1. Field of the Invention
This invention generally relates to estimating the position of the mobile device in a wireless communication network and, more specifically, to determining the distance of the mobile device from fixed-position wireless communication stations and using those distances to estimate the position of the mobile device.
2. Description of Related Art
In recent years the number of mobile computing and communication devices has increased dramatically, creating the need for more advanced mobile and wireless services. Mobile email, walkie-talkie services, multi-player gaming and call-following are examples of new applications for mobile devices. Because mobile devices are not tethered to any fixed location, users are also beginning to demand applications that are able to discover and use their current location. On the regulatory front, the FCC enhanced 911 rules mandate that mobile telephones must be able to supply location information to emergency operators when making 911 calls (www.fcc.gov/pshs/services/911-services/enhanced911/). In each case, it is essential that the mobile device be able to estimate its location and return that information to the user or other entities.
Location-based services (LBS) are an emerging area of mobile applications that leverage mobile location systems. Examples of these services range from obtaining local weather, traffic updates, and driving directions to child trackers, buddy finders and urban concierge services. The new location-aware devices that facilitate LBS rely on a variety of positioning technologies that all use the same basic concept. By measuring radio signals originating from or arriving at known reference points, these technologies can estimate the mobile device's position relative to the reference points. In cellular positioning systems (CPS) the reference points are the cellular installations (referred to in this work as cells or cell towers), and the observed signals are transmissions defined by cellular communication standards including but not limited to GSM, cdmaOne, UMTS, cdma2000, WiMax, and LTE.
As used herein, cellular positioning systems are limited to technologies that use only cellular installations and signals for location estimation. Thus, systems such as the satellite-based global positioning system (GPS) (www8.garmin.com/aboutGPS/), hybrid satellite-cellular assisted-GPS (A-GPS) (http://www.gpsworld.com/gpsworld/article/articleDetail.jsp?id=12287), wi-fi positioning (WPS) based on IEEE 802.11 access points (www.skyhookwireless.com/howitworks/wps.php), or hybrid wifi-GPS positioning (www.skyhookwireless.com/howitworks/) are not considered a cellular positioning system. In addition, pattern matching or so-called “fingerprinting” CPS technologies as developed by Placelab and others (“Practical Metropolitan-Scale Positioning for GSM Phones”, Chen et al, available at www.placelab.org/publications/pubs/gsm-ubicomp2006.pdf) are excluded from the meaning of cellular positioning systems because those approaches have no concept of reference point location or range estimation.
There are many fundamentally different approaches to designing cellular positioning systems, but they can be organized in terms of the observable signal parameters that are used for location estimation. Time-based systems use measurements of the time between transmission and reception of a signal to estimate the distance between the transmitter and the receiver. Such systems employ time of arrival (TOA) or time-difference of arrival (TDOA) schemes to generate range estimates for use in a variety of algorithms to generate position estimates for the user (US RE38,808, Schuchman, et al; US 2002/007715 A1, Ruutu, et al; www.trueposition.com/web/guest/white-papers#). Time-based systems often require tight synchronization between the different cellular installations because the error in the range estimates is directly related to the synchronization error between the cells. In systems such as cdmaOne where synchronization is intrinsic to the standard, it is relatively straightforward to implement time-based range estimation. However, in asynchronous systems such as GSM and UMTS, additional equipment is often installed at each cell at significant additional cost (U.S. Pat. No. 6,275,705 B1, Drane, et al; U.S. Pat. No. 6,526,039 B1, Dahlman, et al.; U.S. Pat. No. 6,901,264 B2, Myr; www.trueposition.com/web/guest/trueposition-location-platform).
As part of the WCDMA standard, time-based range estimation can be calculated according to the round trip time (RTT) of a packet sent from the cell to the mobile and returned immediately from the mobile to the cell (www.trueposition.com/web/guest/e-cid;). This approach does not require synchronization, but it only works with network-based positioning systems. That is, the network can learn the position of the mobile, but the mobile does not know its own position unless it receives a specific message carrying the network's position estimate. Regardless of the specific range-estimation technique, time-based systems are extremely susceptible to errors caused by multipath propagation. Essentially, late-arriving reflections of the signal cause the system to overestimate the mobile to cell range.
As an alternative to time-based range estimation, many systems use received signal strength (RSS) to estimate the distance from the mobile to the transmitting cell (“Indoor/Outdoor Location of Cellular Handsets Based on Received Signal Strength” by Zhu and Durgin, available at www.propagation.gatech.edu/radiolocation/PolarisReport.pdf). Well-known pathloss models show that signal power falls exponentially with distance, so knowledge of the pathloss exponent and other parameters such as antenna gain and transmit power allows the positioning system to compute range estimates. However, signal power can vary dramatically in unpredictable ways due to fading and other environmental factors. Thus, the uncertainty inherent to RSS measurements limits the accuracy of RSS-based range estimates. Alternatively, the RSS can be used directly in centroid-based schemes in which there is no explicit range estimation. Nearest neighbor-type location estimation (also known as Cell ID) in which the mobile's position is estimated using only the most powerful observed cell is a degenerate case of RSS-based positioning.
In one aspect, the invention features a method of and system for estimating the range of a mobile device to a wireless installation.
In another aspect, the invention features a method of estimating the position of a mobile device, including the mobile device receiving signals transmitted by a plurality of fixed-position wireless communication stations in range of the mobile device. The method also includes designating one of the plurality of fixed-position wireless communication stations from which signals are received by the mobile device as a serving station and retrieving location information for said serving station and at least one other neighboring station of the plurality of fixed-position wireless communication stations from which signals are received by the mobile device. For each of the at least one other neighboring stations, a corresponding distance between the serving station and said neighboring station is determined based on the location information and a position of the mobile device is estimated based on the location information for the serving station and said neighboring stations and further based on the distances between the serving station and said neighboring stations.
In a further aspect, the estimating the position of the mobile device includes applying a weighting factor to the location information for each of the serving station and the neighboring stations and determining a weighted average position based on the location information and weighting factors corresponding to said stations. Optionally, the weighting factors for said stations are based on the distance between the serving station and the neighboring stations so that stations that are closer to the serving station relative to other stations have corresponding weighting factors that are higher in value relative to weighting factors corresponding to other stations that are relatively more distant from the serving station.
In yet another aspect, for at least one of the serving station and the neighboring stations, a first weighting factor is determined for said station based on the distance between the serving station and the corresponding station so that stations that are closer to the serving station relative to other stations have corresponding first weighting factors that are higher in value relative to first weighting factors corresponding to other stations that are relatively more distant from the serving station. A distance from the mobile device to at least one of the serving station and the neighboring stations is estimated based on the signals received by the mobile device transmitted by said stations, and, for each of said stations for which distances were estimated based on the signals received by the mobile device, a second weighting factor corresponding to said station is determined based on the signals received by the mobile device. This aspect further includes, for at least one of the serving station and the neighboring stations, determining a hybrid weighting factor for said station based on the first and the second weighting factor corresponding to said station. Estimating the position of the mobile device includes applying the hybrid weighting factors to the location information for the corresponding stations and determining a weighted average position based on the location information and hybrid weighting factors corresponding to said stations. Optionally, estimating the distance from the mobile device to at least one of the serving station and the neighboring stations is based on at least one of received signal strength-based techniques, time-of-arrival-based techniques, and time-difference-of-arrival-based techniques.
In yet a further aspect of the invention, a received signal strength value is measured for at least a portion of the signals received by the mobile device transmitted by at least one of the serving station and the neighboring stations, and a highest received signal strength value is determined. The station having the highest received signal strength value is designating as the serving station. A second highest received signal strength value is also determined. Estimating the distance from the mobile device to at least one of the serving station and the neighboring stations is based on the received signal strength measurements, and a hybrid weighting factor is determined, at least in part, by combining the first and the second weighting factors according to a ratio based on (a) a difference between the highest and second highest received signal strength value and (b) a dynamic range of received signal strength values.
Preferred embodiments of the invention provide methods for estimating the distances from a mobile device to fixed-position wireless installations, e.g., cellular network installations, and using those distances to estimate the location of the mobile device. Implementations of the invention use the principles of wireless network planning, e.g., cellular network planning, to estimate the distance from a wireless installation to a mobile device based on the distances between wireless installations. In some embodiments, the range estimation method is applied to centroid-based location estimation. However, multilateration, least-squares, or any other location estimation determinations that rely on range estimation are within the scope of the invention. The advantages of the techniques disclosed herein include the fact that they require neither additional hardware nor site-specific measurement or modeling data. Rather, embodiments of the invention can be implemented extremely inexpensively as a software-only solution, and are extremely resistant to modeling errors that typically plague RSS-based systems.
For the sake of simplicity, embodiments of the invention are described with reference to a cellular network system. For example, the fixed-position wireless installations can be a cellular network site, i.e., cell site, cell tower, base transceiver station, base station, and/or mobile phone mast. As is generally known, cell sites can be placed on a radio mast or tower and/or other structure, such as a building. Thus, while the terms “cellular” and “cells” are used herein, it is understood that other wireless network systems and fixed-position transceivers are within the scope of the invention.
In many systems for mobile device position estimation, such as GPS, signals from reference points with known locations are used to estimate the range from the mobile to each reference point, and those ranges are used to estimate the position of the mobile.
Embodiments of the invention include a method for estimating the range from a mobile device to a cellular network installation (herein “cell-to-mobile distance”) based on the distance between the particular cellular installation and other installations in the area (herein “cell-to-cell distances”). In addition, the techniques disclosed herein offer several methods for employing estimated cell-to-mobile distances in estimating the position of the mobile device.
As used herein, the term “mobile device” can be taken to mean any cellular telephone, portable computer, portable navigation device, or any other portable or vehicular device that is able to receive the signals transmitted by a cellular communication network. The cellular network may use standards such as GSM, IS-95, UMTS, WiMax, CDMA2000, or any others in which several antennas providing service to adjacent or overlapping areas are installed and operated according to a single cellular communication standard. Embodiments of the invention described herein do not require that either the cellular network or the mobile device deploy additional hardware or alter communication protocols for purposes of location. Embodiments of the invention also do not require the ability to ascertain time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle of arrival (AOA), or round trip time (RTT) of the received signals.
Implementations of the invention do require that the mobile device have a means to estimate which cell is closest to its current location. As an example, the mobile may estimate that the observed cell with the maximum received signal strength (RSS) is the closest. Alternatively, the network may use higher layer protocols to assign the mobile to the closest cell. From this point forward, we will refer to the cell closest to the mobile as the “serving cell”, even though there may not be any actual service provided by the serving cell to the mobile. All cells that are not designated as the serving cell are called “neighbor cells”.
In order to determine the location of any observed cells, the mobile must be able to receive and interpret signals indicating the identity of each cell, and the mobile must have access to a database of locations that can be used to associate location information with the identifiers of the observed cells. Such a database may be stored on the mobile device or accessed over a network that may or may not be the same cellular communication network used for position estimation.
In one implementation, the distance between a serving cell and a neighbor cell is used to estimate the distance from the mobile to the neighbor cell. Based on the assumption that the distance from the mobile to the serving cell is much smaller than the distance from the serving cell to neighboring cells, the distance from the serving cell to the neighboring cells is used as an estimate of the distance from the mobile to the neighboring cells.
{circumflex over (d)}2=d12
where {circumflex over (d)}i is the estimate of di. More generally, we estimate the distance from the mobile to N detected cells as
{circumflex over (d)}=d1i
for i=1 . . . N, where, without loss of generality, the index 1 is assigned to the serving cell. It is noted that in some use cases d2 may not be significantly larger than d1; such cases are addressed using alternative methods, discloses below.
In order to use cell-to-mobile distance estimates to return an estimated mobile location, embodiments of this invention use refinements of a basic centroid.
Referring to
where Lati and Loni are the latitude and longitude, respectively, of the ith detected cell. In one implementation of the invention, equal weights are applied to each cell. In other implementations, cells that are relatively closer to the mobile device are assigned relatively larger weights.
One illustrative example of the invention is a method of mobile position estimation referred to herein as “Distance Filtering.” In this embodiment, the weights assigned to each cell in step 305 are binary values based on the cell-to-cell distances determined in step 304. Specifically, each wi is assigned according to whether cell-to-cell distance d1i exceeds a filtering threshold, dF. The binary weights are computed as follows:
where I(x) is an identity function that equals 1 when the argument is true and 0 when the argument is false.
In another embodiment, the value of the filtering threshold, dF, varies.
dF=max{A*median{d1i}i=1N,B}
where A and B are positive constants. Reasonable values for A and B would be 1 and 1000, respectively. Further, the weights are assigned to each detected cell (step 602), and the steps of group 310 are completed to determine a location estimate. Thus, in this implementation, the Distance Filtering technique can adapt to different levels of cell density by adjusting the filtering threshold before assigning cell weights.
where the ampersand represents the binary AND operator. An estimated location of the mobile device is then calculated using a weighted centroid, as set forth in the steps of group 310.
In cell tower planning, it is common practice to use collocated cells or “sectors” to provide service to adjacent regions.
For sectors near-to or collocated with the serving cell, the use of cell-to-cell distance as a proxy for cell-to-mobile device distance becomes less accurate as the cell-to-cell distance approaches zero. The same problem arises when trying to estimate the distance from the mobile device to the serving cell. Thus, in some implementations of the invention, the issue that the cell-to-cell distance between the serving cell and itself or any collocated cells is always zero is addressed by assigning a default minimum value or “floor” to the distance estimates. That is, if the cell-to-cell distance falls below the floor, then the distance estimate is assigned a minimum allowed value, d0. Therefore, the cell-to-cell distance is as follows:
{circumflex over (d)}i=max{d1i,d0}
To provide maximum utility, the minimum allowed value, d0, should be a good estimate of the distance from the mobile to the serving cell (and, thus, any neighboring cells collocated with the serving cell). While there are many ways to choose the minimum allowed value, d0, based on received signal strength, doing so requires knowledge of several system and environment-dependent parameters including transmit power, antenna gain, and pathloss exponent. In the absence of such specific knowledge, the techniques set forth herein define the minimum allowed value, d0, in terms of the set, {d1i}, of cell to serving cell distances as follows:
d0=K*median{di1},
which is approximately proportional to the coverage radius of the serving cell. The value of K is a positive constant less than 1. For example, a value of
is generally effective in practice. In the degenerate case where the median is itself zero (as would occur if the majority of the visible cells were collocated with the serving cell), a hard limit under d0 is set as follows:
d0=max{K*median{di1},C},
where C is another positive constant. A reasonable value for C is on the order of 100 meters.
This technique prevents division by zero and avoids giving disproportionately-large weights to the serving cell and its collocated sectors.
Referring again to
In another embodiment, shown in
which is guaranteed to return at least one positive weight so long as dF>0, and
{circumflex over (d)}i=max{d1i,d0}
is used, as in the previous embodiment. Thus, to determine a location estimate, a method 1050 starts by performing the steps of group 300, and the method then uses the distances determined in steps 300 to compute a minimum allowed value, d0, (step 1001) as described above. Also, a filtering threshold, dF, is determined dynamically (step 1002), as set forth above. The method next applies the minimum allowed value, d0, to the cell-to-cell distances so that all distances are estimated to be greater than zero (step 1003). Next, this information is used in the hybrid formula immediately above to determine the weights to be assigned to each cell (step 1004). Finally, the weighted centroid is determined to provide an estimate location of the mobile device using the steps of group 310.
As a further implementation variation, any of the techniques for estimating a mobile device's distance from a cell can be combined with alternative methods of estimating a device's distance from a cell location, e.g., RSS-based methods, TOA-based methods, TDOA-based methods, and/or other methods. When performing such a combination, either Distance Filtering and/or Distance Weighting can be combined with alternative weighting metrics corresponding to the alternative distance estimation method being used by adding a hybrid weighting factor, u1, defined as follows:
ui=(1−α)wi+avi,
where wi is a weight calculated according to any of the techniques described above, vi is an alternative normalized weight corresponding to the alternative distance estimation method being used, α is a non-negative constant less than 1 (e.g., 0.5), and ui is a hybrid weight to be applied in place of wi when the final weighted centroid is determined. This is equivalent to computing separate location estimates using different schemes and then returning a weighted mixture of the separate locations as the final position estimate.
In another embodiment, shown in
ui=α(Δp)wi+(1−α(Δp))vi,
where α(Δp) is a function of the difference between the largest and second largest RSS values. In one implementation,
where R is the dynamic range of the power measurements (i.e., the difference between the maximum and minimum possible reported RSS values).
According to this embodiment, the steps of group 300 are performed as described above, and any of the weight determination calculations described above is performed (step 1203). The RSS of the surrounding cells is detected (step 1201), and weights corresponding to RSS range estimates are calculated (1204). In addition, the RSS values are used to determine a value for the mixing function, α(Δp) (step 1202). The weights are then combined using the mixing function-based hybrid weight function as set forth above (step 1205). These weights are then applied to each cell according to the group of steps 310.
The techniques and systems disclosed herein may be implemented as a computer program product for use with a computer system or computerized electronic device. Such implementations may include a series of computer instructions, or logic, fixed either on a tangible medium, such as a computer readable medium (e.g., a diskette, CD-ROM, ROM, flash memory or other memory or fixed disk) or transmittable to a computer system or a device, via a modem or other interface device, such as a communications adapter connected to a network over a medium.
The medium may be either a tangible medium (e.g., optical or analog communications lines) or a medium implemented with wireless techniques (e.g., WiFi, cellular, microwave, infrared or other transmission techniques). The series of computer instructions embodies at least part of the functionality described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems.
Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies.
It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the network (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software (e.g., a computer program product).
Moreover, the techniques and systems disclosed herein can be used with a variety of mobile devices. For example, mobile telephones, smart phones, personal digital assistants, satellite positioning units (e.g., GPS devices), and/or mobile computing devices capable of receiving the signals discussed herein can be used in implementations of the invention. The location estimate, distance from a particular location, and/or other position information can be displayed on the mobile device and/or transmitted to other devices and/or computer systems. Further, it will be appreciated that the scope of the present invention is not limited to the above-described embodiments, but rather is defined by the appended claims, and these claims will encompass modifications of and improvements to what has been described.
This application is a continuation of U.S. patent application Ser. No. 12/542,849, entitled Method and System for Estimating Range of Mobile Device to Wireless Installation, filed Aug. 18, 2009, now issued as U.S. Pat. No. 8,406,785, and incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4415771 | Martinez | Nov 1983 | A |
4991176 | Dahbura et al. | Feb 1991 | A |
5293645 | Sood | Mar 1994 | A |
5315636 | Patel | May 1994 | A |
5564121 | Chow et al. | Oct 1996 | A |
5940825 | Castelli et al. | Aug 1999 | A |
6134448 | Shoji et al. | Oct 2000 | A |
6249252 | Dupray | Jun 2001 | B1 |
6272405 | Kubota et al. | Aug 2001 | B1 |
6438491 | Farmer | Aug 2002 | B1 |
6665540 | Rantalainen et al. | Dec 2003 | B2 |
6678611 | Khavakh et al. | Jan 2004 | B2 |
6799049 | Zellner et al. | Sep 2004 | B1 |
6862524 | Nagda et al. | Mar 2005 | B1 |
6888811 | Eaton et al. | May 2005 | B2 |
6915128 | Oh | Jul 2005 | B1 |
6956527 | Rogers et al. | Oct 2005 | B2 |
6978023 | Dacosta | Dec 2005 | B2 |
7020475 | Bahl et al. | Mar 2006 | B2 |
7042391 | Meunier et al. | May 2006 | B2 |
7123928 | Moeglein et al. | Oct 2006 | B2 |
7167715 | Stanforth | Jan 2007 | B2 |
7167716 | Kim et al. | Jan 2007 | B2 |
7206294 | Garahi et al. | Apr 2007 | B2 |
7254405 | Lin et al. | Aug 2007 | B2 |
7271765 | Stilp et al. | Sep 2007 | B2 |
7305245 | Alizadeh-Shabdiz et al. | Dec 2007 | B2 |
7323991 | Eckert et al. | Jan 2008 | B1 |
7397424 | Houri | Jul 2008 | B2 |
7403762 | Morgan et al. | Jul 2008 | B2 |
7414988 | Jones et al. | Aug 2008 | B2 |
7417961 | Lau | Aug 2008 | B2 |
7433694 | Morgan et al. | Oct 2008 | B2 |
7471954 | Brachet et al. | Dec 2008 | B2 |
7474897 | Morgan et al. | Jan 2009 | B2 |
7493127 | Morgan et al. | Feb 2009 | B2 |
7502620 | Morgan et al. | Mar 2009 | B2 |
7515578 | Alizadeh-Shabdiz et al. | Apr 2009 | B2 |
7551579 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
7551929 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
8019357 | Alizadeh-Shabdiz et al. | Sep 2011 | B2 |
8090386 | Alizadeh-Shabdiz et al. | Jan 2012 | B2 |
8130148 | Alizadeh-Shabdiz | Mar 2012 | B2 |
8406785 | Alizadeh-Shabdiz et al. | Mar 2013 | B2 |
20020184331 | Blight et al. | Dec 2002 | A1 |
20030069024 | Kennedy | Apr 2003 | A1 |
20030087647 | Hurst | May 2003 | A1 |
20030114206 | Timothy et al. | Jun 2003 | A1 |
20030125045 | Riley et al. | Jul 2003 | A1 |
20030146835 | Carter | Aug 2003 | A1 |
20030225893 | Roese et al. | Dec 2003 | A1 |
20040019679 | E et al. | Jan 2004 | A1 |
20040039520 | Khavakh et al. | Feb 2004 | A1 |
20040058640 | Root et al. | Mar 2004 | A1 |
20040087317 | Caci | May 2004 | A1 |
20040124977 | Biffar | Jul 2004 | A1 |
20040193367 | Cline | Sep 2004 | A1 |
20040205234 | Barrack et al. | Oct 2004 | A1 |
20040263388 | Krumm et al. | Dec 2004 | A1 |
20050020266 | Backes et al. | Jan 2005 | A1 |
20050037775 | Moeglein et al. | Feb 2005 | A1 |
20050055374 | Sato | Mar 2005 | A1 |
20050108306 | Martizano Catalasan | May 2005 | A1 |
20050136845 | Masuoka et al. | Jun 2005 | A1 |
20050164710 | Beuck | Jul 2005 | A1 |
20050192024 | Sheynblat | Sep 2005 | A1 |
20050227711 | Orwant et al. | Oct 2005 | A1 |
20050251326 | Reeves | Nov 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060009235 | Sheynblat et al. | Jan 2006 | A1 |
20060046709 | Krumm et al. | Mar 2006 | A1 |
20060058958 | Galbreath et al. | Mar 2006 | A1 |
20060061476 | Patil et al. | Mar 2006 | A1 |
20060078122 | Dacosta | Apr 2006 | A1 |
20060092015 | Agrawal et al. | May 2006 | A1 |
20060095348 | Jones et al. | May 2006 | A1 |
20060095349 | Morgan et al. | May 2006 | A1 |
20060106850 | Morgan et al. | May 2006 | A1 |
20060128397 | Choti et al. | Jun 2006 | A1 |
20060183485 | Mizugaki et al. | Aug 2006 | A1 |
20060197704 | Luzzatto et al. | Sep 2006 | A1 |
20060200843 | Morgan et al. | Sep 2006 | A1 |
20060217131 | Alizadeh-Shabdiz et al. | Sep 2006 | A1 |
20060240840 | Morgan et al. | Oct 2006 | A1 |
20060270421 | Phillips et al. | Nov 2006 | A1 |
20070004427 | Morgan et al. | Jan 2007 | A1 |
20070004428 | Morgan et al. | Jan 2007 | A1 |
20070097511 | Das et al. | May 2007 | A1 |
20070126635 | Houri | Jun 2007 | A1 |
20070132639 | Korneluk et al. | Jun 2007 | A1 |
20070150516 | Morgan et al. | Jun 2007 | A1 |
20070178911 | Baumeister et al. | Aug 2007 | A1 |
20070184846 | Horton et al. | Aug 2007 | A1 |
20070202888 | Brachet et al. | Aug 2007 | A1 |
20070210961 | Romijn | Sep 2007 | A1 |
20070232892 | Alizadeh-Shabdiz et al. | Oct 2007 | A1 |
20070258408 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258409 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258420 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258421 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070259624 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20080008117 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008118 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008119 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008120 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008121 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080033646 | Morgan et al. | Feb 2008 | A1 |
20080045234 | Reed | Feb 2008 | A1 |
20080108371 | Alizadeh-Shabdiz et al. | May 2008 | A1 |
20080132170 | Alizadeh-Shabdiz et al. | Jun 2008 | A1 |
20080133124 | Sarkeshik | Jun 2008 | A1 |
20080139217 | Alizadeh-Shabdiz et al. | Jun 2008 | A1 |
20080139219 | Boeiro et al. | Jun 2008 | A1 |
20080176583 | Brachet et al. | Jul 2008 | A1 |
20080188242 | Carlson et al. | Aug 2008 | A1 |
20080248741 | Alizadeh-Shabdiz | Oct 2008 | A1 |
20080248808 | Alizadeh-Shabdiz | Oct 2008 | A1 |
20080261622 | Lee et al. | Oct 2008 | A1 |
20090075672 | Jones et al. | Mar 2009 | A1 |
20090149197 | Morgan et al. | Jun 2009 | A1 |
20090154371 | Alizadeh-Shabdiz et al. | Jun 2009 | A1 |
20090175189 | Alizadeh-Shabdiz et al. | Jul 2009 | A1 |
20090252138 | Alizadeh-Shabdiz et al. | Oct 2009 | A1 |
20090303112 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303113 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303114 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303115 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303119 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303120 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303121 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090310585 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090312035 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090312036 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20100052983 | Alizadeh-Shabdiz | Mar 2010 | A1 |
20110012780 | Alizadeh-Shabdiz | Jan 2011 | A1 |
20110012784 | Alizadeh-Shabdiz | Jan 2011 | A1 |
20110021207 | Morgan et al. | Jan 2011 | A1 |
20110035420 | Alizadeh-Shabdiz et al. | Feb 2011 | A1 |
20110045840 | Alizadeh-Shabdiz et al. | Feb 2011 | A1 |
20110074626 | Alizadeh-Shabdiz et al. | Mar 2011 | A1 |
20110080317 | Alizadeh-Shabdiz et al. | Apr 2011 | A1 |
20110080318 | Alizadeh-Shabdiz et al. | Apr 2011 | A1 |
20110164522 | Alizadeh-Shabdiz et al. | Jul 2011 | A1 |
20110235532 | Alizadeh-Shabdiz et al. | Sep 2011 | A1 |
20110235623 | Alizadeh-Shabdiz et al. | Sep 2011 | A1 |
20110287783 | Alizadeh-Shabdiz et al. | Nov 2011 | A1 |
20110298660 | Alizadeh-Shabdiz | Dec 2011 | A1 |
20110298663 | Alizadeh-Shabdiz | Dec 2011 | A1 |
20110298664 | Alizadeh-Shabdiz | Dec 2011 | A1 |
20110306357 | Alizadeh-Shabdiz et al. | Dec 2011 | A1 |
20110306358 | Alizadeh-Shabdiz et al. | Dec 2011 | A1 |
20110306359 | Alizadeh-Shabdiz et al. | Dec 2011 | A1 |
20110306360 | Alizadeh-Shabdiz et al. | Dec 2011 | A1 |
20110306361 | Alizadeh-Shabdiz et al. | Dec 2011 | A1 |
20120007775 | Alizadeh-Shabdiz | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
WO-2006096416 | Sep 2006 | WO |
WO-2006110181 | Oct 2006 | WO |
WO-2007081356 | Jul 2007 | WO |
WO-2011022300 | Feb 2011 | WO |
Entry |
---|
“Delta Encoding”, Wikipedia, retrieved from <http://en.wikipedia.org/wiki/Delta—encoding>, on Mar. 1, 2006. (1 pg.). |
“Huffman Coding”, Wikipedia, retrieved from <http://en.wikipedia.org/wiki/Huffman—coding> on Mar. 1, 2006. (6 pgs.). |
“Terminal Equipment and Protocols for Telematic Services: Information Technology-Digital Compression and Coding of Continuous-Tome Still Images—Requirements and Guidelines,” International Telecommunication Union, Sep. 1992. (186 pgs). |
Algorithms, “Eulerian Cycle/Chinese Postman,” published on Jun. 2, 1997, http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK4/NODE165.HTM (4 pgs.). |
Griswold et al., “ActiveCampus—Sustaining Educational Communities through Mobile Technology.” UCSD CSE Technical Report #CS200-0714, 2002 (19 pgs.). |
Hazas, M., et al., “Location-Aware Computing Comes of Age,” IEEE, vol. 37, Feb. 2004 (pp. 95-97). |
Hellebrandt, M., et al., “Estimating Position and Velocity of Mobile in a Cellular Radio Network,” IEEE Transactions on Vehicular Technology, vol. 46, No. 1, Feb. 1997 (pp. 65-71). |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2010/045438, dated Oct. 6, 2010 (9 pgs.). |
International Search Report of the International Searching Authority for International Application No. PCT/US05/39208, mailed Jan. 29, 2008 (3 pgs.). |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US07/62721, mailed Nov. 9, 2007 (8 pgs.). |
International Search Report of the International Searching Authority for International Application No. PCT/US07/81929, mailed Apr. 16, 2008 (2 pgs.). |
Kawabata, K. et al., “Estimating Velocity Using Diversity Reception,” IEEE, 1994 (pp. 371-374). |
Kim, M., et al., “Risks of using AP locations discovered through war driving,”; Pervasive Computing, May 19, 2006 (pp. 67-81). |
Kirsner, S., “One more way to find yourself,” The Boston Globe, May 23, 2005, Retrieved from www.boston.com (2 pgs.). |
Krumm, J., et al., “LOCADIO: Inferring Motion and Location from Wi-Fi Signal Strengths,” First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, Aug. 2004 (10 pgs.). |
Kwan, M., “Graphic Programming Using Odd or Even Points,” Chinese Math. 1, 1960. (pp. 273-277). |
Lamarca, A., et al., “Place Lab: Device Positioning Using Radio Beacons in the Wild,”; Pervasive Computing, Oct. 2004 (pp. 116-133). |
Lamarca, A., et al., “Self-Mapping in 802.11 Location Systems,” Ubicomp 2005: Ubiquitous Computing, Aug. 23, 2005 (pp. 87-104). |
Muthukrishnan, K., et al., “Towards Smart Surroundings: Enabling Techniques and Technologies for Localization,” Lecture Notes in Computer Science, vol. 3479, May 2005, (11 pgs.). |
Weisstein, Eric W., “Chinese Postman Problem,” Mathworld—A Wolfman Web Resource, retrieved from http://mathworld.wolfram.com/ChinesePostmanProblem.html, 2010 (1 pg.). |
Number | Date | Country | |
---|---|---|---|
20130217390 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12542849 | Aug 2009 | US |
Child | 13849758 | US |