The present techniques provide methods and systems for producing liquefied natural gas (LNG). More specifically, the present techniques provide for methods and systems to produce LNG using large-scale multi-shaft gas turbines.
This section is intended to introduce various aspects of the art, which can be associated with exemplary examples of the present techniques. This description is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present techniques. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Liquefied natural gas (LNG) is produced by cooling natural gas using processes that generally require refrigeration compressors and compressor drivers. Liquefying natural gas enables monetization of natural gas resources, and the meeting of energy demands, in areas where pipeline transport of natural gas is cost prohibitive. In a typical LNG refrigeration configuration, illustrated in
Global LNG competition has intensified, with potential growth from new projects in development currently being forecast to outstrip new firm demand. To enhance the profitability of future LNG projects there is a need to identify and optimize the key cost drivers and efficiencies applicable to each project.
When a large scale resource is available, developing it with a small number of large capacity LNG trains can provide environmental benefits (such as minimizing the overall footprint of the constructed facilities) and economic benefits (such as accelerating the production profiles). Further, minimizing the number of compression strings installed in each LNG train can provide an avenue to reduce the capital cost required to develop the resource.
Aeroderivatives are smaller scale multi-shaft turbines that do not require a large electrical motor for starting the compression strings, providing some cost benefits by eliminating the large electrical motors, variable frequency drives, and power generation capacity required by large scale single-shaft gas turbines. A larger number of aeroderivatives is required than large scale industrial turbines in order to achieve similar LNG train capacities due to the lower power output of the aeroderivative units, potentially increasing the overall cost of a large scale development. On the other hand, new multi-shaft gas turbine options are becoming available, including fuel efficient large scale multi-shaft industrial turbines such as the GE LMS100, the Mitsubishi Hitachi H110 and the Siemens SGT5-2000E turbines, and some of these large multi-shaft gas turbines operate at lower speeds compared to smaller turbines, thereby permitting more aerodynamically efficient large compressors that may be used in LNG service. What is therefore needed is an LNG compression string design and/or LNG train design that uses new turbine technology to support large-scale LNG production. What is also needed is such a large-scale LNG compression string design and/or LNG train design with a reduced amount of components contained therein.
Historically development of mid scale (e.g. 0.5-2.0 MTA) and large scale (≥2.0 MTA) LNG projects has involved extended periods of custom engineering and design optimization in order to match the specific natural gas resource, site ambient conditions and target output with the selected refrigerant compressor drivers and liquefaction technology. Prospective LNG projects competing for the lowest cost of supply in the current market environment stand to benefit from standardized, repeatable designs that offer means to simultaneously reduce both the capital expenditure and the time duration required from investment decision to delivery.
At first glance, the selection of standardized designs without substantial optimization may appear to compromise efficiency and create uncertainty around the actual expected LNG throughput at the selected site. Multi-shaft gas turbines with free power turbines and wide variable speed range offer the means to adjust compressor operating points and maximize efficiency of the one or more refrigeration compressors and consequently the efficiency of the LNG production trains. Conversely engineering rating calculations and simulation models offer the means to expediently determine the expect site performance and capacity based on gas composition and ambient parameters.
The disclosed aspects provide a drive system for liquefied natural gas (LNG) refrigeration compressors in a LNG production train. A standardized single compression string consists of a multi-shaft gas turbine with an output shaft operating a speed below 4,000 rpm, and no more than three standardized compressor bodies, each of the compressor bodies being applied to one or more refrigeration compressors employed in one or more refrigerant cycles. The standardized single compression string is designed for a generic range of feed gas composition, ambient temperature and other site conditions.
The disclosed aspects also provide a method of producing liquefied natural gas (LNG). An LNG production train is formed by matching the standardized single compression string of paragraph 1 to a standardized refrigerant heat exchanger system and to a standardized heat rejection system. LNG is produced using the standardized single compression string. The standardized refrigerant heat exchanger system and standardized heat rejection system are designed for a generic range of feed gas composition, ambient temperature and other site conditions and are installed in opportunistic locations and facilities without substantial reengineering and modifications.
The advantages of the present techniques are better understood by referring to the following detailed description and the attached drawings, in which:
In the following detailed description section, non-limiting examples of the present techniques are described. However, to the extent that the following description is specific to a particular example or a particular use of the present techniques, this is intended to be for exemplary purposes only and simply provides a description of the exemplary examples. Accordingly, the techniques are not limited to the specific examples described below, but rather, include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.
As one of ordinary skill would appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name only. The figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. When referring to the figures described herein, the same reference numerals may be referenced in multiple figures for the sake of simplicity. In the following description and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus, should be interpreted to mean “including, but not limited to.”
The articles “the,” “a” and “an” are not necessarily limited to mean only one, but rather are inclusive and open ended so as to include, optionally, multiple such elements.
As used herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure.
“Exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment or aspect described herein as “exemplary” is not to be construed as preferred or advantageous over other embodiments.
The term “gas” is used interchangeably with “vapor,” and is defined as a substance or mixture of substances in the gaseous state as distinguished from the liquid or solid state. Likewise, the term “liquid” means a substance or mixture of substances in the liquid state as distinguished from the gas or solid state.
A “hydrocarbon” is an organic compound that primarily includes the elements hydrogen and carbon, although nitrogen, sulfur, oxygen, metals, or any number of other elements can be present in small amounts. As used herein, hydrocarbons generally refer to components found in natural gas, oil, or chemical processing facilities.
“Natural gas” refers to a multi-component gas obtained from a crude oil well or from a subterranean gas-bearing formation. The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (CH4) as a major component, i.e., greater than 50 mol % of the natural gas stream is methane. The natural gas stream can also contain ethane (C2H6), heavy hydrocarbons (e.g., C3-C20 hydrocarbons), one or more acid gases (e.g., CO2 or H2S), or any combinations thereof. The natural gas can also contain minor amounts of contaminants such as water, nitrogen, iron sulfide, wax, crude oil, or any combinations thereof. The natural gas stream can be substantially purified, so as to remove compounds that may act as poisons.
“Liquefied Natural Gas” or “LNG” refers to is natural gas that has been processed to remove one or inure components (for instance, helium) or impurities (for instance, water and/or heavy hydrocarbons) and then condensed into a liquid at almost atmospheric pressure by cooling.
A “Large Scale” gas turbine is a gas turbine having a rated output capacity of at least 40 megawatts (MW), or at least 50 MW, or at least 70 MW, or at least 80 MW, or at least 100 MW.
A “mixed refrigerant” is refrigerant formed from a mixture of two or more components selected from the group comprising: nitrogen, methane, ethane, ethylene, propane, propylene, butanes, pentanes, etc. A mixed refrigerant or a mixed refrigerant stream as referred to herein comprises at least 5 mol % of two different components. A common composition for a mixed refrigerant can be: Nitrogen 0-10 mol %; Methane (C1) 30-70 mol %; Ethane (C2) 30-70 mol %; Propane (C3) 0-30 mol %; Butanes (C4) 0-15 mol %. The total composition comprises 100 mol %.
“Substantial” when used in reference to a quantity or amount of a material, or a specific charaderistic thereof, refers to an amount that is sufficient to provide an effect that the material or characteristic was intended to provide. The exact degree of deviation allowable may depend, in some cases, on the specific context.
“Non-synchronous” refers to rotational speeds that are not always aligned with local electrical grid frequency (which may be 50 Hz (3,000 rpm), 60 Hz (3,600 rpm), or another frequency) but fall within a commonly accepted operating range around the local frequency. Such operating range depends on the design of the turbine and may be ±3%, or ±5%, or ±10%, or ±20%, or more than ±20% of the local frequency.
The present techniques provide a drive system for liquefied natural gas (LNG) refrigeration compressors in a LNG production train. The drive system includes a standardized single turbo machinery string consisting of a multi-shaft gas turbine with no more than two standardized compressor bodies, no reducing gear box, and an optional starter motor having a power rating of less than 5 megawatts (MW). The multi-shaft gas turbine operates at a speed below 3,700 RPM and ideally approximately 3,000 RPM. The compressor bodies are applied to one or more refrigerant compressors employed in one or more refrigerant cycles, such as single mixed refrigerant, propane precooled mixed refrigerant, and/or dual mixed refrigerant. The standardized single turbo machinery string is designed for a generic range of feed gas composition, ambient temperature and other site conditions and is installed in opportunistic locations and facilities without substantial reengineering or modifications to capture D1BM (“Design 1 Build Many”) cost and schedule efficiencies by allowing for broader variability in liquefaction efficiency with location and feed gas composition
In aspect, first refrigeration compressor 402 may be used to provide compression for a propane refrigerant, and in a preferred aspect, the first refrigeration compressor may employ a horizontal split casing. Second refrigeration compressor string 404 may be used to provide compression for a mixed refrigerant, and in a preferred aspect, the second refrigeration compressor may employ a vertical split casing, although a horizontal split casing may be employed instead.
Aspects of the disclosure are not limited to employing a large scale multi-shaft gas turbine to drive two refrigeration compressors.
The remaining mixture of methane, ethane, propane, and butane is removed from fractionation column 517 through line 521 and is liquefied in the main cryogenic heat exchanger 522 by further cooling the gas mixture with a second refrigerant that may comprise a mixed refrigerant (MR) which flows through a second refrigerant circuit 530. The second refrigerant, which may include at least one of nitrogen, methane, ethane, and propane, is compressed in a second refrigeration compressor 523 which, in turn, are driven by a gas turbine 538. After compression, the second refrigerant is cooled by passing through air or water coolers 525a, 525b and is then partly condensed within heat exchangers 526, 527, 528, and 529 by evaporating the first refrigerant from first refrigerant circuit 520. The second refrigerant may then flow to a high pressure separator 531, which separates the condensed liquid portion of the second refrigerant from the vapor portion of the second refrigerant. The condensed liquid and vapor portions of the second refrigerant are output from the high pressure separator 531 in lines 532 and 533, respectively. As seen in
The condensed liquid stream in line 532 is removed from the middle of main cryogenic heat exchanger 522 and the pressure thereof is reduced across an expansion valve 534. The now low pressure second refrigerant is then put back into the main cryogenic heat exchanger 522 where it is evaporated by the warmer second refrigerant streams and the feed gas stream in line 521. When the second refrigerant vapor stream reaches the top of the main cryogenic heat exchanger 522, it has condensed and is removed and expanded across an expansion valve 535 before it is returned to the main cryogenic heat exchanger 522. As the condensed second refrigerant vapor falls within the main cryogenic heat exchanger 522, it is evaporated by exchanging heat with the feed gas in line 521 and the high pressure second refrigerant stream in line 532. The falling condensed second refrigerant vapor mixes with the low pressure second refrigerant liquid stream within the middle of the main cryogenic heat exchanger 522 and the combined stream exits the bottom of the main cryogenic heat exchanger 522 as a vapor through outlet 536 to flew back to second refrigeration compressor 523, to complete second refrigerant circuit 530.
The closed first refrigeration circuit 520 is used to cool both the feed gas and the second refrigerant before they pass through main cryogenic heat exchanger 522. The first refrigerant is compressed by a first refrigeration compressor 537 which, in turn, is powered by gas turbine 538. In an aspect, an additional refrigerant compressor and gas turbine (not shown), arranged in parallel with the first refrigeration compressor 537 and the gas turbine 538, may be used to compress the first refrigerant, it being understood that reference to the first refrigeration compressor 537 and the gas turbine 538 herein also refer to said additional refrigerant compressor and gas turbine. The first refrigeration compressor 537 may comprise at least one compressor casing and the at least one casing may collectively comprise at least two inlets to receive at least two first refrigerant streams at different pressure levels. The compressed first refrigerant is condensed in one or more condensers or coolers 539 (e.g. seawater or air cooled) and is collected in a first refrigerant surge tank 540 from which it is cascaded through the heat exchangers (propane chillers) 513, 514, 515, 516, 526, 527, 528, 529 where the first refrigerant evaporates to cool both the feed gas and the second refrigerant, respectively. Gas turbine 538 may comprise air inlet systems that in turn may comprise air filtration devices, moisture separation devices, chilling and/or heating devices or particulate separation devices.
If desired, means may be provided in system 500 of
Referring to
The cooled intermediate fluid is then pumped through air chiller or cooler 558 positioned at the inlet for turbine 538. As inlet air 571 flows into the respective turbines, it passes over coils or the like in the air chillers or coolers 558 which, in turn, cool the inlet air 571 before the air is delivered to the turbine. The warmed intermediate fluid is then returned to storage tank 555 through line 559. Preferably, the inlet air 571 will be cooled to no lower than about 5° Celsius (41° Fahrenheit) since ice may form at lower temperatures. In some instances, it may be desirable to add an anti-freeze agent (e.g. ethylene glycol) with inhibitors to the intermediate fluid to prevent plugging, equipment damage and to control corrosion.
A wet air fin cooler 604 may be connected to the first refrigeration circuit 520. As shown in
Wet air fin cooler 604 is used to sub-cool the slip-stream of liquid first refrigerant in line 551 from surge tank 540. The sub-cooled first refrigerant is directed through line 605 to heat exchanger 553. Sub-cooling this propane increases both the refrigeration duty of heat exchanger 553 and the coefficient of performance of the refrigeration system. This coefficient of performance is the ratio of the refrigeration duty of the heat exchanger 553 divided by the incremental compressor power to provide that refrigeration. The wet air fin cooler 604 is positioned to cool the slip-stream of first refrigerant in line 551 in
According to disclosed aspects, separator 601 is positioned in the gas turbine air inlet following the air chiller or cooler 558. This separator 601 removes the water that is condensed from the inlet air 571 as the inlet air is cooled from its ambient dry bulb temperature to a temperature below its wet bulb temperature. Separator 601 may be of the inertial type, such as vertical vane, coalescing elements, a low velocity plenum, or a moisture separator known to those skilled in the art. The gas turbine air inlet may include filtration elements, such as air filters 541, that may be located either upstream or downstream or both up and downstream of the air chiller or cooler 558 and the separator 601, respectively. Preferably, at least one filtration element is located upstream of the chiller and separator. This air filtration element may include a moisture barrier, such as an ePTFE (expanded PTFE) membrane which may be sold under the GORETEX trademark, to remove atmospheric mist, dust, salts or other contaminants that may be concentrated in the condensed water removed by separator 601. By locating at least one filtration element or similar device upstream of the chiller and separator associated with gas turbines 538, atmospheric contaminants in the collected moisture (water) can be minimized, fouling and corrosion of the chiller(s) and separator(s) can be minimized, and fouling and corrosion of the wet air fin cooler 604 can also be controlled and minimized.
During the chilling of the gas turbine inlet air 571, a significant portion of the refrigeration duty is used to condense the moisture in the gas turbine inlet air 571 rather than simply reducing the dry bulb temperature of the inlet air. As an example, if inlet air with a dry bulb temperature of 40° Celsius and a wet bulb temperature of 24° Celsius is chilled, the effective specific heat of the air is about 1 kJ/kg/°C. between 40° C. and 24° C. but increases dramatically to about 3 kJ/kg/° C. below the wet bulb temperature of 24° C. as the dry bulb temperature is reduced and moisture is condensed from the air. From this, one could conclude that about two-thirds of the refrigeration duty used to chill the air below the wet bulb temperature (dew point) is wasted since the small compositional change of the air to the gas turbine 538 has only a small effect on the available power of the gas turbine. This condensed moisture is essentially at the same temperature as the chilled inlet air to the gas turbine and could be used to provide some precooling of the inlet air 571 using another chilling coil similar to air chillers or coolers 558 that is positioned ahead of the air chillers or coolers 558 in the air flow. However, this arrangement can only recoup the part of the refrigeration duty used to reduce the temperature of the water but not the part used to condense it. That is, the heat of vaporization of the water cannot be recouped by heat transfer or psychometric cooling with the gas turbine inlet air.
A much greater portion of the refrigeration duty used to cool and condense the moisture from the gas turbine inlet air 571 can be recouped by collecting this chilled water from separator 601, pumping the chilled water stream 510 with a pump 603 and spraying the c chilled water stream onto the tubes of the wet air fin cooler 604 or otherwise mixing the water with the air flow 606 to the wet air fin cooler 604. Based on the ambient conditions and the actual flow rate of air conveyed by the fan associated with the wet air fin cooler 604, the water pumped by pump 603 may be sufficient to saturate the air flow of wet air fin cooler 604 and bring it to its wet bulb temperature. Excess water flow from separators 601 may be available that could be used for another purpose, or may be insufficient to saturate air flow. In this later case, additional water from another source may be provided.
The condensed liquid stream in line 731 is removed from the middle of cold liquefaction exchanger 724 and the pressure thereof is reduced across an expansion valve 732. The now low pressure cold mixed refrigerant is then put back into the cold liquefaction exchanger 724 where it is evaporated by the warmer cold mixed refrigerant streams and the partially-cooled feed gas stream 722. When the cold mixed refrigerant vapor stream reaches the top of the cold liquefaction exchanger 724, it has condensed and is removed and expanded across an expansion valve 734 before it is returned to the cold liquefaction exchanger. As the condensed cold mixed refrigerant vapor falls within the cold liquefaction exchanger, it is evaporated by exchanging heat with the partially-cooled feed gas 722 and the high pressure cold mixed refrigerant stream 731. The falling condensed cold mixed refrigerant vapor mixes with the low pressure mixed refrigerant liquid stream within the middle of the cold liquefaction exchanger 724 and the combined stream exits the bottom of the cold liquefaction exchanger as a vapor through outlet 736 to flow to second refrigerant compressor 706. The second refrigerant compressor, as well as various drums 738, 740, 742, and ambient coolers 744, 746, 748, compresses and cools the cold mixed refrigerant stream, which is then sent to the warm liquefaction heat exchanger 712 as previously described.
The disclosed aspects provide a method of producing LNG using one or more standardized compression strings and standardized refrigerators designed for a generic range of feed gas composition, ambient temperature and other site conditions and installed in opportunistic locations and facilities without substantial reengineering or modifications, to capture D1BM (“Design 1 Build Many”) cost and schedule efficiencies by allowing for broader variability in liquefaction efficiency with location and feed gas composition.
An advantage of the disclosed aspects is reduced and paced capital expense for a large-scale LNG train developed incrementally from standardized building blocks. For example, it is possible to achieve a combined output above 7 MTA that is developed from three to four sets of identical standardized equipment and bulk components. Another advantage is that this approach enables expedited schedules through use of standardized components. Still another advantage is that the LNG train may be coupled with other technologies (such as inlet air cooling or exhaust heat recovery) to improve efficiencies of the LNG train.
Aspects of the disclosure may include any combinations of the methods and systems shown in the following numbered paragraphs. This is not to be considered a complete listing of all possible aspects, as any number of variations can be envisioned from the description above.
a standardized single compression string consisting of
start the one or more refrigeration compressors from rest,
bring the one or more refrigeration compressors up to an operating rotational speed, and
adjust compressor operating points to maximize efficiency of the one or more refrigeration compressors or efficiency of the LNG production train,
without assistance from electrical motors or variable frequency drives.
forming an LNG production train by matching the standardized single compression string of paragraph 1 to a standardized refrigerant heat exchanger system and to a standardized heat rejection system;
using the standardized single compression string, producing LNG where the standardized refrigerant heat exchanger system and standardized heat rejection system are designed for a generic range of feed gas composition, ambient temperature and other site conditions and are installed in opportunistic locations and facilities without substantial reengineering and modifications.
matching one or more additional standardized single compression strings to the standardized refrigerant heat exchanger system and to the standardized heat rejection system, to thereby produce a single LNG production train capable of producing LNG.
start the one or more refrigeration compressors from rest,
bring the one or more refrigeration compressors up to an operating rotational speed, and
adjust compressor operating points to maximize efficiency of the one or more refrigeration compressors or efficiency of the LNG production train,
without assistance from electrical motors or variable frequency drives.
extracting heat from exhaust gases of the multi-shaft gas turbine, thereby increasing overall energy of of the LNG production train.
chilling air entering an inlet of the multi-shaft gas turbine, thereby maximizing natural gas throughput and/or efficiency of the LNG production train.
While the present techniques can be susceptible to various modifications and alternative forms, the examples described above are non-limiting. It should again be understood that the techniques is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application claims the priority benefit of U.S. Patent Application No. 62/549,463 filed Aug. 24, 2017 entitled METHOD AND SYSTEM FOR LNG PRODUCTION USING STANDARDIZED MULTI-SHAFT GAS TURBINES, COMPRESSORS AND REFRIGERANT SYSTEMS, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62549463 | Aug 2017 | US |