Method and system for manufacturing microchannel plates

Information

  • Patent Grant
  • 6049168
  • Patent Number
    6,049,168
  • Date Filed
    Friday, June 4, 1999
    25 years ago
  • Date Issued
    Tuesday, April 11, 2000
    24 years ago
Abstract
The present invention discloses a method for manufacturing a photon detector and image generator. First, a screen operable to display a visual image based on a received signal is provided. The screen is then scrubbed. Next, an unfilmed microchannel plate having an input face and an output face is provided. The microchannel plate is baked in a vacuum chamber and a tube assembly is formed by attaching the microchannel plate to the screen. The tube assembly is scrubbed using an electron gun. Next, a photocathode, having an input side and an output side, is attached to the assembly such that the output side of the photocathode faces the input face of the microchannel plate in order to form a final tube, wherein the tube has a lifetime greater than 7,500 hours.
Description

TECHNICAL FIELD OF THE INVENTION
This invention relates generally to vision systems and more particularly to a method and system for a method and system for manufacturing microchannel plates.
BACKGROUND OF THE INVENTION
Image intensifier tubes are used in night vision devices to amplify light and allow a user to see images in very dark conditions. Night vision devices typically include a lens to focus light onto the light receiving end of an image intensifier tube and an eyepiece at the other end to view the enhanced imaged produced by the image intensifier tube.
Modern image intensifier tubes use photocathodes. Photocathodes emit electrons in response to being exposed to photons from an image. The electrons are produced in a pattern that replicates the original scene. The electrons from the photocathode are accelerated towards a microchannel plate. A microchannel plate is typically manufactured from lead glass and has a multitude of channels, each one operable to produce a cascade of secondary electrons in response to an incident electron.
Therefore, photons impinging on the photocathode produce electrons which are then accelerated to a microchannel plate where a cascade of secondary electrons are produced. These electrons are accelerated towards a phosphorous screen, where their collisions with the screen produces an image of the original scene.
A drawback to this approach is that the electrostatic fields in the image intensifier are not only effective in accelerating electrons from the photocathode to the microchannel plate and from the microchannel plate to the screen, but also moves any positive ions back to the photocathode at an accelerated velocity. Current image intensifiers have a high indigenous population of positive ions. These are primarily due to gas ions in the tube, including in the microchannel plate and the screen. These include both positive ions and chemically active neutral atoms. When these ions strike the photocathode, they can cause both physical and chemical damage. This leads to short operating lives for image intensifiers.
To overcome this problem, an ion barrier film can be placed on the input side of the microchannel plate. This ion barrier is able to block the ions from the photocathode.
One drawback of the ion barrier is that it reduces the signal to noise ratio of the image intensifier. This is due to the fact that the barrier is detrimental to ion transport.
Therefore, current image intensifiers require an ion barrier since current manufacturing techniques fail to remove enough gas molecules. But the presence of the ion barrier film reduces the signal to noise ratio. What is needed is an unfilmed (i.e. without ion barrier film) microchannel plate that has sufficient gas ions removed such that an image intensifier manufactured with such a microchannel plate has a usable life.
SUMMARY OF THE INVENTION
In accordance with the present invention, the disadvantages and problems associated with previous image intensifiers have been substantially reduced or eliminated. In particular, the present invention provides a method and system for manufacturing microchannel plates.
In one embodiment a method for manufacturing a photon detector and image generator is provided. First, a screen operable to display a visual image based on a received signal is provided. The screen is then scrubbed. Next, an unfilmed microchannel plate having an input face and an output face is provided. The microchannel plate is baked in a vacuum chamber and a tube assembly is formed by attaching the microchannel plate to the screen. The tube assembly is scrubbed using an electron gun. Next, a photocathode, having an input side and an output side, is attached to the assembly such that the output side of the photocathode faces the input face of the microchannel plate in order to form a final device, wherein the device has a lifetime greater than 7,500 hours.
Technical advantages of the present invention include providing an image enhancer with improved signal to noise ratio and a long-lived photocathode and image intensifier. Another technical advantage is providing a microchannel plate that can operate in an image intensifier without an ion barrier being applied. Other technical advantages of the present invention will be readily apparent to those skilled in the art from the following figures, descriptions and claims.





BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
FIG. 1 is a schematic design of an image intensifier in accordance with the teachings of the present invention
FIG. 2 illustrates an image intensifier tube in accordance with the teachings of the present invention;
FIG. 3 illustrates a microchannel plate in accordance with the teachings of the present invention; and
FIG. 4 is a flowchart illustrating the formation of an enhanced image device utilizing an unfilmed microchannel plate.





DETAILED DESCRIPTION OF THE DRAWINGS
The preferred embodiment of the present invention and its advantages are best understood by referring to FIGS. 1 through 4 of the drawings, like numerals being used for like and corresponding parts of the various drawings.
FIG. 1 is a schematic design of an image intensifier 10 in accordance with the teachings of the present invention. Image intensifier 10 is operable to receive photons from an image and transform them into a viewable image. Image intensifier 10 is designed to operate and enhance viewing in varying light conditions including conditions where a scene is visible with natural vision and conditions where a scene is totally invisible with natural vision because the scene is illuminated only by star light or other infrared light sources. However, it will be understood that, although the image intensifier 10 may be used to enhance vision, the image intensifier 10 may also be used in other applications involving photon detection such as systems to inspect semiconductors.
Image intensifier 10 comprises optics 12 coupled to image intensifier tube 16. Image intensifier 10 is operable to act as a photon detector and image generator. Power supply 18 is coupled to image intensifier tube 16. Image intensifier tube 16 also can include an image visualization means 20 for viewing the image produced by image intensifier 10.
Optics 12 are generally one or more lens elements used to form an objective optical assembly. Optics 12 are operable to focus light from a scene on to image intensifier tube 16.
Power supply 18 is operable to provide power to components of image intensifier tube 16. In a typical embodiment power supply 18 provides continuous DC power to image intensifier tube 16. The use of power supply 18 is further described in conjunction with FIG. 2.
Electronics 14 represents the other electronic necessary for image intensifier 10. These include electronics that are used to control among other things, power supply 16.
Image visualization means 20 is operable to provide a convenient display for images generated at image intensifier tube 16. Image visualization means 20 may be as simple as a lens or can be a cathode ray tube (CRT) display.
FIG. 2 illustrates an image intensifier tube 16 in accordance with the teachings of the present invention. Image intensifier tube 16 comprises a photocathode 22 having a input side 22a and an output side 22b. Coupled to photocathode 22 is a microchannel plate (MCP) 24 having a MCP input side 24a and a MCP output side 24b. A first electric field 23 is located between photocathode 22 and microchannel plate 24. Also included is a phosphorous screen 26 coupled to microchannel plate 24. Between phosphorous screen 26 and microchannel plate 24 is a second electric field 25.
In operation, photons from an image impinge on input side of photocathode 22a. Photocathode 22 converts photons into electrons, which are emitted from output side of photocathode 22b in a pattern representative of the original image. Typically, photocathode 22 is a circular disk like structure manufactured from semiconductor materials mounted on a substrate as is well known in the art. One suitable arrangement is gallium arsenide (GaAs) mounted on glass, fiber optics or similarly transparent substrate.
The electrons emitted from photocathode 22 are accelerated in first electric field 23. First electric field 23 is generated by power supply 18. After accelerating in first electric field 23, the electrons impinge on the input side 24a of microchannel plate 24. Microchannel plate 24 typically comprises a thin glass wafer formed from many hollow fibers, each oriented slightly off axis with respect to incoming electrons. Microchannel plate 24 typically has a conductive electrode layer disposed on MCP input side 24a and MCP output side 24b. A differential voltage, supplied by power supply 18, is applied across the MCP input 24a and MCP output 24b. Electrons from photocathode 22 enter microchannel plate 24 where they produce secondary electrons, which are accelerated by the differential voltage. The accelerated secondary electrons leave microchannel plate 24 at MCP output 24b.
As discussed earlier, typical current microchannel plates contain an ion barrier on the input side in order to protect the photocathode from positive ions that travel from the MCP to the photocathode. These ions are typically gas ions trapped in the glass of the microchannel plate during processing. These ions are usually large and can cause physical and chemical damage to the photocathode if liberated from the microchannel plate and allowed to strike the photocathode. For conventional microchannel plates this problem leads to a very short image intensifier life (260 to 300 hours) when the ion barrier is not present. However, as discussed earlier, the ion barrier reduces the signal to noise ratio of image intensifier 10.
In the present invention, a microchannel plate without an ion barrier is provided for use in an image intensifier. In the present invention, even though the microchannel plate has no ion barrier, the life of the image intensifier is long (over 7,500 hours). Additionally, the signal to noise ratio is also very large (at least 27 to 1). This is achieved by providing a microchannel plate that is practically free from harmful ions.
After exiting microchannel plate 24 and accelerating in second electric field 25, secondary electrons impinge on phosphorous screen 26, where a pattern replicating the original image is formed. Other ways of displaying an image such as using a charged coupled device can also be used.
FIG. 3 illustrates a microchannel plate 24 in accordance with the teachings of the present invention. Illustrated is microchannel plate 24 comprising microchannel plate channels 30 and glass borders 32. As is illustrated in FIG. 3, incoming electrons 34 produce secondary emission electrons 36 by interactions in MCP 24.
In the present invention MCP input side 24a does not have an ion barrier film applied. The cladding glass used to manufacture microchannel plate 24 is made electrically conductive to produce secondary emission electrons and can be scrubbed to substantially reduce the amount of damaging ions. An example of suitable cladding glass is disclosed in U.S. Pat. No. 5,015,909, issued to Circon Corporation on May 14, 1991 and entitled "Glass composition and method for manufacturing a high performance microchannel plate". Other similar cladding glass material can also be used. As discussed earlier, each face (MCP input side 24a and MCP output side 24b) are made to act as electrodes. This is done by depositing a metallic coating such as Nichrome on the MCP input side 24a and MCP output side 24b. The channels are treated in such a way that incoming electrons produce secondary emission electrons. This is typically done by forming a semi-conducting layer in channels 30. The manufacture of a microchannel plate sufficiently low in ions such that it can be used unfilmed in an image intensifier is discussed in conjunction with FIG. 4.
FIG. 4 is a flowchart illustrating the formation of an enhanced image device utilizing an unfilmed microchannel plate. In Step 100, a microchannel plate is formed. Microchannel plates are typically formed using a draw/multidraw technique in which many individual tubes are drawn (pulled) along a long axis several times to reduce the width of the tubes. The tubes are then sliced into individual microchannel plates.
In Step 102, the microchannel plate is baked in a vacuum to drive off ions, such as gas ions, in the microchannel plate. In Step 104, the phosphorus screen or CCD is prepared. In Step 106, the screen is scrubbed to remove unwanted gas impurities such as carbon dioxide, carbon monoxide, hydrogen gas and other impurities. In Step 108, the MCP and screen are placed together in a ceramic or metal input body to form a tube assembly.
In Step 110, a photocathode is formed. The photocathode is typically formed from a semiconductor with GaAs or InGaAs layer on a transparent substrate.
In Step 114, the tube assembly undergoes an electron beam scrub. The electron beam scrub uses a high-energy electron beam to drive out gas impurities that might later contribute to damaging ions. Typically a high intensity electron beam scrub is done over a long period of time.
One drawback to such an electron beam scrub of an unfilmed microchannel plate is that the intensity maybe such that the electrons leaving the MCP could burn a hole, or other wise damage, the phosphorous screen. To avoid this, the focus of the electron beam must be set to diffuse the high energy electrons before they reach the screen.
In Step 116, the tube assembly goes through a cesiation process. Cesium is a good gas eliminator (also known as a gas getter) which is used to remove even more gas based impurities from the screen and microchannel plate.
In Step 118, the photocathode undergoes a heat cleaning and a cesium activation step. In the heat cleaning step, the photocathode is heated in a vacuum to drive off any oxide layers. Next, a cesium activation step is performed. This is done to form a cesium and oxygen layer on top of the photocathode to protect the photocathode. This is done using a conventional process, which exposes the photocathode to cesium until an optimal amount of cesium is placed on the photocathode.
After Steps 116 and 118, the MCP/screen elements are assembled together in step 120. In Step 122, a wire of Ti/Ta is used as a final gas getter to remove any last impurities. After this is completed, the tube is tested in Step 126 after the finally tube assembly occurs in Step 126.
While the invention has been particularly shown and described by the foregoing detailed description, it will be understood by those skilled in the art that various other changes in form and detail may be made without departing from the spirit and scope of the invention.
Claims
  • 1. A method for manufacturing a photon detector and image generator comprising:
  • providing a screen operable to display a visual image based on a received signal;
  • scrubbing the screen;
  • providing an unfilmed microchannel plate having an input face and an output face;
  • baking the microchannel plate in a vacuum chamber;
  • forming a tube assembly by attaching the microchannel plate to the screen;
  • scrubbing the tube assembly using an electron gun; and,
  • attaching a photocathode, having an input side and an output side, to the assembly such that the output side of the photocathode faces the input face of the microchannel plate to form a final device, wherein the final device has a lifetime greater than 7,500 hours.
  • 2. The method of claim 1, further comprising the steps of:
  • heat cleaning the photocathode; and
  • activating the photocathode prior to step of attaching photocathode.
  • 3. The method of claim 1, wherein the tube assembly has a signal to noise ratio of at least 27.
  • 4. The method of claim 1, wherein the electron beam from the electron gun is defocused to prevent burned spots on the screen.
  • 5. The method of claim 2, wherein activating the photocathode comprising applying a layer of cesium and oxygen on top of the photocathode.
  • 6. An photon detector comprising:
  • a photocathode;
  • an unfilmed microchannel plate coupled to the photocathode, the microchannel plate undergoing a vacuum bake, an electron gun scrubbing, and a cesiation process to remove impurities from the microchannel plate such that the detector has a life of at least 7,500 hours.
  • 7. The detector of claim 6, wherein the photocathode is heat cleaned and activated.
  • 8. The detector of claim 6, wherein a screen is coupled to the microchannel plate.
  • 9. The detector of claim 6, wherein the screen undergoes an initial scrub and an electron gun scrubbing to remove impurities.
  • 10. The detector of claim 6, wherein the photocathode, microchannel plate, and the screen are sealed together as a unit.
  • 11. The detector of claim 10, wherein a getter flash is used to eliminate impurities from the unit.
  • 12. The detector of claim 6, wherein the detector has a signal to noise ratio of at least 27.
RELATED APPLICATIONS

This application is related to copending U.S. application Ser. No. 09/326,253, entitled "METHOD AND SYSTEM FOR ENHANCED VISION EMPLOYING AN IMPROVED IMAGE INTENSIFIER" (Attorney's Docket No. ET 99-07/021953.0259), copending U.S. application Ser. No. 09/326,252, entitled "METHOD AND SYSTEM FOR ENHANCED VISION EMPLOYING AN IMPROVED IMAGE INTENSIFIER AND REDUCED HALO" (Attorney's Docket No. ET 99-010/021953.0262), and copending U.S. application Ser. No. 09/326,148, entitled "METHOD AND SYSTEM FOR ENHANCED VISION EMPLOYING AN IMPROVED IMAGE INTENSIFIER WITH GATED POWER SUPPLY AND REDUCED HALO" (Attorney's Docket No. ET 99-11/021953.0263) and copending U.S. application Ser. No. 09/325,359, entitled "METHOD AND SYSTEM FOR ENHANCED VISION EMPLOYING AN IMPROVED IMAGE INTENSIFIER WITH GATED POWER SUPPLY" (Attorney's Docket No. ET 99-09/021953.0261).

US Referenced Citations (6)
Number Name Date Kind
4629486 Uchiyama et al. Dec 1986
4978885 White et al. Dec 1990
5314363 Murray May 1994
5408087 Thomas Apr 1995
5487689 Floryan et al. Jan 1996
5845189 Einstein Dec 1998