1. Field of the Invention
This invention relates generally to semiconductor fabrication and, more particularly, to a method and apparatus for loading or unloading a substrate holder that accommodates a plurality of semiconductor substrates.
2. Description of the Related Art
A substrate holder, such as a wafer boat or rack, is typically used to hold a plurality of semiconductor substrates, such as wafers, for processing in a conventional vertical heat treatment apparatus. The wafer boat commonly comprises a plurality of support accommodations that support the wafers at edge portions of those wafers. In this way, the wafers are held oriented horizontally in a vertically spaced-apart manner. In general, wafers are automatically loaded from a wafer container into a boat using a generic wafer handler, including an end effector for interfacing with the wafer, by contacting the wafer at its backside, or bottom surface.
Heat-related complications, however, can preclude the use of common wafer boats for very high temperature treatment or processing of a batch of wafers in a furnace, e.g., processing at temperatures up to about 1350° C. For example, due to the limited mechanical strength of the wafer at high temperatures, the wafer's own weight can cause it to plastically deform at very high temperatures because common wafer boats support wafers only at their edges.
Wafer boat wafer supports using other arrangements for supporting wafers are described in U.S. Pat. Nos. 5,865,321 and 5,820,367. U.S. Pat. No. 5,865,321 describes a wafer boat having a wafer support with multiple inwardly extending arms to support the wafer at more inward locations. U.S. Pat. No. 5,820,367 describes a wafer boat that supports a wafer at a central location using the entire circumference of a ring support. The supports in these wafer boats, however, are still not sufficiently supportive to prevent plastic deformation and consequent crystallographic slip of the wafer.
Wafer supports for single wafer systems can each support a substantial portion of the bottom surface area of a wafer and do not suffer from crystallographic slip to the same degree as wafers in conventional wafer boats. For such single wafer systems, susceptors supporting wafers over their entire bottom surface area and support rings forming a complete circle to support a wafer at its perimeter are known. Special measures, however, are required to place a wafer onto or to separate a wafer from such susceptors.
In particular, with such a single wafer system, when using a robot end effector, access to the wafer is generally provided from the bottom and the susceptor stays in place within a process chamber while wafers are serially loaded and unloaded. Typically, the robot end effector places a wafer on moveable pins at a level above the susceptor, the wafer being spaced sufficiently above the susceptor to allow enough clearance for retracting the robot end effector without the robot end effector touching the wafer or the susceptor. After retraction, the pins move downward to lower the wafer onto the susceptor. To unload the wafer, the reverse of these steps occurs. While suitable for single wafer processing, such a wafer loading and support system is not easily applicable to a batch processing system because, if possible at all, such a system would be unacceptably complicated and cumbersome, since it would require, inter alia, that every processing position be provided with moveable pins and the attendant hardware and control systems to move these pins.
Accordingly, there is a need for substrate holder systems and loading methods that, inter alia, provide improved support for substrates and that allow for efficient loading and unloading of the substrates for processing in a process chamber.
According to one aspect of the invention, a method is provided for loading a wafer into a wafer boat. The method comprises providing the wafer in a wafer cassette and a wafer support in a wafer support holder. A robot end effector is inserted into the wafer support holder to remove a wafer support with the wafer support resting on the robot end effector. The wafer support is positioned below the wafer in the wafer cassette using the robot end effector so that the wafer support is parallel to and co-axially aligned with the wafer. The robot end effector is vertically moved relative to the wafer cassette to seat the wafer onto the wafer support or onto a surface of the end effector. The robot end effector is transferred, while holding the wafer support and the wafer, to the wafer boat. The robot end effector is vertically moved relative to the wafer boat to place the wafer support on an accommodation of the wafer boat so that the wafer rests on the wafer support.
According to another aspect of the invention, a system is provided for loading a wafer into a wafer boat. The system comprises an end effector having an opening for generating a vacuum at an upper surface of the end effector. The system also comprises a wafer support having a passage configured to align with the upper surface opening. The passage is configured to generate a vacuum suction at an interface of the wafer support and a wafer upon retention of the wafer support on the end effector and upon retention of the wafer on the wafer support.
According to yet another aspect of the invention, a method is provided for loading a plurality of substrates into a substrate holder for semiconductor processing. The method comprises providing a substrate resting on a substrate edge support structure and providing a substrate support seated upon an end effector. The substrate support is positioned below the substrate and the end effector is moved upwardly to contact the substrate with the substrate support and to seat the substrate upon the substrate support. The end effector is translated to position the substrate and the substrate support seated upon the end effector into the substrate holder. The end effector is moved downwardly to seat the substrate support upon a support surface for supporting substrate supports in the substrate holder.
According to another aspect of the invention, a method is provided for loading a batch of substrates from one or more substrate cassettes into a substrate holder. The method comprises providing substrate supports having an outer dimension smaller than the dimension of an unsupported area of a substrate in the substrate cassette. A robot end effector is transferred, while holding a substrate support, to a position below a substrate in the substrate cassette such that the substrate support is parallel to the substrate and aligned with the unsupported area of the substrate. The robot end effector is moved vertically in an upward direction until the substrate is seated onto the substrate support or on the end effector. The robot end effector is transferred with the substrate support and the substrate to the substrate holder. The substrate support together with the substrate is placed in an accommodation of the substrate holder.
According to another aspect of the invention, a wafer support for supporting a wafer during semiconductor processing is provided. The wafer support comprises a substantially flat bottom major surface, a substantially flat top major surface parallel to the bottom major surface and a continuous outer sidewall connecting the top and the bottom major surfaces. The longest dimension of the top and bottom surfaces is sized for the wafer support to fit coplanar with and between coplanar edge supports for supporting the wafer in a cassette for storing the wafer support. The longest dimension of the top and bottom surfaces is also sized for the wafer support to rest upon one or more horizontal extensions for holding the wafer support in a wafer boat during processing.
According to yet another aspect of the invention, a system for loading a semiconductor wafer into a wafer boat is provided. The system comprises an end effector having a gas channel configured to generate a vacuum suction at an interface with an overlying object. A wafer support is configured to rest upon the end effector and to support an overlying wafer during semiconductor processing. The wafer support is sized to fit coplanar with and between edge supports supporting the wafer in a wafer transport cassette.
The invention will be better understood from the detailed description of the preferred embodiments and from the appended drawings, which are meant to illustrate and not to limit the invention, and wherein:
Various systems and methods having wafer supports that support a substantial portion of the bottom surface areas of a wafer have been proposed. Some of these wafer support and wafer boat loading schemes utilize wafer supports that are plates or rings. For example, according to one scheme discussed in U.S. patent application Ser. No. 10/390,574, filed on Mar. 13, 2003, a wafer support and a wafer are transferred to a transfer station where the wafer is placed on the wafer support. The wafer support, holding the wafer, is transferred to and inserted into an accommodation of the wafer boat. According to another scheme discussed in U.S. patent application Ser. No. 10/406,801, filed Apr. 2, 2003, the wafers are loaded onto the accommodations of a receiver frame, co-axially aligned with the wafer boat. The wafers are then seated onto the wafer supports of the wafer boat by vertically moving the wafer boat relative to the receiver frame.
It has been found that, depending on the particular requirements of a process, both of these schemes have particular disadvantages. A disadvantage of the method utilizing a transfer station is that it is rather time consuming, which is not a problem for long semiconductor fabrication processes but seriously affects the throughput of processes having a short or medium range duration. A disadvantage of the method using a receiver frame is that a larger wafer pitch, or spacing between wafers in a wafer boat, is needed to facilitate the wafer handling.
The preferred embodiments of the present invention avoid these disadvantages to advantageously provide a system and method to load substrates, such as wafers, onto a substrate holder, such as a wafer boat, comprising substrate supports (e.g., support plates or rings) that is quick and that does not require a large wafer pitch.
According to preferred embodiments of the invention, substrate supports are provided that have a diameter smaller than the diameter of the substrate that they are to support. These substrate supports can support substrates over a significant portion of their bottom surface areas and can be removably accommodated in slots of a wafer boat or other structure for holding a plurality of substrates.
To load substrates into a substrate holder, an end effector contacts and removes a substrate support from a substrate support holder storing the substrate support. The end effector then moves the substrate support to a cassette or any other structure, such as a buffer station or racks in a load lock, holding a substrate. The substrate is preferably supported inside the cassette or other structure by an edge support structure that contacts the substrate proximate the substrates edge. The end effector aligns the substrate support under the substrate and the substrate support is moved relative to the substrate to contact the substrate, so that the substrate becomes seated upon the substrate support. The substrate support, having a substrate upon it, is then transported out of the cassette and into the substrate holder. After transporting the substrate and substrate support to the substrate holder, the end effector is removed from the substrate holder.
Preferably, the substrate support holder storing the substrate supports is the substrate holder which holds the substrates and substrate support supports during processing. It will be appreciated, however, that the substrate supports can also be stored in a substrate support holder other than the substrate holder used during semiconductor processing.
In some preferred embodiments, the end effector has holes or gas passages which provide a vacuum suction force to the bottom of the substrate support, to stably transport the substrate support and prevent slippage. In addition, the end effector can have a part that extends to the substrate to also provide a vacuum suction directly to the substrate to further stabilize the substrate for transport. In another embodiment, the substrate support can have passages within it to transfer a suction force generated by the end effector directly to a substrate seated upon the substrate support.
Reference will now be made to the Figures, wherein like numerals refer to like parts throughout.
In
In
In
After loading the wafers 10, the wafer boat 30 is preferably loaded into a processing chamber (not shown), in which the wafers can be subjected to a semiconductor fabrication process. Advantageously, the semiconductor fabrication process can be a heat treatment at very high temperatures, e.g., about 1000° C. or above and up to about 1350° C. in some embodiments. After the heat treatment, it will be appreciated that unloading proceeds in a sequence reversed relative to that shown in
Preferably, wafer supports 20 are stored in the wafer boat 30 and are only removed from the wafer boat 30 for the purpose of wafer transfer, e.g., transferring the wafers 10 back and forth between the cassettes 50 and the wafer boats 30. Such an arrangement is advantageously efficient by minimizing the amount of movement and distance that the end effector 42 must travel to transfer a wafer 10. Thus, the end effector 42 need only move between the wafer boat 30 and the cassette 50; movement to a third location housing the wafer supports 20 is unnecessary in such an arrangement. Alternatively, however, it is possible to provide one or more storage cassettes for wafer supports 20 in which the wafer supports 20 are stored when not in use. In that case, at the start of the loading sequence wafer supports 20 are picked-up from the wafer support storage cassette instead of from the wafer boat 30.
It will also be appreciated that various end effectors known in the art may be used to transport the wafer support 20 and the wafers 10, so long as the end effector is sized and shaped to fit between slots in the wafer support holder (e.g., wafer boat 30 or a separate storage) and wafer cassette 50 that contain the wafer supports 20 and the wafers 10.
Exemplary end effectors for transporting the wafer supports 20 and wafers 10 are shown in
In addition, the end effector transporting the wafer support 20 and the wafers 10 is preferably provided with a mechanism for holding the wafer support 20 upon the end effector, especially while the end effector moves during transport functions. Such a mechanism may include, for example, pins, grooves, or other matching patterns of protrusions and indentations on the wafer support and the end effector surface, respectively, that can mechanically prevent movement of a wafer support seated upon the end effector.
In the illustrated embodiments, the mechanism for preventing slippage of the wafer support is vacuum suction applied by the end effector. For example, as illustrated in
In addition to the frictional forces between the wafer 10 and the wafer support 20 which act to prevent movement of the wafer 10 on the wafer support 20, preferably, wafer 10 is also actively prevented from moving during horizontal movement of end effector 42. An exemplary configuration for achieving this is shown in
In addition, it will be appreciated that through passage 22 need not be circular and can be any cross-sectional shape, so long as it extends through the wafer support 20. For example, it may take the form of a slit. In addition, the through passage 22 may have a larger size opening than the channel 49, or the channel 49 may have a larger size opening than the through passage 22, so that slight misalignments of the channel 49 and the through passage 22 do not significantly adversely affect the vacuum applied to the wafer 10. Moreover, for aligning the channel 49 and the through passage 22, matching indentations and protrusions on the wafer supports 10 and the end effector 42, or the on the wafer support holder, e.g., the wafer 30, and the wafer support 20, can be utilized to fix the position of the wafer support and the end effector in a pre-determined, fixed orientation relative to one another.
Yet another end effector configuration for providing vacuum suction to the wafer support 10 is shown in
While the configuration shown in
As noted above, it will be understood that the application of vacuum grip is not an absolute requirement. Other methods of preventing movement of wafer support and wafer during movement of the end effector are possible. Such methods include applying a limited acceleration of the end effector, applying materials with a high resistance against sliding, such as haptic materials, and electrostatic clamping of the wafer support and/or the wafer. Moreover, various combinations of the vacuum grip, e.g., for holding the wafer, and these other methods, e.g., for holding the wafer support, are also possible.
Accordingly, various other modifications, omissions and additions may be made to the methods and structures described above without departing from the scope of the invention. All such modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.
This application claims the priority benefit under 35 U.S.C. §119(e) of provisional Application No. 60/496,898, filed Aug. 20, 2003. This application is also related to, and hereby incorporates by reference in their entireties, the following: U.S. patent application Ser. No. 10/636,372, filed Aug. 7, 2003; U.S. patent application Ser. No. 10/390,574, filed Mar. 13, 2003; U.S. patent application Ser. No. 10/361,480, filed Feb. 5, 2003; U.S. patent application Ser. No. 10/406,801, filed Apr. 2, 2003; and U.S. Pat. No. 6,582,221, issued Jun. 24, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4407654 | Irwin | Oct 1983 | A |
4468259 | Mimura | Aug 1984 | A |
4770590 | Hugues et al. | Sep 1988 | A |
4900214 | Ben | Feb 1990 | A |
5028195 | Ishii et al. | Jul 1991 | A |
5071485 | Matthews et al. | Dec 1991 | A |
5110248 | Asano et al. | May 1992 | A |
5162047 | Wada et al. | Nov 1992 | A |
5178639 | Nishi | Jan 1993 | A |
5192371 | Shuto et al. | Mar 1993 | A |
5219079 | Nakamura | Jun 1993 | A |
5310339 | Ushikawa | May 1994 | A |
5316472 | Niino et al. | May 1994 | A |
5334257 | Nishi et al. | Aug 1994 | A |
5407449 | Zinger | Apr 1995 | A |
5482558 | Watanabe et al. | Jan 1996 | A |
5482559 | Imai et al. | Jan 1996 | A |
5492229 | Tanaka et al. | Feb 1996 | A |
5556147 | Somekh et al. | Sep 1996 | A |
5556275 | Sakata et al. | Sep 1996 | A |
5664925 | Muka et al. | Sep 1997 | A |
5820367 | Osawa | Oct 1998 | A |
5858103 | Nakajima et al. | Jan 1999 | A |
5865321 | Tomanovich | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5897311 | Nishi | Apr 1999 | A |
5931666 | Hengst | Aug 1999 | A |
5974682 | Akimoto | Nov 1999 | A |
5981966 | Honma | Nov 1999 | A |
5983906 | Zhao et al. | Nov 1999 | A |
6034000 | Heyder et al. | Mar 2000 | A |
6068441 | Raaijmakers et al. | May 2000 | A |
6099302 | Hong et al. | Aug 2000 | A |
6111225 | Ohkase et al. | Aug 2000 | A |
6168668 | Yudovsky | Jan 2001 | B1 |
6203617 | Tanoue et al. | Mar 2001 | B1 |
6216883 | Kobayashi et al. | Apr 2001 | B1 |
6280183 | Mayur et al. | Aug 2001 | B1 |
6287112 | Van Voorst Vader et al. | Sep 2001 | B1 |
6321680 | Cook et al. | Nov 2001 | B2 |
6341935 | Tseng | Jan 2002 | B1 |
6347919 | Ryan et al. | Feb 2002 | B1 |
6361313 | Beyaert et al. | Mar 2002 | B1 |
6375403 | Mages et al. | Apr 2002 | B1 |
6390753 | De Ridder | May 2002 | B1 |
6399922 | Okase et al. | Jun 2002 | B2 |
6462411 | Watanabe et al. | Oct 2002 | B1 |
6464445 | Knapik et al. | Oct 2002 | B2 |
6559039 | Wang et al. | May 2003 | B2 |
6753506 | Liu et al. | Jun 2004 | B2 |
20020182892 | Arai et al. | Dec 2002 | A1 |
20030180125 | Van den Berg et al. | Sep 2003 | A1 |
20040040632 | Oosterlaken | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
0 238 751 | Sep 1987 | EP |
0 405 301 | Jan 1991 | EP |
0 821 403 | Jan 1998 | EP |
63102225 | May 1988 | JP |
02002033284 | Jan 2002 | JP |
WO 0068977 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050062465 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60496898 | Aug 2003 | US |