nov 2000 | DE |
100 58 099 | May 2002 | DE |
0 719 663 | Jul 1996 | EP |
0 887 211 | Dec 1998 | EP |
887221 | Dec 1998 | EP |
1293362 | Feb 2003 | EP |
1 293 362 | Mar 2003 | EP |
03 135810 | Jun 1991 | JP |
06 115328 | Apr 1994 | JP |
9-2031 | Jan 1997 | JP |
WO 03016115 | Feb 2003 | WO |
WO 2005005950 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110231113 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10563370 | US | |
Child | 13052627 | US |