Method and system for emergency call management

Information

  • Patent Grant
  • 12041525
  • Patent Number
    12,041,525
  • Date Filed
    Friday, September 24, 2021
    3 years ago
  • Date Issued
    Tuesday, July 16, 2024
    4 months ago
Abstract
A system and method for generating and transmitting emergency messages and for maintaining real-time emergency communications sessions between users and emergency dispatch centers. A system receives data transmitted from a user device and constructs an emergency message related to a specific type of emergency scenario as well as the location, meta-data and background information of the user. The generated emergency message is transmitted via a communications network and delivered to an appropriate emergency dispatch center. The method enables the user to deliver a detailed request for help regardless of his or her location or, in another instance, delivers the basic emergency response related information for the user. The generated emergency message is universally compatible with emergency communications center infrastructure so long as the communications centers possess basic voice call equipment.
Description
BACKGROUND OF INVENTION
1. Field of Invention

Aspects and embodiments disclosed herein are generally directed to systems and methods for the management of emergency calls, and for the enablement of emergency calls to be placed from mobile communications devices through communication channels other than public switched telephone network or cellular voice calls.


2. Discussion of Related Art

People in emergencies may request help via a designated emergency number, such as a three-digit number like 911 or direct local access telephone numbers (i.e., number tied to a specific emergency dispatch center). Increasingly, communications to emergency dispatch centers (“EDCs”), such as Public Safety Answering Points (“PSAPs”), are made via mobile wireless devices and smart devices (e.g., smartphones, tablets, laptops, wearable smart devices, etc.), rather than land-based telephone lines. A majority of PSAPs and EDCs are incapable of receiving non-voice data from these mobile wireless and smart devices. A system and method to facilitate communication of non-voice data to EDCs and PSAPs is needed.


SUMMARY OF INVENTION

Given the varying capabilities of dispatch centers to receive different forms of communications (e.g., voice, SMS, email, etc.), it has been found desirable in accordance with one or more embodiments that mobile devices incorporate a standard platform that is universally compatible with dispatch centers while also offering the ability for users to utilize additional features enabled by mobile and smart devices, such as text messaging, location services, and video capture features to fulfill a request for emergency response.


Historically, a user has not been able to make non-voice network calls, or voice calls over data networks such as those using Internet Protocol (IP), also referred to as Voice of IP (VoIP) calls, to an overwhelming majority of EDCs (fewer than 1% of PSAPs in United States today can accept non-voice and VoIP calls). Accordingly, a user wishing to deliver a text message, video feed, image, or some other non-voice message to an EDC could not be assured that his/her message would be received by the intended recipient. Moreover, in many instances, the user could not even be assured that he/she would receive confirmation of receipt or lack thereof from the EDC, thereby causing the user to remain unsure as to whether his/her request for help was being fulfilled.


A great number of personal communication devices, for example, some tablet and laptop computers, are enabled to send and receive messages over data communication channels, such as the Internet, however, are not configured to send and receive phone calls. These devices also do not have a way for an EDC to call back in case such a need arises in the process of providing emergency response service to the end user. Accordingly it would be desirable to provide a method of provisioning telephone numbers through which non-voice enabled personal communication devices may be called back.


Given the current infrastructure constraints of the vast majority of dispatch centers, it has been found desirable to provide a system and associated method that enables users to utilize more advanced features of today's phones, such as text, location services, video, and images, to deliver voice and non-voice messages to EDCs, regardless of the physical infrastructure constraints of the EDC. It has been found desirable to provide a system to update the caller by receiving updates of whether or not the EDC personnel are able to respond to the request for help and the status of their emergency response. Further, it has been found desirable to provide a method to initialize and manage such communication using a data network such as the Internet as a communication platform.


Various aspects and embodiments disclosed herein include methods and systems which fulfill one or more of these needs.


In accordance with one aspect, there is provided a method of facilitating a reliable and persistent communication between a user of an application client, also referred to herein as a user communication device, and an emergency response dispatch center. The method comprises receiving an emergency alert from the user communication device at an emergency messaging system, constructing an emergency message that is based on the emergency alert and that includes at least one of an audio file, an interactive voice response (IVR) message, a Short Message Service (SMS) text message, a Multimedia Messaging Service (MMS) message, an e-mail message, an Instant Messaging (IM) message, and a message otherwise formatted for communication over the Internet, establishing a first communication link, the first communication link including at least one of a communication link between the emergency messaging system and an emergency response dispatch center, a link between the emergency messaging system and a Routing Service Provider (RSP) and a communication link between the RSP and the dispatch center, and a communication link between the emergency response dispatch center and a first gateway and a communication link between the first gateway and the emergency messaging system, establishing a second communication link, the second communication link including at least one of a communication link between the emergency messaging system and the user communication device, and a communication link between the emergency messaging system and a second gateway and between the second gateway and the user communication device, bridging the first communication link and the second communication link, routing the emergency message from the emergency messaging system to the dispatch center over the first communications link, and actively managing the first and second communication links until a termination signal is received from the user communication device.


In some embodiments the user communication device contains an application client, implemented in software, to generate and transmit an emergency alert as well as receive information from EMS information about the emergency alert.


In some embodiments, the method comprises communicating between the user communication device and the dispatch center via text messages.


In some embodiments, the method comprises communicating between the user communication device and the dispatch center via e-mail exchanges.


In some embodiments, the user communication device contains an application client and the user uses the application client to interact with the user communication device.


In some embodiments, constructing the IVR message includes generating an audio message from alert metadata and user information of the user stored in a user database of the emergency messaging system.


In some embodiments, the emergency messaging system sends a push notification to the user communication device notifying the user of an attempted connection with the dispatch center.


In some embodiments, the emergency messaging system sends an SMS message to the user communication device notifying the user of an attempted connection with the dispatch center.


In some embodiments, the emergency messaging system continuously attempts to initiate a voice connection with the dispatch center until success or termination by request by one of the user and a session controller of the emergency messaging system.


In some embodiments, the emergency messaging system maintains the first communication link if the second communication link fails and maintains the second communication link if the first communication link fails. The emergency messaging system may re-establish the first communication link responsive to failure of the first communication link and re-establish the second communication link responsive to failure of the second communication link.


In some embodiments, the emergency messaging system determines whether a reliable data connection to the dispatch center is available, implements a VoIP session between the dispatch center and the user communication device responsive to a determination that a reliable data connection to the dispatch center is available, implements a cellular phone call between the dispatch center and the user communication device responsive to a determination that a reliable data connection to the dispatch center is not available and that a reliable cellular connection between the user communication device and the dispatch center is available, and implements a PSTN phone call between the dispatch center and the user communication device responsive to a determination that a reliable data connection to the dispatch center is not available and that a cellular phone call between the user communication device and the dispatch center failed to initiate and that a PSTN telephone connection is between the user communication device and the dispatch center is available.


In some embodiments, the first communication link includes multiple TCP or UDP sessions and the second communication link includes multiple TCP or UDP sessions.


In some embodiments, the first gateway is configured to generate, transmit, receive and interpret multimedia Session Initiation Protocol (SIP) messages. In some embodiments, the first gateway is configured to generate, transmit, receive and interpret H.323 signaling messages.


In some embodiments, the second gateway is configured to generate, transmit, receive and interpret multimedia Session Initiation Protocol (SIP) messages. In some embodiments, the second gateway is configured to generate, transmit, receive and interpret H.323 signaling messages.


In accordance with another aspect, there is provided a method for providing emergency communication with an emergency messaging system. The method comprises provisioning and maintaining a pool of direct inward dial telephone numbers at one or more gateways, receiving, at a server of the emergency messaging system (EMS) remote from the user communication device, a transmission from the user communication device that indicates that a user of the user communication device is in an emergency, receiving, at the EMS, metadata containing information regarding a location of the user communication device sent from the user communication device, using information regarding the location of the user communication device to determine an Emergency Dispatch Center (EDC) to which to transmit an emergency message, selecting a telephone number from the pool of direct inward dial telephone numbers, associating the telephone number with the user communication device, associating the telephone number with the location of the user communication device in real-time using an emergency service provisioning application programming interface (API), and utilizing the telephone number to provision emergency service for the user from the EDC.


In some embodiments, the emergency messaging system sends location information metadata to one of a number of APIs exposed by third-party Routing Service Providers (RSPs) and, in response to sending the location information metadata, receives, from the one of the number of APIs, an identity of an EDC and identifying information associated with the EDC, including location, infrastructure capabilities, and responder availability of the EDC. The emergency messaging system may include the location information in a request for provisioning of emergency services for the user utilizing the telephone number, and the third-party RSP may update an automatic location identification (ALI) database of the emergency messaging system to associate the location information with the telephone number.


In some embodiments, the emergency messaging system determines if communications between the user communication device and the EDC have been successfully established utilizing the telephone number and a third-party RSP and, responsive to communications between the user communication device and the EDC having not been successfully established, attempts to establish communication between the user communication device and the EDC using a different third-party RSP and associated telephone number. The emergency messaging system may originate a telephone call to the EDC through one of the one or more gateways.


In accordance with another aspect, there is provided an emergency management system (EMS) containing a communications system comprising at least one first input/output (I/O) system configured to receive a request for assistance from a user communication device, the request including metadata providing an indication of a location of the user communication device and a type of emergency reported by a user of the user communication device and at least one processing unit in communication with the at least one first I/O system. The at least one processing unit is configured to receive an indication of the request from the at least one first I/O system and interpret the metadata transmitted from the user communication device, communicate with at least one server of the EMS housing a memory unit including personal information associated with the user via a communications network of the EMS, and read the personal information from the memory unit, generate an emergency message related to an emergency category associated with the type of emergency reported by the user, the emergency message including information associated with the emergency category, an indication of the location of the user communication device, and the personal information of the user, determine, based upon knowledge of the capabilities of a plurality of emergency dispatch centers and based upon the location of the user communication device, an emergency dispatch center that is equipped to receive the alert and whether the emergency dispatch center is configured to receive non-voice calls, responsive to a determination that the emergency dispatch center is configured to receive non-voice calls and to a determination that the emergency message is in a non-voice format, to transmit the emergency message in the non-voice format to the emergency dispatch center, and responsive to a determination that the emergency dispatch center is not configured to receive non-voice calls and to a determination that the emergency message is in a non-voice format, to convert the emergency message to a voice format and transmit the emergency message via a non-IP communication link to the emergency dispatch center.


In some embodiments, the at least one processing unit is further configured to communicate the emergency message to at least one Routing Service Provider (RSP) over a communications network via at least one second I/O system of the EMS. The RSP may be configured to communicate the emergency message to a network address of one of the plurality of emergency dispatch centers based on the emergency category, each of the plurality of emergency dispatch centers being different. The one of the plurality of emergency dispatch centers may be a police station. The one of the plurality of emergency dispatch centers may be a fire house.


In some embodiments, the RSP is configured to communicate the emergency message to a network address of a one of the plurality of emergency dispatch centers selected based on the emergency category and the location of the user communication device. The one of the plurality of emergency dispatch centers may be a university-affiliated emergency dispatch center. The one of the plurality of emergency dispatch centers may be one of a corporate emergency dispatch center and a private emergency dispatch center.


In some embodiments, the user communication device is configured to transmit the request for assistance to the at least one first I/O system in one of text, speech-to-text, voice, and voice-to-text format, based upon a selection made by the user, and the at least one first I/O system is configured to receive and process the request for assistance in any of the text, speech-to-text, voice, and voice-to-text formats.


In some embodiments, the EMS includes an application programming interface (API) configured to create a communications bridge between the user communication device and the emergency dispatch center.


In accordance with another aspect, there is provided a user communications to device configured to request emergency assistance from an emergency management system. The user communications device comprises a user interface, a location determination module configured to determine a location of the user communication device, a communications module configured to send and receive messages over a communications network, and a processor. The processor is configured to display a plurality of user-selectable emergency message indicators in the user interface, each of the plurality of user-selectable emergency message indicators indicative of a different type of emergency situation, receive an indication of the location of the user communication device from the location determination module, receive an indication of a selection of one of the user-selectable emergency message indicators by a user, responsive to receiving the indication of the selection, generate a message including an indication of the selected one of the user-selectable emergency message indicators and an indication of the location of the user communication device, transmit the message via the communications module to the emergency management system, establish a communications link to an emergency dispatch center through the emergency management system, and receive a real-time response to the message from the emergency dispatch center via the emergency management system.


In some embodiments, the user interface comprises a touch screen and wherein each user-selectable emergency message indicator comprises a soft-button selectable by touching the touch screen in an area defined by a respective one of the soft-buttons.


In some embodiments, the user communications device is further configured to request a verification of the location of the user communication device from the user and to receive an input from the user one of confirming the location of the user communication device and selecting a location other than the location determined by the location determination module. The indication of the location of the user communication device may be included in the message is the location other than the location determined by the location determination module.


In some embodiments, the user communications device is further configured to present a sub-menu of characterizations of the emergency situation, the sub-menu selected based on the selected one of the user-selectable emergency message indicators, the sub-menu of characterizations including characterizations of the emergency situation that contain more specific information than the type of emergency situation indicated by the selected one of the user-selectable emergency message indicators.


In some embodiments, the user communications device is further configured to include an indication of a characterization of the emergency situation selected from the sub-menu by the user in the message.


In some embodiments, the user communications device is further configured to receive additional information from the user and include the additional information in the message.


In some embodiments, the user communications device is configured to receive the additional information from the user in the form of one of touch, voice, and a gesture.


In some embodiments, the user communications device is configured to receive the additional information from the user in the form of one of an image and a video message.


In some embodiments, the user communications device, comprises a portable electronic device selected from the group consisting of a smart phone, a tablet computer, a laptop computer, and a wearable smart device or other form of Internet enabled portable electronic device.


In some embodiments, the user communications device is configured to receive the response to the message from the emergency dispatch center in any of a text message, an e-mail message, a voice message, an image, and a video message.


In some embodiments, the communications network is a wireless communications network.


In some embodiments, the user communications device is configured to receive a message from the emergency management system re-establishing the communications link between the user communications device and the emergency dispatch center responsive to a failure of the communications link.


In some embodiments, the user communications device is configured to transmit the message over any of a plurality of communication channels, to determine a communications channel among the plurality of communication channels most suitable for the communications link, and to transmit the message over the determined communications channel.


In some embodiments, the user communications device is configured to switch the communications link from a first communications channel to a second communications channel responsive to a command from the emergency management system.


In some embodiments, the user communications device is configured to receive session status updates regarding the communications link from the emergency management system and display the session status updates in the user interface.


In some embodiments, the user communications device is configured to re-transmit the message responsive to not receiving an indication of a successful establishment of the communications link from the emergency management system.


In some embodiments, the user communications device is configured to dial a conventional emergency response number responsive to not receiving an indication of a successful establishment of the communications link from the emergency management system after a pre-determined number of iterations of re-transmitting the message.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 is an illustration of one embodiment of an environment for generating and communicating a partially preformatted emergency voice message to an emergency dispatch center (“EDC”);



FIG. 2 illustrates communication channels between an EMS and a user communication device and between the EMS and an EDC and the bridging of the two communication channels so as to allow the user communication device and the EDC to communicate with each other;



FIG. 3 outlines one embodiment of implementation of communication sessions and bridging of the communication sessions over the communication channels illustrated in FIG. 2;



FIG. 4 outlines the hardware components that comprise an embodiment of an EMS and an embodiment of an architectural layout of the same;



FIG. 5 illustrates details of one embodiment of a process by which a communication session may be setup between a user communication device and an EDC;



FIG. 6 illustrates an embodiment of a user interface of a user communication device configured to communicate an emergency message such that the user can select one of a plurality of emergency situations;



FIG. 7 illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to confirm the location of the user communication device, add detail to the selected emergency situation, cancel the request, call 911 through Cellular or PSTN network or view a communication log between the user communication device and the EDC;



FIG. 8 illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to view a communication log or cancel the request using a “Hang Up” button;



FIG. 9 illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to send additional information about the alert, view a communication log or cancel the alert;



FIG. 10 illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select further categories that describe the emergency situation better, or cancel the alert all together;



FIG. 11 illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map;



FIG. 12A illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 12B illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 13A illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 13B illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 14A illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 14B illustrates another embodiment of a user interface of a user communication device configured to communicate an emergency message wherein the user interface allows the user to select a specific location on a geographic map including selecting a predefined location and confirm the selected location;



FIG. 15 is a flow chart of an embodiment of a method by which a request for emergency assistance may be communicated to an emergency dispatch center; and



FIG. 16 is a flow chart of another embodiment of a method by which a request for emergency assistance may be communicated to an emergency dispatch center.





DETAILED DESCRIPTION

Aspects and embodiments disclosed herein are not limited to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. Aspects and embodiments disclosed herein are capable of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Aspects and embodiments disclosed herein provide for a method for initiation and management of emergency call sessions, including use of the many features provided by wireless mobile and smart devices, such as delivery of a multimedia message from a user communication device to an EDC in real-time, muted via at least one of many servers of an emergency management system (EMS) housed in the Internet. Also disclosed herein are aspects and embodiments of a method of provisioning a direct in-ward dial (DID) telephone number (TN) to a user communication device for the purpose of emergency response.


To deliver a message to an emergency dispatch center (“EDC”), such as a Public Safety Answering Point (“PSAP”), an interactive voice message (“IVM”) may be generated from metadata including, but not limited to, name, health records, emergency contact persons, geographic location, call-back number, type of emergency and current status of the response received from a user communication device and same or other details stored in servers remote to the user communication device contained within an EMS placed in a computer network. This metadata may be communicated via multiple modes of transmission, including IP and Short Message Services (“SMS” or “text message”), to these remote servers where it may be combined into an audio file with interactive voice response (“IVR”) capabilities. The IVM thus generated is then communicated via a communications network to a VoIP gateway, for example, a Session Initiation Protocol (SIP) Trunking device (SIP trunking is the use of voice over IP (VoIP) to facilitate the connection of a private branch exchange (PBX) to the Internet. In effect, the Internet replaces the conventional telephone trunk, allowing an enterprise to communicate with fixed and mobile telephone subscribers. SIP is an Internet Engineering Task Force (IETF) standard for initiating interactive multimedia user sessions; a trunk is a line or link that can carry many signals at once, connecting major switching centers or nodes in a communications system), or a H.323 trunking device (H.323 is signaling and to control protocol developed by International Telecommunications Union (ITU) for initiating interactive multimedia user sessions), and subsequently optionally to a routing service provider (RSP) for transmission to a PSAP or other EDC (e.g. university or corporate dispatch center) or transmitted directly to the EDC using a communication network such as the Internet. Aspects and embodiments disclosed herein encompass a system of delivering IVMs to emergency call centers regardless of advance knowledge of a user's location, as the generated audio file is ultimately converted to a traditional voice format, such as via time-division multiplexing (“TDM”), and therefore compatible with any EDC, regardless of the original form of the communication from the user communication device (e.g., SMS, VoIP messages, etc.). Other aspects and embodiments disclosed herein relate to a system of delivering IVMs via IP to those dispatch centers that have been identified as capable of receiving IP-based messages. Still another aspects and embodiments disclosed herein relate to a process of repeating the IVMs either on a periodic basis or on request by the EDC.


Moreover, aspects and embodiments disclosed herein enable the establishment and maintenance of a live session between a user of a mobile communication device and emergency dispatcher at the EDC. This includes the setting up of a communication link between an EMS, which contains one or more computing machines each housing a server, a database or other networked computer, placed in the network and the user communication device, and another communication link between the EMS and the EDC, where each link is initiated and managed by the EMS. In a single session the user and dispatcher may communicate continuously and in real-time via text-to-speech, speech-to-text, as well as traditional voice or another form of Internet based communication capable of transmission of multimedia messages. Text-to-text and video/photo sharing is also enabled if the emergency dispatch center possesses an IP connection to the Internet. One embodiment of a method for constructing such messages includes, after receiving a prompt from a user, generating an emergency message related to the respective emergency category. The generated emergency message may then be communicated over a communications network, such as the Internet. Another embodiment relates to a system that dynamically selects the fastest and/or most secure method route to transmit the message, whether via cellular connection, data connection over the Internet using SIP, SMS, Bluetooth, WiFi, etc. Such connection can then be continually or periodically sampled or monitored and adjusted based on the connection strength and channel quality based on industry accepted measures such as goodput, throughput, congestion status, queue length at servers, availability of certain routers and switches along the communication channels between the user communication device and the EMS and vice-versa and the EMS and the EDC and vice-versa.


Aspects and embodiments disclosed herein further provide for a number of DID TNs to be provisioned for the purpose of emergency response. These DID TNs are assigned to a user communication device on provisioning of the first communication link between the EMS and the user communication device and the assignment is maintained for a period of time until after the first communication link between the EMS and the user communication device is terminated. The assigned DID TN is communicated by the EMS to the EDC over a second communication link and can be used by the EDC in order to re-establish a call back to the user communication device or to provision other network communication resources.


In accordance with one embodiment, there is provided a process of setting up a communication link, using an EMS as a trunking or routing mechanism, between a user communication device and an EDC such as a PSAP. This communication link is used for transmission of partially preformatted emergency voice message, SMS, speech-to-text, voice-to-text, VoIP packets, SIP control messages, and/or other multimedia messages between the user communication device and the EDC via the EMS.



FIG. 1 is an illustration of one embodiment of an environment for generating and communicating a multimedia message such as a partially preformatted emergency voice message, Short Message Service (“SMS”) message, e-mail, or another form of a multimedia message that can be sent over the Internet, by a hardware device such as user communication device 101, to an emergency dispatch center (“EDC”) such as a Public Safety Answering Point (“PSAP”). A user 100 wishes to place an emergency call to an emergency service, for example to 911. The user 100 may request assistance by activating an alerts feature on his or her user communication device 101, hardware specification details of which are as described below. This alert may include meta-data identifying the user's location and/or the nature of the emergency. Using a user communication channel 107, such as a wireless link to one of a WiFi router, a cellular network, a bluetooth device or any other form of wireless or wired communication, the user communication device transmits this meta-data to an emergency messaging system (“EMS”) 103 capable of initializing and managing VoIP calls over a communication is network such as the Internet. The EMS can comprise any appropriate network entity, such as, for example, a Short Message Service Center (“SMSC”) for sending Short Message Service (“SMS”) messages, an Application Programming Interface (API) 116 (see FIG. 4) for receiving control messages, such as SIP messages, and multimedia messages from the user and management of communication sessions, a PBX for setting up and hosting VoIP and Analog phone calls, databases for user and phone number, fileservers, routers, load balancers and network address translators (NAT) or any other form of hardware device capable of transmission, reception and storage of information over the Internet. The user communications device 101 may select the appropriate mechanism of transmission by selecting an appropriate user communication channel (e.g. a link to a WiFi, cellular, SMS, or Voice network or device) based on one or more variables, for example, network availability, bandwidth constraints, security, and any other metric as suitable to assess communication link quality. Once the EMS receives this meta-data the EMS combines the data received with information about the user already stored on the servers within the system (such as the user's medical history) and then, in one embodiment, transmits, using a provider communication channel 106 which can be any form of communication channel used over the Internet, for example, a fiber optic channel, a microwave channel, a copper cable, or other form of communication medium, a bundled emergency message with Interactive Voice Response (“IVR”) capabilities 109 to a RSP 104. The RSP then transmits the emergency message to an EDC 105 (e.g., university dispatch center, corporate dispatch center, PSAP etc.) over communication channel 108. Communications channel 108 may include a public switched telephone network (“PSTN”) channel or a cellular network channel. Alternately, in another embodiment the EMS 103 transmits either the bundled emergency message directly to the EDC 105 or sends the meta-data received from the user in the same form as received from the user over an IP channel after a determination that the selected EDC 105 has the capabilities to receive digitally formatted data messages such as SMS, MMS, e-mail message or any other form of multimedia message. The EMS 103 then bridges the user communication channel and the provider communication channel so that selected communication on one channel can be accessed by the other channel.



FIG. 2 describes one embodiment of bridging of the two sessions, 1) from EMS 103 to user communication device 101 (i.e., the user communication session) and 2) from EMS 103 to EDC 105 (i.e. the provider communication session). FIG. 2 also illustrates one embodiment of the bridging of these two sessions for purpose of communication between user communication device 101 of user 100 and EDC 105. After receiving a request for assistance 110 either as an IVR 109, SMS, VoIP call, MMS or any other form of Internet based communication from the user communication device 101, the EMS 103 establishes two separate communication sessions via the user communication channel 107 and the provider communication channel 106 as described above. These sessions can be VoIP sessions set up using Session Initiation Protocol (SIP), VoIP sessions not setup using SIP, a phone call using a cellular network, a phone call using analog cellular communication, or a combination of these methods or another form of a multimedia communication session over the Internet. Once both of these communication sessions are set up the EMS then creates a communications bridge 102 bridging together the two sessions such that selected messages sent from the user communication device to the EMS are forwarded to the EDC and selected messages from the EDC to the EMS are forwarded to the user communication device.



FIG. 3 illustrates one embodiment of the setup and configuration process of the user communication session and provider communication session using a private branch exchange (PBX) telephone system 120, which is a part of the EMS 103. In this particular embodiment, the PBX 120 initiates a connection with the user communication device 101 using “User communication channel” 107 and a connection with EDC using “provider communication channel” 106. The connect bridge 102 bridges the two channels using a pre-defined bridging process implemented either in software or hardware. Messages played on connect bridge 102 are audible by the user 100 using the user communication device 101 and the EDC 105, enabling communication between user 100 and EDC 105. Messages 149 from the EDC 105 are played only for the user 100 on user play bridge 112 and text messages 147, converted to IVR in real-time, from user 100 and IVR/IVMs 148, pre-recorded using metadata of the user, are played to the EDC 105 on EDC play bridge 111. The presence of new messages from user 100 are detected by the EMS 103 using Dual Tone-Multi Frequency (“DTMF”) signals 113 and are played back for the EDC 105. These events are based on either a request by the user 100 or the EDC 105 or by a system event such as receipt of SMS, MMS, e-mail or other form of messages over the Internet by the EMS 103 on the user communication channel 107 or the provider communication channel 106. FIG. 3 further illustrates a subset of the software subroutines used to initiate and maintain communication between the EMS 103 and the user communication device 101, and the EDC 105.



FIG. 4 illustrates one embodiment of the hardware layout of the EMS 103. EMS 103 includes at least one Application Programming Interface (“API”) 116, an embodiment of which is implemented in software for purposes of setting up and configuring voice or audio sessions. The API 116 software is capable of receiving a request for assistance from the user 100, and from the nature of the request, allocating resources from the EMS to respond to the request for assistance. The API 116 communicates with a user database 117 to verify and manage information about the user 100, such as meta-data and any other data received from the user 100 either during an active communication session over the user communication channel 107 or preset for the user 100 by the EMS 103. The API 116 also communicates with at least one PBX 120, also a sub-system of the EMS 103, for initiating and managing the communication on the user communication channel 107 and provider communication channel 106. The PBX 1120 maintains a PBX database (“PBX DB”) 118 containing a set of numbers each of which can be used for placing a voice call over the Internet using Internet Protocol (e.g. VoIP). The API 116 communicates with the user communication device 101 using a “load balancer” 115. The load balancer 115 is configured to distribute communications among the various APIs 116 so that no one API 116 becomes overloaded. The API 116 manages the communication between the user communication device 101 and the EDC 105, including re-establishment of communication on the user communication channel 107 and provider communication channel 106 in case either or both of these communication sessions disconnect due to any reason. The voice/audio connection to the EDC 105 is made via the PBX 120 and may be completed via an end-to-end VoIP session or a partial voice over IP session and, in some embodiments, is combined with a cellular call or a PSTN call, between the PBX 120 and the EDC 105. The PBX 120 communicates with the EDC 105 and the user communication device 101 using end-to-end VoIP sessions as the main communication link if such a communications link is available, and uses a partial VoIP session combined with a cellular call or a PSTN session as a secondary option. In instances where a full VoIP session cannot be established using protocols such as SIP, partial trunking over the cellular network/PSTN network is accomplished by PBX 120 by sending a VoIP session request to a edge router (such as session border controllers, gateway or a SIP server or a SIP trunking device as illustrated in FIG. 5 below), which may or may not be included within the EMS 103. The edge router in turn trunks the VoIP call over a cellular network/PSTN. The user communication device 101 also has ability to communicate with the API 116 via a separate channel 114 using SMS and other short messaging services in instances when the VoIP session may not be able to deliver multimedia messages from the user communication device 101 to the EMS 103 or when a separate communication session is needed. Additional security and reliability is achieved for the management of the communications between the user communication device 101 and the EMS 103 by employing virtual private clouds 119—on demand configurable pools of shared computing resources allocated within a public cloud environment, providing isolation between the different organizations using the resources.



FIG. 5 illustrates details of one embodiment of a process by which a communication session may be setup between a user communication device 101 and an EDC 105. FIG. 5 also illustrates one embodiment of a process by which a communication device 101 is assigned a fixed landline phone number, DID TN, for the duration of a communication session for the purpose of call backs to the user communication device 101 when the user communication device 101 does not have a assigned TN, for example, when the user communication device is an iPad® tablet computer or other tablet computer, a wearable device, a sensor for example, a wearable device including a watch or an environment sensor including temperature sensors for homes, or another Internet enabled end device not having an assigned telephone number. The user 100 requests assistance by sending a request for assistance 110 using internet protocols such as HTTP, to the API 116 of the EMS 103. The API 116 initiates the setup of a first communication link, which can be an end-to-end VoIP session 188 or a partial VoIP session 192 combined with a cellular call or a PSTN call 190, using the user is communication channel 107 (which can be a combination of a IP channel 192 and a PSTN channel 161 or a complete VoIP channel performing a VoIP call 188) between the user communication device 101 and the EMS 103 and a second communication link, an end-to-end VoIP session 189 or a partial VoIP session 191 combined with a cellular call or a PSTN call 108, using the provider communication channel 106 (which can be a combination of a IP channel 191 and a PSTN channel 108 or a IP channel 193 and a PSTN channel 108 or an end-to-end IP channel 189), between the EMS 103 and EDC 105 using a sequence of control channels used to carry call setup and maintenance information 128 between the API 116, RSP 104, PBX 120 and DID DB 127 and other components of the EMS 103 and the Internet used to setup the user communication channel and the provider communication channel. The EMS 103 bridges the first and second communication links so that the user 100 and the EDC 105 can communicate in real-time using voice, text-to-speech, speech-to-text, SMS, MMS, e-mail or other forms of multimedia messages. In one embodiment, bridging of the first and second communication links is accomplished using software in certain implementations of a PBX, for example, an Asterisk™ telephony switching and private branch exchange service, where multiple software subroutines, each corresponding to one data channel carrying voice packets, are used to conference these data channels together such that voice packets on one channel are multicast on all other data channels on the conference bridge.


The PBX assigns a DID TN to the user communication device 101 from the direct in-ward dial database (“DID DB”) 127 which is a hardware device capable of storing a pool of DID TNs that are pre-allocated for use by the EMS 103 for the purpose of communicating with a user communication device 101, such that a phone call can be established to the communication device using a cellular network/PSTN using this DID TN as the identifier, and the user communication device can use the DID TN to make a cellular or PSTN call if the hardware on the user communication device is capable of initiating and maintaining such a call. When a user communication device 101 sends a request 110 to initiate an emergency response to an EMS 103, the EMS 103 assigns a DID TN to the communication device. Once the API 116 of the EMS 103 assigns a DID TN to the user communication device 101, the DID TN, along with stored meta-data of the user 100, is sent to the RSP 104 which then inserts this information in the automatic location identification database (“ALI DB”) 123 for reference by the EDC 105 or other network devices. Once the two sessions, 1) the user communication session and 2) the provider communication session are setup, the EMS 103 assigns the DID TN to these two sessions. These two sessions can each be individually setup by either a) a direct end-to-end VoIP call or b) a SIP call trunked via a cellular network/PSTN using a Gateway 2 125, capable of trunking SIP calls, a RSP 104, or a combination of a cellular and a PSTN network 161, which includes a PSTN network 108 and a cellular access point 122, Gateway 1 126, also capable of trunking SIP calls. The EDC 105 may use this same telephone number, the DID TN, to re-establish a communication session via Gateway 2 125 with the EMS 103 in case the session from the EMS 103 to the EDC 105 is terminated for any reason. The EDC 105 may re-establish a communication session with the EMS 103 to receive text messages 147 from user or IVR/IVMs 148 created from meta-data for and about the user 100 or to communicate in real-time with the user communication device 101. The DID TN is also useful in re-establishing a communication link with a user communication device 101 in circumstances where the user communication device 101 is not assigned a phone number, for example, when the user communication device is an iPad® tablet computer or other tablet computer, a wearable device, a sensor, or another Internet enabled end device not having an assigned telephone number. The EDC 105 uses one of many options to re-establish the session with the EMS 103 such as a end-to-end VoIP session or a partial VoIP session combined with a cellular call or a PSTN call. The DID TN can be assigned based on the location information provided by the user communication device 101, or on a non-location specific basis. The EMS 103 further maintains the association of the assigned DID TN with the two sessions, the user communication session and the provider communication session, for a suitable amount of time for the sake of re-establishment of communication sessions even after the two sessions are terminated.



FIG. 6 through FIG. 10 display several embodiments of a user interface 129 for a user communications device 101. Embodiments of the user interface 129 are capable of receiving an input from a user 100 either by touch (for example, through a touch screen, external keyboard, mouse, or other pointing device), voice, gesture or other form of interaction of a user 100 with a hardware or software entity hosted on the user communications device 101, and transforming the interaction into a message, such as an SMS, MMS, speech-to-text, voice-to-text, and other forms of Internet multimedia messages capable of being transmitted over the Internet. The user interface 129 is further capable of reporting to the hardware mechanism of the user communication device 101 an indication of an interaction of the user 100 with the user interface 129, including providing an indication of a selection of one of a plurality of soft-buttons 130, 131, 132, 133 by the user 100. The selection of one of a plurality of soft-buttons 130, 131, 132, 133 by the user 100 may be performed by one or more of touch, voice, or another form of interaction between the user 100 and the user communication device 101. Responsive to receiving the indication of the selection of one of the plurality of soft-buttons 130, 131, 132, 133 by the user 100, the user communication device 101 can transmit an associated message, via the user communication channel 107, to the EMS 103 indicating the selection of the specific one of a plurality of soft-buttons selected by the user 100. The user interface 129 is further capable of continuing to receive additional information from the user 100 and providing information about the interaction to the hardware mechanism of the user communication device 101 in a form that can be transmitted over the Internet by the user communication device 101 to the EMS 103.



FIG. 6 is an illustration of one embodiment of the user interface 129 on a user communications device 101 configured to generate a multimedia message such as a SMS, MMS, e-mail, speech-to-text, text-to-speech or other form of multimedia message capable of being communicated over the Internet. The multimedia message includes an indication of selection of one of a plurality of soft-buttons 130, 131, 132, 133 by the user 100. The user communications device 101 communicates the multimedia message via the user communication channel 107, to the EMS 103. The user communication device 101 may include a user interface 129 for communicating visual data, such as text, to a user 100. In the particular embodiment illustrated in FIG. 6, the user interface 129 depicts a touch enabled display containing a number of fields used in populating a preformatted multimedia message. This particular embodiment illustrates soft-buttons representing preformatted messages for fire 132, medical 130, or police 133 assistance, as well as for assistance in a car crash 131. One skilled in the art would readily understand that various other soft-buttons signifying other types of emergencies could be utilized. In various embodiments, the emergency message may be communicated to the EDC 105 in the form of a voice message, e-mail, text, or some other form of multimedia messages.



FIG. 7 illustrates another embodiment of a user interface 129 on an user communications device 101 in which the user 100 is prompted to confirm his/her location 134 or insert additional details 135 about the nature of his/her emergency, including selection one of the many modes of communication, such as text using SMS 160, or instant messaging. The user 100 may also utilize the user interface 129 to directly call an EDC 105 using either a cellular network or PSTN.



FIG. 8 illustrates another embodiment of a user interface 129 such that a “communication log” 138, containing a time-stamped sequence of status update messages 137, correlating to information in selected messages from the multimedia sessions between the user 100 and the EDC 105, SMS messages, SIP packets, VoIP packets or other forms of messages sent over the user communication channel or the provider communication channel or messages generated by the EMS 103 or the user communication device 101. The communications log 138 is displayed to the user 100 through the user interface 129 hosted on the user communication device 101. The user interface 129 is further capable of updating the status messages in the communication log 138 in real-time as multimedia messages are generated and transmitted by the user communication device 101 in response to the user 100 interacting with the user communication device 101 via the user interface 129 or when messages are received by the EDC 105 sent in response to the emergency request 110 initiated by the user 100, or when the user communication device 101 receives updates from the cellular network/PSTN such as location from GPS, proximity to a resource of interest such as an EDC 105 from the EMS 103, or other information about the device, or any other multimedia message is received by the user communication device 101 in response to the initiation of an request for emergency assistance 110 by the user 100.



FIG. 9 illustrates another embodiment of a user interface 129 that provides for the user 100 to insert his/her own freeform (i.e., un-preformatted) message in a message field 160 by interacting with the user interface 129, either by touch, voice, gesture, or other form of interaction of a user 100 with a hardware or software entity of the user communication device 101, as well as to receive session status updates 137 via a Communication Log 138.



FIG. 10 illustrates another embodiment of a user interface 129 on an user communication device 101 in which the user 100 is enabled to specify information in addition to the preformatted message sent by the user communication device 101 in response to the user 100 selecting one of a plurality of soft-buttons displayed by the user interface 129. In this embodiment, the options presented for selection of a pre-formatted message relate to vehicle accidents, such as whether the accident is life-threatening 139, involves multiple vehicles 140, involves commercial vehicles 141 or a motorcycle 142 or if other hazards, such as a fire 143 or hazardous materials 144, are involved. One skilled in the art would readily understand that such granular detail could be extended to other types of accidents and thus additional or alternative additional detail selectors could be provided on the user interface.



FIG. 11 illustrates another embodiment of a user interface 129 that shows the use of location services on the user communication device 101 to define pre-set geographic locations 145, for example, place of employment, home location, or other geographic places of interest by the user 100 where the pre-set location is stored in user DB 117 and used by the EMS 103 in selecting messages to send over the user communication channel to the user communication device 101. Further, in this embodiment the user interface 129 capable of displaying the status updates 137 to the user 100 on a real-time basis.



FIGS. 12A and 12B illustrate two separate instances of another embodiment of a user interface 129 wherein the user 100 is able to specify and confirm his or her location in additional detail, if the user 100 chooses to do so, on a real-time basis. In this particular instance, as illustrated in FIG. 12A, the user 100 has a choice to select a pre-defined location 150 or to select a geographic location 158 provided by a location service on the user communication device 101. The geographic location 158 is in some embodiments provided to the location service of the user communication device 101 by, for example, a GPS receiver of the user communication device 101. The user 100 may alternatively choose a specific location identified by the user 100 by interacting with the location service on the user communication device 101 via the user interface 129, illustrated in FIG. 12A as a software implemented location indicator 155 within the location service hosted in the user communication device 101. The location indicated by the software implemented location indicator is show in the location service using a text box 156 for the benefit of the user 100. The specific embodiment illustrated in FIGS. 12A and 12B includes a “confirmation button” 152 implemented in software that allows the user to confirm a user selected location with the location service on the user communication device 101. The embodiment illustrated in FIGS. 12A and 12B further includes a “confirmation indicator” 153 that provides an indication to the user 100 of the user communication device 101 that the user selected location is received by the location service on the user communication device 101. The embodiment illustrated in FIGS. 12A and 12B further includes a digital illustration 151 that provides an indication to the user 100 of the user communication device 101 of the selected geographic location. The geographic location may be selected by the user 100 of the user communication device 101 by selecting one of either a pre-defined location 150 or geographic location provided by a location service 158 on the user communication device 101. The geographic location may be edited by the user 100 by interacting with the location service. The user interface 129 may further provide an indication to the user 100 that a choice has not been made by the user 100 of the geographic location of the user communication device 101, for example, by providing the “Press to Confirm” button 152.



FIGS. 13A and 13B show two instances of an embodiment of a user interface 129 showing a location service, where the user 100 is able to interact with the location services showing, in real-time, a location sensitive map of the geographic location the user communication device 101 is placed in, and through which the user may select a location to be transmitted to the EMS 103. The user 100 can change the location to be transmitted, shown in real-time instantly by the software implemented location indicator 155, by interaction with the location service on the user communication device 101 by one or more of touch, voice, gesture, or other form of interaction of a user 100 with a hardware or software entity of the user communication device 101.



FIGS. 14A and 14B show two instances of an embodiment of a user interface 129 showing a location service, where the user 100 is able to interact with the location service and confirm a location. The user 100 is able to confirm a location by choosing the is geographic location indicated by the software implemented location indicator 155 and by interacting with the confirmation button 152 displayed in the user interface 129 by the location service. The selected location is confirmed by the location service to the user 100 of the user communication device 101 by a confirmation indicator 153.



FIG. 15 is a flow chart illustrating one embodiment of a method by which a request for emergency assistance may be communicated, either from a user communication device 101 or from any other source, to an EDC 105 according to the principles disclosed herein. In this embodiment of the process to request for emergency assistance, a request for assistance alert 110 is initiated by the user communication device 101 of the user 100 (act 188) and sent to the EMS 103. In some embodiments, the request for assistance alert includes a selection of a most appropriate means of transmission of information between the user communication device 101 and EMS 103 and/or EDC 105 (acts 170, 169 and 168). The user communication device 101 first tries to send the emergency assistance message to the EDC 105 using a data connection (act 171), such as wi-fi, cellular data, or any other method by which IP-based communications can take place. Should a data connection not be available (act 170) as determined by the user communication device 101 by either continually or periodically sampling the connection strength and channel quality of various data communication channels available to the user communication device (cellular, SIP, SMS, etc.) based on industry accepted measures such as goodput, throughput, congestion status, queue length at servers, availability of certain routers and switches along the communication channels between the user communication device 101 and the EMS 103 and vice-versa and/or between the EMS 103 and the EDC 105 and vice-versa, data can also be communicated through the system via SMS 114 (act 172) as a second option if a reliable cellular connection is detected (act 169). In the event that a cellular connection is unavailable, as determined by the user communication device 101, by continually or periodically to sampling industry accepted channel quality measures of a cellular connection, the user communication device 101 of the user 100 will continue attempting to send data until a connection is established or the user 100 manually cancels the alert 162 (acts 168, 167). Once data is successfully transmitted, the user communication device 101 waits for confirmation that the IVR/IVMs 148, or other form of the message containing the is emergency information such as SMS 147, will be successfully generated, routed, and transmitted to the EDC 105 by the EMS 103. Upon successful confirmation (act 165), the system on the user communication device 101 may wait for system status updates 137 communicated by the EMS 103 or EDC 105 or another device on the Internet via the EMS 103, messages from the EDC 105, incoming voice/video calls, or user action (including entering text or speaking into the device) (act 166). If the EMS 103 responds with a negative confirmation or no confirmation is received within a certain pre-defined time period as indicated by the industry defined “Time-out” parameter of standard communication protocols such as TCP, SIP, ARQ and other reliable point-to-point or end-to-end communication protocols, the user communication device 101 tries sending the data a number of times, this number defined by the standard communication protocols and customizable by the user 100 or the EMS 103, and upon reaching the defined number of unsuccessful transmission attempts (act 163), finally falling back to a traditional 911 call through a cellular network or a PSTN using a native dialer of the using the user communication device 101 (act 164).



FIG. 16 illustrates an embodiment of a method by which the EMS 103 receives metadata from the user communication device 101 and initiates an emergency call session the emergency communication session with an EDC 105. In act 173 alert data is received at the EMS 103 from the user communication device 101. In one embodiment, location information is received from the user communication device 101, either in a request for assistance 110 or in another form of communication between EMS 103 and user communication device 101, and then generation of an IVR (act 185) and emergency service provisioning (act 186) are performed in parallel. The IVR is partially pre-created for each unique set of emergency conditions, correlated to an indication of a selection of one of a plurality of soft-buttons of the user communication device 101, that could be sent in the form of metadata from the user communication device 101, with only user location audio files created on-the-fly (audio for pre-defined user content such as user name, demographics, and other info is pre-generated at the time of user account creation). Location information about the user communication device 101 is verified with a RSP 104, selected from a list of RSPs (act 183), to locate an EDC to route the call for emergency assistance (act 182). The EMS then checks if the RSP 104 is able to find an EDC 105 in the specific location of the user communication device 101 (act 181). If the RSP 104 is able to locate an EDC 105 to which the call for emergency assistance can be routed to then the EMS 103 generates an IVR (act 185) for the user 100 to be routed to this EDC 105. In the case the RSP 104 is unable to locate a EDC 105 that services the location given by the user communication device 101, then the EMS 103 chooses another RSP from the list of RSPs (act 183) and continues to do so until the EMS 103 is able to find an RSP 104 that can locate an EDC 105 that services the location provided by the user communication device 101. In case no RSP 104 is able to find a EDC 105 to which the call for emergency assistance can be routed to in the location provided by the user communication device 101 and the EMS 103 has exhausted the list of RSPs to choose one RSP from (act 180), then the EMS 103 sends a negative confirmation to the user communication device 101 indicating that the call for emergency assistance failed (act 179). A direct inward dialing (“DID”) telephone number (“TN”) controlled by the system is specified as the originating call number (act 184) to facilitate callbacks from the emergency dispatch center, as described above with reference to FIG. 12. The EMS 103 maintains a pool of these resources, and assigns them to the alerts generated by the user communication device 101 by associating the DID TNs to the user communication channel and provider communication channel (act 186) as needed, leaving them associated with the alert for a certain amount of time after the two alert sessions, the first communication link from EMS 103 to user communication device 101 and the second communication link from EMS 103 to EDC 105 have been terminated. If all DID TNs in the DID DB 127 pool controlled by the EMS 103 are already assigned to an alert, the EMS 103 automatically provisions new DID TNs from a Trunking Provider (“TP”) (act 174) and selects one DID TN for the current alert (act 184). After successfully provisioning the DID TN the EMS 103 sends a positive confirmation, if there are no failures in generating the IVR (acts 185, 178), to the user communication device 101 indicating that the DID TN has been provisioned (act 177). Once emergency service provisioning and IVR generation is complete (act 185), EMS 103 automatically determines if the EDC 105 is IP-enabled (act 187) before initiating a VoIP call session (act 176) using the provisioned DID TN as the callback number. If the EDC 105 is not IP-enabled, VoIP call sessions are sent to the RSP 104 for conversion to TDM 108 and is routing to the EDC 105 (act 175). If the EDC 105 is IP-enabled, VoIP call sessions are sent over IP directly to the EDC 105 (act 176). In this case, any additional information that the EDC 105 can receive is also transmitted over IP using any NG911 API provided (act 176).


In the FIGS. 1-16 wherever a user communication device is shown it implies a device with a hardware memory and a central processing unit with associated I/O machine and a user interface that one can use to communicate with the central processing unit and/or access information stored in the memory of the device. Further, this device has a user interface with identifiable buttons on a touch screen, in one embodiment, where the touch of these buttons can initiate a transmission of a specific message, either predefined or defined in real-time, to the EMS or another remote device. In some embodiments, the EMS includes a collection of hardware devices, each with a at least one hardware memory and a at least one central processing unit with at least one associated I/O machine and a user interface that one can use to communicate with the at least one central processing unit and/or access information stored in the at least one memory of the device and the ability to set up communication with each other and with the user communication device and the EDC.


The EMS is some embodiments contains a collection of hardware devices that, either in some or all of the devices, are connected with each other using the Internet or another form of communication link between machines that are remote from each other. In some embodiments some of the hardware devices in a collection of hardware devices contain certain software that can perform the function of a database whereas some of the hardware devices in a collection of hardware devices contain certain software that can perform the function of web servers whereas some of the hardware devices in a collection of hardware devices contain certain software that can perform the function of a PBX and whereas some of the hardware devices in a collection of hardware devices contain certain software that can perform the function of an Application Programming Interface.


Having thus described several aspects of at least one embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of this disclosure. Accordingly, the foregoing description and drawings are by way of example only.

Claims
  • 1. A method for emergency call management comprising: receiving an emergency alert indicative of an emergency from a user communication device, the emergency alert including an emergency location;extracting the emergency location from the emergency alert;generating a first communication link with the user communication device and generating a second communication link with an Emergency Dispatch Center (EDC);connecting the first and second communication links to establish a communication session between the EDC and the user communication device;generating an emergency assistance message requesting emergency assistance with Interactive Voice Response capabilities for a unique set of emergency conditions; andsending a message comprising the emergency location and a phone number of the user communication device to the EDC using a data connection.
  • 2. The method of claim 1, wherein the data connection comprises an Internet Protocol (IP) connection.
  • 3. The method of claim 1, wherein the data connection comprises Wi-Fi, SIP, SMS, Bluetooth, or cellular data.
  • 4. The method of claim 1, further comprising providing the EDC with an option to send a message with an additional query comprising confirming location, initiate a voice and/or video call, or request a status update about the emergency alert.
  • 5. The method of claim 1, further comprising: providing the user communication device with system status updates from the EDC or another device on an Internet, wherein the user communication device can confirm that the emergency alert has been sent to the EDC.
  • 6. The method of claim 1, further comprising prompting a user via one or more interactive buttons on the user communication device to confirm the emergency location.
  • 7. The method of claim 1, further comprising prompting a user via one or more interactive buttons on the user communication device to provide details about the emergency.
  • 8. The method of claim 1, further comprising: constructing an emergency assistance message that includes at least one of an audio file, an interactive voice response (IVR) message, a SMS text message, a Multimedia Messaging Service (MMS) message, an e-mail message, an Instant Messaging (IM) message, or a message otherwise formatted for communication over an Internet; and updating a communication log established with the EDC.
  • 9. The method of claim 1, wherein the emergency alert comprises at least one of a photo or video of the emergency location or medical information for a user of the user communication device.
  • 10. The method of claim 1, wherein the emergency alert comprises a multimedia message including SMS, MMS, e-mail, speech-to-text, text-to-speech, or any combination thereof.
  • 11. The method of claim 1, wherein the emergency location is verified with a routing service provider (RSP) to locate the EDC.
  • 12. The method of claim 1, wherein the EDC is a public dispatch center or a private dispatch center.
  • 13. The method of claim 1, wherein the EDC is a university-affiliated emergency dispatch center or a private or corporate emergency dispatch center.
  • 14. The method of claim 1, further comprising: establishing a live session between a user of the user communication device and the EDC, wherein at least one of text-to-text, video, and photo sharing is enabled.
  • 15. An emergency call management system comprising a processor operative to: receive an emergency alert indicative of an emergency from a user communication device, the emergency alert including an emergency location;extract the emergency location from the emergency alert;generate a first communication link with the user communication device and generating a second communication link with an Emergency Dispatch Center (EDC);connect the first and second communication links to establish a communication session between the EDC and the user communication device;generate an emergency assistance message requesting emergency assistance with Interactive Voice Response capabilities for a unique set of emergency conditions; andsend a message comprising the emergency location and a phone number of the user communication device to the EDC using a data connection.
  • 16. The system of claim 15, wherein the processor is further operative to: provide the EDC with an option to send a message with an additional query comprising confirming location, initiate a voice and/or video call, or request a status update about the emergency alert.
  • 17. The system of claim 15, wherein the processor is further operative to: provide the user communication device with system status updates from the EDC or another device on an Internet, wherein the user communication device can confirm that the emergency alert has been sent to the EDC.
  • 18. The system of claim 15, wherein the processor is operative to verify the emergency location with a routing service provider (RSP) to locate the EDC.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/162,171, titled “METHOD AND SYSTEM FOR EMERGENCY CALL MANAGEMENT” filed Oct. 16, 2018, which is a continuation of U.S. patent application Ser. No. 15/436,379, titled “METHOD AND SYSTEM FOR EMERGENCY CALL MANAGEMENT” filed Feb. 17, 2017, now U.S. Pat. No. 10,165,431, issued Dec. 25, 2018, which is a continuation of U.S. patent application Ser. No. 14/856,818, titled “METHOD AND SYSTEM FOR EMERGENCY CALL MANAGEMENT” filed Sep. 17, 2015, now U.S. Pat. No. 9,942,739, issued Apr. 10, 2018, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/052,606 titled “SYSTEM AND METHOD FOR IMPLEMENTING AND MAINTAINING EMERGENCY COMMUNICATION SESSIONS” filed on Sep. 19, 2014, which is hereby incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (584)
Number Name Date Kind
5013271 Bartlett May 1991 A
5022878 Casad Jun 1991 A
5379337 Castillo et al. Jan 1995 A
5479482 Grimes Dec 1995 A
5563931 Bishop et al. Oct 1996 A
5596625 Leblanc Jan 1997 A
5710803 Kowal et al. Jan 1998 A
5742666 Alpert Apr 1998 A
D405774 Yui Feb 1999 S
6014555 Tendler Jan 2000 A
D425499 Millington May 2000 S
6133853 Obradovich et al. Oct 2000 A
6167255 Kennedy et al. Dec 2000 A
6249674 Verdonk Jun 2001 B1
6252943 Johnson et al. Jun 2001 B1
6256489 Lichter et al. Jul 2001 B1
6262655 Yoshioka et al. Jul 2001 B1
6292687 Lowell et al. Sep 2001 B1
6363138 Aprile Mar 2002 B1
6459782 Bedrosian et al. Oct 2002 B1
6477362 Raith et al. Nov 2002 B1
6502030 Hilleary Dec 2002 B2
6510315 Arnson Jan 2003 B1
D471227 Gray Mar 2003 S
6556816 Gafrick et al. Apr 2003 B1
6571092 Faccin et al. May 2003 B2
6574323 Manuel et al. Jun 2003 B1
6587545 Antonucci et al. Jul 2003 B1
6594666 Biswas et al. Jul 2003 B1
6600812 Gentillin et al. Jul 2003 B1
6628933 Humes Sep 2003 B1
6680998 Bell et al. Jan 2004 B1
6707421 Drury et al. Mar 2004 B1
6731610 Sajikawa et al. May 2004 B2
6993118 Antonucci et al. Jan 2006 B2
7054611 Eisner et al. May 2006 B2
7058385 Lauper Jun 2006 B2
7084775 Smith Aug 2006 B1
7177400 Eisner et al. Feb 2007 B2
7224773 Croak et al. May 2007 B2
7271704 McSheffrey et al. Sep 2007 B2
7313402 Rahman Dec 2007 B1
7324801 Droste et al. Jan 2008 B2
D564530 Kim Mar 2008 S
7349706 Kim et al. Mar 2008 B2
D565586 Shin Apr 2008 S
7409044 Leduc Aug 2008 B2
7409428 Brabec et al. Aug 2008 B1
7436938 Savaglio et al. Oct 2008 B2
7437143 Williams Oct 2008 B1
7469138 Dayar et al. Dec 2008 B2
7483519 Binning Jan 2009 B2
7519351 Malone, III et al. Apr 2009 B2
7519372 MacDonald et al. Apr 2009 B2
7548158 Titus et al. Jun 2009 B2
D596192 Shotel Jul 2009 S
7565131 Rollender Jul 2009 B2
7646854 Anderson Jan 2010 B2
7671903 Kawamura Mar 2010 B2
7676215 Chin et al. Mar 2010 B2
7684782 Ashley, Jr. et al. Mar 2010 B2
7848733 Bull et al. Dec 2010 B2
7937067 Maier et al. May 2011 B2
7949326 Gallagher et al. May 2011 B2
8009810 Seidberg et al. Aug 2011 B2
8027658 Suryanarayana et al. Sep 2011 B2
8041335 Khetawat et al. Oct 2011 B2
8041341 Malackowski et al. Oct 2011 B1
8045954 Barbeau et al. Oct 2011 B2
8068881 Schrager Nov 2011 B2
8102972 Poremba Jan 2012 B2
8126424 Piett et al. Feb 2012 B2
8150367 Malladi et al. Apr 2012 B1
8165560 Stenquist Apr 2012 B2
8165562 Piett et al. Apr 2012 B2
8185087 Mitchell, Jr. et al. May 2012 B2
8195121 Dunn et al. Jun 2012 B2
8219135 De et al. Jul 2012 B2
D666209 Cranfill Aug 2012 S
8244205 Wu Aug 2012 B2
8249546 Shah et al. Aug 2012 B1
8249547 Fellner Aug 2012 B1
D667426 Randall Sep 2012 S
8289953 Ray et al. Oct 2012 B2
8306501 Moodbidri et al. Nov 2012 B2
8326260 Bradish et al. Dec 2012 B1
8369488 Sennett et al. Feb 2013 B2
8396970 Black et al. Mar 2013 B2
8401565 Sandberg et al. Mar 2013 B2
8417090 Fleming Apr 2013 B2
8417212 Cepuran et al. Apr 2013 B2
8442481 Maier et al. May 2013 B2
8442482 Maier et al. May 2013 B2
D683751 Carpenter Jun 2013 S
D684185 Van Dongen Jun 2013 S
8472973 Lin et al. Jun 2013 B2
8484352 Piett et al. Jul 2013 B2
8489062 Ray et al. Jul 2013 B2
8494868 Saalsaa Jul 2013 B2
D688692 Tanghe Aug 2013 S
8509729 Shaw Aug 2013 B2
8516122 Piett et al. Aug 2013 B2
8538370 Ray et al. Sep 2013 B2
8538468 Daly Sep 2013 B2
8588733 Ferguson et al. Nov 2013 B2
8594015 Dunn et al. Nov 2013 B2
8606218 Ray et al. Dec 2013 B2
D697081 Van Dongen Jan 2014 S
8625578 Roy et al. Jan 2014 B2
8626112 Ray et al. Jan 2014 B2
8630609 Ray et al. Jan 2014 B2
8644301 Tamhankar et al. Feb 2014 B2
8649806 Cuff et al. Feb 2014 B2
8682279 Rudolf et al. Mar 2014 B2
8682281 Dunn et al. Mar 2014 B2
8682286 Dickinson et al. Mar 2014 B2
D701879 Foit Apr 2014 S
8712366 Greene et al. Apr 2014 B2
D704205 Greisson May 2014 S
D704207 Lee May 2014 S
D705261 Holz May 2014 S
8747336 Tran Jun 2014 B2
8751265 Piett et al. Jun 2014 B2
8755767 Maier et al. Jun 2014 B2
8760290 Piett et al. Jun 2014 B2
8761721 Li Jun 2014 B2
8774752 Akcasu Jul 2014 B1
8792867 Negahban et al. Jul 2014 B1
8811935 Faccin et al. Aug 2014 B2
8825687 Marceau et al. Sep 2014 B2
8848877 Seidberg et al. Sep 2014 B2
8866606 Will et al. Oct 2014 B1
8868028 Kaltsukis Oct 2014 B1
8880021 Hawkins Nov 2014 B2
8890685 Sookman et al. Nov 2014 B1
8903355 Biage et al. Dec 2014 B2
8918075 Maier et al. Dec 2014 B2
8948732 Negahban et al. Feb 2015 B1
D724617 Shin Mar 2015 S
D725141 Izotov Mar 2015 S
8971839 Hong Mar 2015 B2
8983424 Binning Mar 2015 B2
8984143 Serra et al. Mar 2015 B2
D727930 Kim Apr 2015 S
9008078 Kamdar et al. Apr 2015 B2
9014657 Rohde et al. Apr 2015 B2
9019870 Khan et al. Apr 2015 B2
9020462 Hodgson et al. Apr 2015 B2
D728601 Angelides May 2015 S
D729837 Kang May 2015 S
9071643 Saito et al. Jun 2015 B2
D734358 Rehberg Jul 2015 S
9077676 Price et al. Jul 2015 B2
9078092 Piett et al. Jul 2015 B2
9094816 Maier et al. Jul 2015 B2
D735750 Chou Aug 2015 S
D736808 Soegiono Aug 2015 S
D736822 Tursi Aug 2015 S
D737849 Tursi Sep 2015 S
D738392 Shin Sep 2015 S
D738897 Soegiono Sep 2015 S
D739413 Shin Sep 2015 S
9129219 Robertson et al. Sep 2015 B1
9167379 Hamilton et al. Oct 2015 B1
D744505 Wilberding Dec 2015 S
D745023 Kwon Dec 2015 S
9244922 Marceau et al. Jan 2016 B2
D749095 Herstad Feb 2016 S
D749097 Zou Feb 2016 S
D750109 Schaedle Feb 2016 S
9258680 Drucker Feb 2016 B2
D751098 Lim Mar 2016 S
D751585 Kaufthal Mar 2016 S
9277389 Saito et al. Mar 2016 B2
D755830 Chaudhri May 2016 S
D757074 Iwamoto May 2016 S
9351142 Basore et al. May 2016 B2
D759063 Chen Jun 2016 S
D759078 Iwamoto Jun 2016 S
D759687 Chang Jun 2016 S
9369847 Borghei Jun 2016 B2
D760735 Cheng Jul 2016 S
D761270 Kaplan Jul 2016 S
9384491 Briggs et al. Jul 2016 B1
9402159 Self et al. Jul 2016 B1
D762688 Scalisi Aug 2016 S
D764513 Kim Aug 2016 S
D765097 Harvell Aug 2016 S
9408051 Finney et al. Aug 2016 B2
9420099 Krishnan et al. Aug 2016 B1
9426638 Johnson Aug 2016 B1
D765698 Kwon Sep 2016 S
9497585 Cooley et al. Nov 2016 B1
9503876 Saito et al. Nov 2016 B2
D773523 Kisselev Dec 2016 S
D776702 Huang Jan 2017 S
D777757 Kisselev Jan 2017 S
9544260 Cuff et al. Jan 2017 B2
9544750 Self et al. Jan 2017 B1
9591467 Piett et al. Mar 2017 B2
9609128 Dahan et al. Mar 2017 B2
D783049 Kisselev Apr 2017 S
9629185 Gluckman et al. Apr 2017 B1
9635534 Maier et al. Apr 2017 B2
D787543 Qiu May 2017 S
9648479 Michaelis et al. May 2017 B2
9659484 Mehta et al. May 2017 B1
9693213 Self et al. Jun 2017 B2
9734721 Stenneth et al. Aug 2017 B2
9736670 Mehta et al. Aug 2017 B2
D797132 Rhodes Sep 2017 S
D797790 Martin Sep 2017 S
9756169 Mehta et al. Sep 2017 B2
D800748 Jungmann Oct 2017 S
9805430 Miasnik et al. Oct 2017 B2
D805544 Ganapathiraju Dec 2017 S
9838858 Anand et al. Dec 2017 B2
9877177 Lesage et al. Jan 2018 B2
9924043 Mehta et al. Mar 2018 B2
9942739 Bozik et al. Apr 2018 B2
9986404 Mehta et al. May 2018 B2
9992655 Anand et al. Jun 2018 B2
9998507 Mehta et al. Jun 2018 B2
10002375 Scythes et al. Jun 2018 B1
10089854 Hender et al. Oct 2018 B2
10136294 Mehta et al. Nov 2018 B2
10140482 Mehta et al. Nov 2018 B2
10140842 Mehta et al. Nov 2018 B2
10142213 Hart et al. Nov 2018 B1
10142469 Klaban Nov 2018 B2
10142816 Cavendish et al. Nov 2018 B2
D835151 Martin et al. Dec 2018 S
10165431 Bozik et al. Dec 2018 B2
10375558 Katz et al. Aug 2019 B2
10419915 Mehta et al. Sep 2019 B2
10425799 Anand et al. Sep 2019 B2
10447865 Mehta et al. Oct 2019 B2
10524106 Skertich et al. Dec 2019 B1
10657799 Mehta et al. May 2020 B2
10701541 Mehta et al. Jun 2020 B2
10701542 Martin et al. Jun 2020 B2
10708412 Killpack Jul 2020 B1
10771951 Mehta et al. Sep 2020 B2
10805786 Pellegrini et al. Oct 2020 B2
10820181 Horelik et al. Oct 2020 B2
10861320 Martin et al. Dec 2020 B2
10911926 Pellegrini et al. Feb 2021 B2
10922776 Kumar et al. Feb 2021 B2
11140538 Mehta et al. Oct 2021 B2
11146680 Leavitt et al. Oct 2021 B2
11153737 Anand et al. Oct 2021 B2
11197145 Martin et al. Dec 2021 B2
20010036224 Demello et al. Nov 2001 A1
20010051849 Boone Dec 2001 A1
20020001367 Lee Jan 2002 A1
20020027975 Oxley Mar 2002 A1
20020057678 Jiang et al. May 2002 A1
20020102989 Calvert Aug 2002 A1
20020103622 Burge Aug 2002 A1
20020120698 Tamargo Aug 2002 A1
20030069035 Shurvinton Apr 2003 A1
20030109245 McCalmont et al. Jun 2003 A1
20030195775 Hampton et al. Oct 2003 A1
20040166828 Yosioka Aug 2004 A1
20040203572 Aerrabotu et al. Oct 2004 A1
20040229620 Zhao et al. Nov 2004 A1
20040266390 Faucher et al. Dec 2004 A1
20050002516 Shtivelman Jan 2005 A1
20050085215 Kokko et al. Apr 2005 A1
20050104745 Bachelder et al. May 2005 A1
20050111630 Potorny et al. May 2005 A1
20050151642 Tupler et al. Jul 2005 A1
20050176403 Lalos Aug 2005 A1
20050190053 Dione Sep 2005 A1
20050190892 Dawson et al. Sep 2005 A1
20050192746 King et al. Sep 2005 A1
20050220277 Blalock et al. Oct 2005 A1
20050222829 Dumas Oct 2005 A1
20050239477 Kim et al. Oct 2005 A1
20050242944 Bankert et al. Nov 2005 A1
20050282518 D'Evelyn et al. Dec 2005 A1
20050285181 Yasui et al. Dec 2005 A1
20060085275 Stokes et al. Apr 2006 A1
20060109960 D'Evelyn et al. May 2006 A1
20060154642 Scannell, Jr. Jul 2006 A1
20060217105 Kumar P S et al. Sep 2006 A1
20060226973 Catlin Oct 2006 A1
20060234726 Ashley, Jr. et al. Oct 2006 A1
20060293024 Benco et al. Dec 2006 A1
20070003024 Olivier et al. Jan 2007 A1
20070030144 Titus et al. Feb 2007 A1
20070030146 Shepherd Feb 2007 A1
20070033095 Hodgin et al. Feb 2007 A1
20070049287 Dunn Mar 2007 A1
20070053308 Dumas et al. Mar 2007 A1
20070058528 Massa et al. Mar 2007 A1
20070060097 Edge et al. Mar 2007 A1
20070161383 Caci Jul 2007 A1
20070164872 Monroe Jul 2007 A1
20070171854 Chen et al. Jul 2007 A1
20070218895 Saito et al. Sep 2007 A1
20080019268 Rollins Jan 2008 A1
20080063153 Krivorot et al. Mar 2008 A1
20080077474 Dumas et al. Mar 2008 A1
20080081646 Morin et al. Apr 2008 A1
20080166990 Toiv Jul 2008 A1
20080175356 Seidberg Jul 2008 A1
20080188198 Patel Aug 2008 A1
20080194238 Kwon Aug 2008 A1
20080253535 Sherry et al. Oct 2008 A1
20080274721 Stagnetto Nov 2008 A1
20080294058 Shklarski Nov 2008 A1
20080309486 McKenna et al. Dec 2008 A1
20090018875 Monatesti et al. Jan 2009 A1
20090041206 Hobby et al. Feb 2009 A1
20090134982 Robertson et al. May 2009 A1
20090186596 Kaltsukis Jul 2009 A1
20090214000 Patel et al. Aug 2009 A1
20090257345 King Oct 2009 A1
20090280771 Bolin Nov 2009 A1
20090284348 Pfeffer Nov 2009 A1
20090311987 Edge et al. Dec 2009 A1
20090322513 Hwang et al. Dec 2009 A1
20100002846 Ray et al. Jan 2010 A1
20100003954 Greene et al. Jan 2010 A1
20100003964 Khare et al. Jan 2010 A1
20100093305 Reich et al. Apr 2010 A1
20100156626 Story Jun 2010 A1
20100159871 Tester Jun 2010 A1
20100159976 Marocchi et al. Jun 2010 A1
20100161727 Shaffer et al. Jun 2010 A1
20100166153 Guleria et al. Jul 2010 A1
20100190468 Scott et al. Jul 2010 A1
20100202368 Hans Aug 2010 A1
20100238018 Kelly Sep 2010 A1
20100261448 Peters Oct 2010 A1
20100262668 Piett et al. Oct 2010 A1
20100291907 MacNaughtan et al. Nov 2010 A1
20100317317 Maier et al. Dec 2010 A1
20110009086 Poremba et al. Jan 2011 A1
20110029600 Theimer Feb 2011 A1
20110044444 Abramson Feb 2011 A1
20110071880 Spector Mar 2011 A1
20110086607 Wang et al. Apr 2011 A1
20110103266 Andreasen et al. May 2011 A1
20110111728 Ferguson May 2011 A1
20110134897 Montemurro et al. Jun 2011 A1
20110151829 Velusamy et al. Jun 2011 A1
20110153368 Pierre et al. Jun 2011 A1
20110196724 Fenton Aug 2011 A1
20110201357 Garrett et al. Aug 2011 A1
20110263219 Hasenfang et al. Oct 2011 A1
20110263319 Hamalainen et al. Oct 2011 A1
20110281547 Cordero Nov 2011 A1
20120002792 Chang Jan 2012 A1
20120028599 Hatton et al. Feb 2012 A1
20120029970 Stiles et al. Feb 2012 A1
20120040636 Kazmi Feb 2012 A1
20120066139 Guzman et al. Mar 2012 A1
20120092161 West Apr 2012 A1
20120144019 Zhu et al. Jun 2012 A1
20120157795 Chiu et al. Jun 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120202428 Mirbaha et al. Aug 2012 A1
20120210325 De et al. Aug 2012 A1
20120218102 Bivens et al. Aug 2012 A1
20120256745 Piett et al. Oct 2012 A1
20120257729 Piett et al. Oct 2012 A1
20120258680 Piett et al. Oct 2012 A1
20120289243 Tarlow et al. Nov 2012 A1
20120295575 Nam Nov 2012 A1
20120309341 Ward Dec 2012 A1
20120320912 Estrada et al. Dec 2012 A1
20130005295 Park et al. Jan 2013 A1
20130012155 Forstall et al. Jan 2013 A1
20130030825 Bagwandeen et al. Jan 2013 A1
20130036175 Lau Feb 2013 A1
20130052983 Fletcher et al. Feb 2013 A1
20130065569 Leipzig et al. Mar 2013 A1
20130082837 Cosentino et al. Apr 2013 A1
20130084824 Hursey Apr 2013 A1
20130102351 Mo Apr 2013 A1
20130120106 Cauwels et al. May 2013 A1
20130120459 Dickinson et al. May 2013 A1
20130122932 Patel et al. May 2013 A1
20130138791 Thomas et al. May 2013 A1
20130143530 Ehrlich Jun 2013 A1
20130183924 Saigh et al. Jul 2013 A1
20130185368 Nordstrom et al. Jul 2013 A1
20130203373 Edge Aug 2013 A1
20130203376 Maier et al. Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130226369 Yorio et al. Aug 2013 A1
20130237175 Piett Sep 2013 A1
20130237181 Ray Sep 2013 A1
20130260710 H R Oct 2013 A1
20130309994 Hellwig et al. Nov 2013 A1
20130331055 McKown et al. Dec 2013 A1
20130331058 Harvey Dec 2013 A1
20140031000 Hanover Jan 2014 A1
20140045450 Ballantyne et al. Feb 2014 A1
20140049494 Niu Feb 2014 A1
20140051379 Ganesh et al. Feb 2014 A1
20140057590 Romero Feb 2014 A1
20140086108 Dunn et al. Mar 2014 A1
20140086145 Ramkumar et al. Mar 2014 A1
20140087680 Luukkala et al. Mar 2014 A1
20140087780 Abhyanker et al. Mar 2014 A1
20140095425 Sipple Apr 2014 A1
20140096195 Morgan Apr 2014 A1
20140113606 Morken et al. Apr 2014 A1
20140126356 Lee et al. May 2014 A1
20140134969 Jin et al. May 2014 A1
20140142979 Mitsunaga May 2014 A1
20140148117 Basore et al. May 2014 A1
20140148120 Buck May 2014 A1
20140155017 Fan et al. Jun 2014 A1
20140155018 Fan et al. Jun 2014 A1
20140164505 Daly et al. Jun 2014 A1
20140199959 Hassan et al. Jul 2014 A1
20140213212 Clawson Jul 2014 A1
20140218537 Nepo Aug 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140248848 Mufti et al. Sep 2014 A1
20140253326 Cho et al. Sep 2014 A1
20140257846 Hermiz et al. Sep 2014 A1
20140302810 Inha et al. Oct 2014 A1
20140307858 Li Oct 2014 A1
20140324351 Dannevik et al. Oct 2014 A1
20140359008 Finney et al. Dec 2014 A1
20140368601 Decharms Dec 2014 A1
20140370836 Gladstone Dec 2014 A1
20140370839 Hatton Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20150011176 Zhu Jan 2015 A1
20150029836 Hans et al. Jan 2015 A1
20150031324 Zentner et al. Jan 2015 A1
20150038102 Yoakum Feb 2015 A1
20150038109 Salahshour Feb 2015 A1
20150054639 Rosen Feb 2015 A1
20150055453 Chaki et al. Feb 2015 A1
20150055554 Sedlacek et al. Feb 2015 A1
20150065082 Sehgal Mar 2015 A1
20150080021 Bietz et al. Mar 2015 A1
20150081209 Yeh et al. Mar 2015 A1
20150081927 Xu et al. Mar 2015 A1
20150085997 Biage et al. Mar 2015 A1
20150087259 Hinsen Mar 2015 A1
20150094095 Johnson et al. Apr 2015 A1
20150099481 Maitre et al. Apr 2015 A1
20150109125 Kaib et al. Apr 2015 A1
20150111524 South Apr 2015 A1
20150112883 Orduna et al. Apr 2015 A1
20150137972 Nepo et al. May 2015 A1
20150140936 Sachs et al. May 2015 A1
20150147995 Bontu et al. May 2015 A1
20150172897 Mariathasan et al. Jun 2015 A1
20150181401 Dhandu et al. Jun 2015 A1
20150201316 Khatibi et al. Jul 2015 A1
20150289121 Lesage et al. Oct 2015 A1
20150304827 Price et al. Oct 2015 A1
20150317392 Fernandez Nov 2015 A1
20150317809 Chellappan et al. Nov 2015 A1
20150319284 Leonessi Nov 2015 A1
20150350262 Rainisto et al. Dec 2015 A1
20150358794 Nokhoudian et al. Dec 2015 A1
20150365319 Finn et al. Dec 2015 A1
20160004224 Pi Jan 2016 A1
20160026768 Singh et al. Jan 2016 A1
20160034961 May et al. Feb 2016 A1
20160050550 Anand Feb 2016 A1
20160057595 Ahmed et al. Feb 2016 A1
20160065748 Li et al. Mar 2016 A1
20160088455 Bozik et al. Mar 2016 A1
20160142894 Papakonstantinou et al. May 2016 A1
20160173689 Klaban Jun 2016 A1
20160182707 Gabel Jun 2016 A1
20160192167 Piett et al. Jun 2016 A1
20160210581 Braun Jul 2016 A1
20160219084 Abiezzi Jul 2016 A1
20160219397 Mayor et al. Jul 2016 A1
20160227589 Marshall et al. Aug 2016 A1
20160269535 Balabhadruni et al. Sep 2016 A1
20160307436 Nixon Oct 2016 A1
20160315923 Riscombe-Burton et al. Oct 2016 A1
20160316493 Davis et al. Oct 2016 A1
20160330769 Edge Nov 2016 A1
20160337831 Piett et al. Nov 2016 A1
20160345171 Kulkarni et al. Nov 2016 A1
20160353262 Acevedo et al. Dec 2016 A1
20160353266 Winkler et al. Dec 2016 A1
20160363931 Yang et al. Dec 2016 A1
20160371973 Holleczek et al. Dec 2016 A1
20170004427 Bruchal et al. Jan 2017 A1
20170012815 Nekrestyanov et al. Jan 2017 A1
20170024088 La Pean Jan 2017 A1
20170046216 Stenneth et al. Feb 2017 A1
20170075407 Kritt et al. Mar 2017 A1
20170078226 Daly et al. Mar 2017 A1
20170099579 Ryan et al. Apr 2017 A1
20170108862 Mikkelsen Apr 2017 A1
20170116845 See et al. Apr 2017 A1
20170124670 Becker et al. May 2017 A1
20170124852 Pauws et al. May 2017 A1
20170140637 Thurlow et al. May 2017 A1
20170142568 Saito et al. May 2017 A1
20170142570 Self et al. May 2017 A1
20170150335 Self et al. May 2017 A1
20170161614 Mehta et al. Jun 2017 A1
20170180963 Cavendish et al. Jun 2017 A1
20170180966 Piett et al. Jun 2017 A1
20170188218 Corley et al. Jun 2017 A1
20170195475 Mehta Jul 2017 A1
20170208543 Zhang et al. Jul 2017 A1
20170213251 Nunally et al. Jul 2017 A1
20170238129 Maier et al. Aug 2017 A1
20170238136 Smith Aug 2017 A1
20170245113 Hooker Aug 2017 A1
20170287085 Smith et al. Oct 2017 A1
20170310827 Mehta et al. Oct 2017 A1
20170316698 Stenneth et al. Nov 2017 A1
20170323209 Rinzler et al. Nov 2017 A1
20170325056 Mehta et al. Nov 2017 A1
20170331954 Kotnis et al. Nov 2017 A1
20170359712 Meredith et al. Dec 2017 A1
20170374538 Gellens et al. Dec 2017 A1
20180020091 Self et al. Jan 2018 A1
20180039737 Dempers et al. Feb 2018 A1
20180053394 Gersten Feb 2018 A1
20180053401 Martin Feb 2018 A1
20180077282 Herron et al. Mar 2018 A1
20180077553 Gideon, III Mar 2018 A1
20180150928 Dejewski et al. May 2018 A1
20180152563 Mehta May 2018 A1
20180176271 Laurent Jun 2018 A1
20180242133 Anand Aug 2018 A1
20180249315 Mehta Aug 2018 A1
20180262544 Mehta et al. Sep 2018 A1
20180310159 Katz Oct 2018 A1
20180352408 Baer et al. Dec 2018 A1
20190020993 Nguyen Jan 2019 A1
20190073894 Mehta Mar 2019 A1
20190104395 Mehta Apr 2019 A1
20190130719 D'Amico May 2019 A1
20190149661 Klaban May 2019 A1
20190166244 Ravichandran May 2019 A1
20190166480 Rauner May 2019 A1
20190172335 Johnston-Mitchell Jun 2019 A1
20190174288 Bozik et al. Jun 2019 A1
20190174289 Martin et al. Jun 2019 A1
20190230476 Qi et al. Jul 2019 A1
20190246260 Edge et al. Aug 2019 A1
20190253861 Horelik Aug 2019 A1
20190281165 Mehta et al. Sep 2019 A1
20190306664 Mehta et al. Oct 2019 A1
20190320310 Horelik et al. Oct 2019 A1
20190327597 Katz et al. Oct 2019 A1
20190335310 Anand Oct 2019 A1
20190342526 Drako et al. Nov 2019 A1
20190380020 Pellegrini Dec 2019 A1
20200015058 Wu Jan 2020 A1
20200059776 Martin et al. Feb 2020 A1
20200068374 Mehta Feb 2020 A1
20200100084 Martin et al. Mar 2020 A1
20200126174 Halse et al. Apr 2020 A1
20200135005 Katz et al. Apr 2020 A1
20200258374 Mehta et al. Aug 2020 A1
20200274962 Martin et al. Aug 2020 A1
20200344602 Li Oct 2020 A1
20210006961 King-Berkman et al. Jan 2021 A1
20210014659 Mehta et al. Jan 2021 A1
20210037368 Leavitt et al. Feb 2021 A1
20210110686 Slavin et al. Apr 2021 A1
20210127228 Baarman et al. Apr 2021 A1
20210266722 Pellegrini et al. Aug 2021 A1
20210289334 Martin et al. Sep 2021 A1
20210390844 Katz et al. Dec 2021 A1
20220030109 Leavitt et al. Jan 2022 A1
20220103995 Horelik et al. Mar 2022 A1
20220131637 Sangal et al. Apr 2022 A1
20220172599 Mehta et al. Jun 2022 A1
20220174468 Anand et al. Jun 2022 A1
20220201458 Leavitt et al. Jun 2022 A1
Foreign Referenced Citations (58)
Number Date Country
2662606 Oct 2009 CA
2697986 Sep 2010 CA
2773749 Oct 2012 CA
2773881 Oct 2012 CA
2790501 Mar 2013 CA
2809421 Sep 2013 CA
2646607 Sep 2016 CA
2886535 Oct 2016 CA
2697986 May 2018 CA
104487976 Apr 2015 CN
104539776 Apr 2015 CN
106021508 Oct 2016 CN
2161912 Mar 2010 EP
H10314133 Dec 1998 JP
H1170086 Mar 1999 JP
2006319946 Nov 2006 JP
2006334369 Dec 2006 JP
2011223285 Nov 2011 JP
2012222443 Nov 2012 JP
20090019606 Feb 2009 KR
20090092900 Sep 2009 KR
20100055746 May 2010 KR
101305286 Sep 2013 KR
20140052780 May 2014 KR
20140093568 Jul 2014 KR
20150097031 Aug 2015 KR
101602482 Mar 2016 KR
101612423 Apr 2016 KR
20160097933 Aug 2016 KR
20170100422 Sep 2017 KR
WO-9723104 Jun 1997 WO
WO-0022593 Apr 2000 WO
WO-0165763 Sep 2001 WO
WO-0167419 Sep 2001 WO
WO-2007109599 Dec 2007 WO
WO-2011060335 May 2011 WO
WO-2012129561 Sep 2012 WO
WO-2014025563 Feb 2014 WO
WO-2014063121 Apr 2014 WO
WO-2014074420 May 2014 WO
WO-2014087157 Jun 2014 WO
WO-2014176646 Nov 2014 WO
WO-2015127867 Sep 2015 WO
WO-2015196155 Dec 2015 WO
WO-2016044540 Mar 2016 WO
WO-2017079354 May 2017 WO
WO-2017083571 May 2017 WO
WO-2017100220 Jun 2017 WO
WO-2017106775 Jun 2017 WO
WO-2017112820 Jun 2017 WO
WO-2017189610 Nov 2017 WO
WO-2017196753 Nov 2017 WO
WO-2018039142 Mar 2018 WO
WO-2019113129 Jun 2019 WO
WO-2020172612 Aug 2020 WO
WO-2020205033 Oct 2020 WO
WO-2021034859 Feb 2021 WO
WO-2021203037 Oct 2021 WO
Non-Patent Literature Citations (146)
Entry
Botega et al. Saw-Oriented User Interfaces for Emergency Dispatch Systems. Computer Vision—Eccv 2020 : 16th European Conference, Glasgow, Uk, Aug. 23-28, 2020 : Proceedings; Part of the Lecture Notes in Computer Science (Jul. 21, 2015).
U.S. Appl. No. 15/976,600 Office Action dated Jan. 28, 2022.
U.S. Appl. No. 16/421,355 Office Action dated Jan. 7, 2022.
U.S. Appl. No. 16/537,377 Office Action dated Dec. 27, 2021.
U.S. Appl. No. 16/865,170 Office Action dated Feb. 24, 2022.
U.S. Appl. No. 17/143,819 Office Action dated May 26, 2022.
U.S. Appl. No. 17/196,438 Office Action dated May 10, 2022.
U.S. Appl. No. 17/221,568 Office Action dated May 2, 2022.
U.S. Appl. No. 17/545,244 Office Action dated Apr. 1, 2022.
U.S. Appl. No. 17/671,493 Office Action dated May 10, 2022.
U.S. Appl. No. 17/671,510 Office Action dated Apr. 22, 2022.
Abel et al. Semantics + Filtering + Search=Twitcident exploring information in social web streams. HT'12—Proceedings of 23rd ACM Conference on Hypertext and Social Media (10 pgs) (Jun. 25-28, 2012).
ArcGIS Rest Services Directory. Folder: TIGERWeb. Available at https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb. (1 pg.) (Accessed Sep. 2017).
Chohlaswood et al. Mining 911 Calls in New York City: Temporal Patterns, Detection and Forecasting. AAAI Conference on Artificial Intelligence Workshop (Apr. 2015).
Chowdhury et al. Tweet4act: Using incident-specific profiles for classifying crisis-related messages. Proceedings of the 10th International ISCRAM Conference (pp. 834-839) (2013).
Cipolla et al. A tool for Emergency Detection with Deep Learning Neural Networks. KDWeb (2016) How to predict a disaster. ICAR—National Research Council of Italy—Palermo, Italy (Dec. 1, 2016) (10 pgs).
Hodgkiss et al. Spatiotemporal Analysis of 911 Call Stream Data. Proceedings of the 2005 national conference on Digital government research (2005).
Homeland Security Science and Technology. Using Social Media for Enhanced Situational Awareness and Decision Support. Virtual Social Medial Working Group and DHS First Responders Group. (44 pgs.) (Jun. 2014).
Jasso et al. Prediction of 911 Call Volumes for Emergency Event Detection. Proceedings of the 8th Annual International Digital Government Research Conference (2007).
Meier. MatchApp: Next Generation Disaster Response App? iRevolution (12 pgs.) (Feb. 27, 2013).
National Emergency Number Association (NENA). Social Networking in 9-1-1 PSAPs Information Document. Available at https://c.ymcdn.com/sites/www.nena.org/resource/resmgr/Standards/NENA-INF-001.1.1-2012_Social (18 pgs) (May 8, 2012).
National Emergency Number Association (Nena) Technical Committee Chairs: NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3). (Dec. 18, 2017). Retrieved from the Internet: URL:https://c.ymcdn.com/sites/nena.site-ym.com/resource/collection/2851C951-69FF-40F0-A6B8-36A714CB085D/NENA_08-002-vl_Functional_Interface_Standards_NG911_i3.pdf [retrieved on Feb. 5, 2018] (121 pgs).
PCT/US2015/050609 International Search Report and Written Opinion dated Dec. 16, 2015.
PCT/US2016/060189 International Search Report and Written Opinion dated Feb. 24, 2017.
PCT/US2016/065212 International Search Report and Written Opinion dated Feb. 20, 2017.
PCT/US2016/067366 International Search Report and Written Opinion dated Mar. 31, 2017.
PCT/US2016/068134 International Search Report and Written Opinion dated Apr. 21, 2017.
PCT/US2017/029465 International Search Report and Written Opinion dated Aug. 9, 2017.
PCT/US2017/031605 International Search Report and Written Opinion dated Jul. 31, 2017.
PCT/US2017/047854 International Search Report and Written Opinion dated Nov. 28, 2017.
PCT/US2018/028951 International Search Report and Written Opinion dated Aug. 10, 2018.
PCT/US2018/063935 International Search Report and Written Opinion dated Mar. 22, 2019.
PCT/US2019/027538 International Search Report and Written Opinion dated Aug. 2, 2019.
PCT/US2020/013176 International Search Report and Written Opinion dated May 8, 2020.
PCT/US2020/019341 International Search Report and Written Opinion dated Jun. 29, 2020.
PCT/US2020/046857 International Search Report and Written Opinion dated Nov. 18, 2020.
Seattle Real Time Fire 911 Calls. Available at https://catalog.data.gov/dataset/seattle-real-time-fire-911-calls-6cdf3 (3 pgs.) (Accessed Sep. 2017).
Song. Next Generation Emergency Call System with Enhanced Indoor Positioning, Columbia University. Thesis [online] [retrieved Apr. 20, 2020 from <url:https://scholar.google.co.kr/citations/?user=h_4uUqAAAAAJ&amp;hl=ko (156 pgs) (2014)</url:.<a>.
Tazaki. Floating Ground: An Architecture for Network Mobility and Ad Hoc Network Convergence. Thesis. Graduate School of Media and Governance Keio University 5322 Endo Fujisawa, Kanagawa, Japan 2520882 (pp. 1-162) (Jan. 2011).
U.S. Census Bureau. Developers: Population Estimates APIs. Available at https://www.census.gov/data/developers/data-sets/popest-popproj/popest.html (2 pgs.) (Accessed Sep. 2017).
U.S. Appl. No. 14/794,780 Office Action dated Feb. 2, 2016.
U.S. Appl. No. 14/794,780 Office Action dated Mar. 7, 2017.
U.S. Appl. No. 14/794,780 Office Action dated Nov. 15, 2016.
U.S. Appl. No. 14/856,818 Office Action dated Apr. 12, 2017.
U.S. Appl. No. 15/371,117 Office Action dated Aug. 5, 2019.
U.S. Appl. No. 15/387,363 Office Action dated Jul. 6, 2017.
U.S. Appl. No. 15/387,363 Office Action dated Mar. 15, 2017.
U.S. Appl. No. 15/436,379 Office Action dated Apr. 6, 2017.
U.S. Appl. No. 15/436,379 Office Action dated Nov. 2, 2017.
U.S. Appl. No. 15/436,484 Office Action dated May 8, 2017.
U.S. Appl. No. 15/436,484 Office Action dated Sep. 14, 2017.
U.S. Appl. No. 15/444,133 Office Action dated Apr. 4, 2017.
U.S. Appl. No. 15/444,133 Office Action dated Aug. 17, 2017.
U.S. Appl. No. 15/497,067 Office Action dated Jun. 23, 2017.
U.S. Appl. No. 15/588,343 Office Action dated Feb. 26, 2018.
U.S. Appl. No. 15/589,847 Office Action dated Jun. 23, 2017.
U.S. Appl. No. 15/589,847 Office Action dated Nov. 30, 2017.
U.S. Appl. No. 15/589,847 Office Action dated Nov. 6, 2018.
U.S. Appl. No. 15/667,531 Office Action dated Apr. 5, 2018.
U.S. Appl. No. 15/667,531 Office Action dated Nov. 8, 2017.
U.S. Appl. No. 15/682,440 Office Action dated Jan. 27, 2020.
U.S. Appl. No. 15/682,440 Office Action dated Jul. 10, 2019.
U.S. Appl. No. 15/880,208 Office Action dated Aug. 7, 2018.
U.S. Appl. No. 15/958,186 Office Action dated Oct. 18, 2018.
U.S. Appl. No. 15/958,398 Office Action dated Oct. 12, 2018.
U.S. Appl. No. 15/960,384 Office Action dated Jul. 12, 2018.
U.S. Appl. No. 15/976,600 Office Action dated Aug. 3, 2020.
U.S. Appl. No. 15/976,600 Office Action dated Jan. 30, 2020.
U.S. Appl. No. 15/976,600 Office Action dated May 13, 2021.
U.S. Appl. No. 16/150,099 Office Action dated Jun. 25, 2019.
U.S. Appl. No. 16/162,171 Office Action dated Apr. 8, 2021.
U.S. Appl. No. 16/162,171 Office Action dated Apr. 9, 2020.
U.S. Appl. No. 16/162,171 Office Action dated Nov. 4, 2019.
U.S. Appl. No. 16/162,171 Office Action dated Sep. 24, 2020.
U.S. Appl. No. 16/178,476 Office Action dated May 30, 2019.
U.S. Appl. No. 16/209,892 Office Action dated Feb. 8, 2019.
U.S. Appl. No. 16/271,634 Office Action dated Dec. 16, 2019.
U.S. Appl. No. 16/271,634 Office Action dated Jun. 13, 2019.
U.S. Appl. No. 16/378,363 Office Action dated Feb. 17, 2021.
U.S. Appl. No. 16/378,363 Office Action dated Jul. 19, 2019.
U.S. Appl. No. 16/378,363 Office Action dated Sep. 17, 2021.
U.S. Appl. No. 16/384,600 Office Action dated Apr. 2, 2020.
U.S. Appl. No. 16/384,600 Office Action dated Jun. 9, 2021.
U.S. Appl. No. 16/384,600 Office Action dated Oct. 2, 2020.
U.S. Appl. No. 16/421,355 Office Action dated Feb. 4, 2020.
U.S. Appl. No. 16/421,355 Office Action dated May 12, 2021.
U.S. Appl. No. 16/421,355 Office Action dated Oct. 19, 2020.
U.S. Appl. No. 16/436,810 Office Action dated Aug. 9, 2019.
U.S. Appl. No. 16/436,810 Office Action dated Dec. 17, 2019.
U.S. Appl. No. 16/509,296 Office Action dated Sep. 3, 2020.
U.S. Appl. No. 16/526,195 Office Action dated Dec. 27, 2019.
U.S. Appl. No. 16/537,377 Office Action dated Apr. 16, 2021.
U.S. Appl. No. 16/539,946 Office Action dated Oct. 6, 2021.
U.S. Appl. No. 16/684,366 Office Action dated Dec. 23, 2020.
U.S. Appl. No. 16/684,366 Office Action dated Oct. 5, 2021.
U.S. Appl. No. 16/740,207 Office Action dated Aug. 17, 2020.
U.S. Appl. No. 16/740,207 Office Action dated Mar. 11, 2020.
U.S. Appl. No. 16/798,049 Office Action dated Jul. 17, 2020.
U.S. Appl. No. 16/798,049 Office Action dated Mar. 8, 2021.
U.S. Appl. No. 16/823,192 Office Action dated Dec. 4, 2020.
U.S. Appl. No. 16/834,914 Office Action dated Dec. 2, 2020.
U.S. Appl. No. 16/865,170 Office Action dated Jul. 9, 2021.
U.S. Appl. No. 16/936,856 Office Action dated Aug. 16, 2021.
U.S. Appl. No. 16/936,856 Office Action dated Aug. 5, 2021.
U.S. Appl. No. 17/115,098 Office Action dated Mar. 9, 2021.
U.S. Appl. No. 17/143,819 Office Action dated Dec. 6, 2021.
U.S. Appl. No. 17/332,863 Office Action dated Sep. 9, 2021.
U.S. Appl. No. 16/378,363 Office Action dated Jan. 14, 2020.
Weather Company Data for IBM Bluemix APIs. Available at https://twcservice.mybluemix.net/rest-api/ (100 pgs) (Accessed Sep. 2017).
Co-pending U.S. Appl. No. 15/342,093, filed Nov. 2, 2016.
Co-pending U.S. Appl. No. 15/371,117, filed Dec. 6, 2016.
Co-pending U.S. Appl. No. 15/382,097, filed Dec. 16, 2016.
Co-pending U.S. Appl. No. 15/387,363, filed Dec. 21, 2016.
Co-pending U.S. Appl. No. 15/436,379, filed Feb. 17, 2017.
Co-pending U.S. Appl. No. 15/436,484, filed Feb. 17, 2017.
Co-pending U.S. Appl. No. 15/444,133, filed Feb. 27, 2017.
Co-pending U.S. Appl. No. 29/590,709, filed Jan. 12, 2017.
Co-pending U.S. Appl. No. 15/682,440, filed Aug. 21, 2017.
Co-pending U.S. Appl. No. 15/497,067, filed Apr. 25, 2017.
Co-pending U.S. Appl. No. 15/588,343, filed May 5, 2017.
Co-pending U.S. Appl. No. 15/589,847, filed May 8, 2017.
Co-pending U.S. Appl. No. 15/667,531, filed Aug. 2, 2017.
Co-pending U.S. Appl. No. 15/880,208, filed Jan. 25, 2018.
PCT/US2015/050609 International Preliminary Report on Patentability dated Mar. 30, 2017.
Co-pending U.S. Appl. No. 29/586,578, filed Dec. 5, 2016.
Co-pending U.S. Appl. No. 16/823,192, filed Mar. 18, 2020.
Co-pending U.S. Appl. No. 16/834,914, filed Mar. 30, 2020.
Co-pending U.S. Appl. No. 16/537,377, filed Aug. 9, 2019.
Co-pending U.S. Appl. No. 16/740,207, filed Jan. 10, 2020.
Co-pending U.S. Appl. No. 16/798,049, filed Feb. 21, 2020.
Co-pending U.S. Appl. No. 16/271,634, filed Feb. 8, 2019.
Co-pending U.S. Appl. No. 16/378,363, filed Apr. 8, 2019.
PCT/US2017/047854 International Preliminary Report on Patentability dated Mar. 7, 2019.
Co-pending U.S. Appl. No. 16/209,892, filed Dec. 4, 2018.
Marcus et al. TwitInfo: Aggregating and Visualizing Microblogs for Event Exploration. ACM CHI Conference May 7-12, 2011, 2011 (10 pgs).
PCT/US2016/060189 International Preliminary Report on Patentability dated May 17, 2018.
PCT/US2016/065212 International Preliminary Report on Patentability dated Jun. 21, 2018.
PCT/US2016/067366 International Preliminary Report on Patentability dated Jun. 28, 2018.
PCT/US2016/068134 International Preliminary Report on Patentability dated Jul. 5, 2018.
PCT/US2017/029465 International Preliminary Report on Patentability dated Nov. 8, 2018.
In Case of Emergency: Download These Apps Jul. 23, 2013, Design to Improve Life, site visited Apr. 11, 2018: https:// designtoimprovelife.dk/red-cross-mobile-apps/ (1 pg.).
XL-Viewer: Smartphone for Seniors & Disabled Nov. 18, 2015, Disabled World, site visited Apr. 11, 2018: https:// http://www.disabled-world.com/assistivedevices/computer/xl-viewer. Php (2 pgs).
Just in Case Emergency Communications App Feb. 1, 2013, appereatorpro, site visited Apr. 11, 2018: http:// http://www.appereatorpro.com/just-in-case/ (2 pgs).
Wickline. Panic app soon to go to schools Jul. 25, 2015, ArkansasOnline, site visited Apr. 11, 2018: http://www.arkansasonline.com/news/2015/Jul/25/panic-app-soon-go-schools/ (1 pg).
“Make Emergency Calls and Send Text Tips” Dec. 12, 2014, RAVEGuardian, site visited Apr. 11, 2018: http://www.raveguardian.com/emergency-communication/.
Alba, Alejandro, “11 apps that can save your life in case of an emergency” Jun. 15, 2016, New York Daily News, site visited Apr. 11, 2018: http://www.nydailynews.com/news/world/10-apps-save-life-case-emergency-article-1.2438105.
Related Publications (1)
Number Date Country
20220264274 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62052606 Sep 2014 US
Continuations (3)
Number Date Country
Parent 16162171 Oct 2018 US
Child 17448817 US
Parent 15436379 Feb 2017 US
Child 16162171 US
Parent 14856818 Sep 2015 US
Child 15436379 US