METHOD AND SYSTEM FOR MEASURING A WIDEBAND LOOP SENSITIVITY FOR AN ACOUSTIC TRANSDUCER

Information

  • Patent Application
  • 20190195835
  • Publication Number
    20190195835
  • Date Filed
    December 27, 2017
    7 years ago
  • Date Published
    June 27, 2019
    5 years ago
Abstract
A method and system is disclosed for measuring a wideband loop sensitivity SL(f) for an acoustic transducer in an acoustic probe. A pulse signal is employed as a wideband reference signal Vr(t); and, in a pulse-echo measurement a corresponding wideband echo signal Ve(t) is obtained. A normalized loop frequency response {circumflex over (X)}(f) for the acoustic transducer is defined as a ratio of a Fourier Transform of the Ve(t) to a Fourier Transform of the Vr(t). A wideband loop sensitivity SL(f) for the acoustic transducer is defined as an absolute square of the {circumflex over (X)}(f) in decibel.
Description
BACKGROUND
Technical Field

The present invention relates to a method and system for measuring a wideband loop sensitivity for an acoustic transducer in an acoustic probe.


Description of Related Art

An acoustic transducer is a key component in an acoustic imaging system. The technologies of acoustic imaging have been frequently employed to non-destructive testing, clinical diagnosis, and under water applications due to such advantages of acoustic imaging as non-invasive, non-ionization, real-time imaging, and cost-effectiveness. For example, acoustic imaging for clinical diagnosis, which is used for assessing the soft tissue structure and blood flow, is currently the most used clinical imaging modality after conventional X-ray radiography.



FIGS. 1A˜1B show a typical structure for an acoustic probe in a prior art. An acoustic probe 113 has a transducer array 117A which comprises a plurality of acoustic transducer 117. The number of acoustic transducer 117 in the transducer array 117A is greater than or equal to one.


In the prior art, a sensitivity is used to assess the characteristics of an acoustic transducer 117. FIGS. 2A˜2B show the method of sensitivity measurement for an acoustic transducer in an acoustic probe in a prior art. FIG. 2A shows a measuring arrangement for reference signal in a prior art. A sine burst generator 200 is arranged to output a sine burst signal at a specific frequency on an external 50-ohm load as a reference signal Vr(t) 204. FIG. 2B shows a measuring arrangement for an acoustic probe 113 in a prior art. The sine burst generator 200 is electrically coupled to an acoustic probe 113 which is immersed in a water bath 208 with an acoustic mirror 212. The acoustic probe 113 is driven by the sine burst generator 200 and transmits an acoustic sine burst wave 214 at the specific frequency. The acoustic probe 113 receives the reflected sine burst wave 218 from the acoustic mirror 212 and outputs an echo signal Ve(t) 224.



FIG. 3A shows a reference signal for an acoustic probe in a prior art. The reference signal Vr(t) 204 is a sine burst signal with a minimum-run of 15 cycles at a specific frequency; and, a peak-to-peak voltage of reference signal (Vppr) is obtained. FIG. 3B shows an echo signal for an acoustic probe in a prior art. The echo signal Ve(t) 224 is a sine burst signal at the specific frequency; and a peak-to-peak voltage of echo signal (Vppe) is obtained. A loop sensitivity for the acoustic transducer is calculated based upon the peak-to-peak voltage of echo signal (Vppe) to the peak-to-peak voltage of reference signal (Vppr).


The disadvantage for the prior art is that one specific frequency is adopted for measuring a loop sensitivity of an acoustic transducer 117 in an acoustic probe 113. In an early stage, traditional acoustic probe responds to narrow band frequency only. However, wideband acoustic probe has been developed due to rapid progress in the acoustic technology development in recent years. Therefore, there is a general need for a method and system for measuring wideband characteristics of an acoustic transducer such as normalized loop frequency response {circumflex over (X)}(f) and wideband loop sensitivity SL(f).


SUMMARY

The present invention discloses a method and system for measuring wideband characteristics of an acoustic transducer in an acoustic probe; the wideband characteristics include normalized loop frequency response {circumflex over (X)}(f) and wideband loop sensitivity SL(f).


A method for measuring a wideband loop sensitivity for an acoustic transducer in an acoustic probe is introduced according to the present invention.


A pulse generator of 50-ohm source impedance, which is used to generate unipolar pulse and/or bipolar pulse, electrically couples to an external 50-ohm load to obtain a wideband reference signal Vr(t) on the 50-ohm load and further obtain a function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t).


In a first and a second embodiment, the adopted pulse is a negative-going unipolar pulse and positive-going unipolar pulse, respectively; and in a third and a fourth embodiment, the adopted pulse is a negative-positive bipolar pulse and positive-negative bipolar pulse, respectively.


The pulse generator of 50-ohm source impedance electrically couples to an acoustic probe for measuring the wideband characteristics of an acoustic transducer. The acoustic probe is immersed into a water bath with an acoustic mirror. The acoustic probe is aligned so that the acoustic wave is normally incident to and reflected from the acoustic mirror. An acoustic transducer in the acoustic probe is driven by the pulse generator of 50-ohm source impedance and transmits a wideband acoustic wave toward the acoustic mirror. The transmitted wideband acoustic wave travels and reaches the acoustic mirror and is reflected backward to the acoustic transducer in the water bath. The acoustic transducer receives the reflected wideband acoustic wave and outputs a wideband echo signal Ve(t); and, a function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t) is obtained.


A normalized loop frequency response {circumflex over (X)}(f) of the acoustic transducer is defined as the ratio of the function {circumflex over (V)}e(f) to the function {circumflex over (V)}r(f); that is,









X
^



(
f
)




=
def






V
^

e



(
f
)





V
^

r



(
f
)




,




according to the present invention.


A wideband loop sensitivity SL(f) for the acoustic transducer is defined as the following:





SL(f)custom-character10 log|{circumflex over (X)}(f)|2,


according to the present invention.


Furthermore, obtain a plurality of wideband loop sensitivity SL(f) for each and all acoustic transducers in the acoustic probe by performing the measuring step for calculating the wideband loop sensitivity SL(f) sequentially or randomly over each and all acoustic transducers in the acoustic probe according to the present invention.


The important parameters of an acoustic transducer such as central or resonant frequency, frequency bandwidth, and averaged wideband loop sensitivity can be obtained from the wideband loop sensitivity SL(f).


The method for measuring the wideband loop sensitivity SL(f) for an acoustic transducer and method for measuring the plurality of wideband loop sensitivity SL(f) for each and all acoustic transducers in the acoustic probe are embedded in one of the firmware and the program memory; and, all data of measurement are stored in the storage and output to output devices that is electrically coupled to the control unit, according to the present invention.


A system for measuring a wideband loop sensitivity for an acoustic transducer in an acoustic probe is introduced according to the present invention. The system comprises a pulse generator, a signal processing unit, a transducer selector, and a control unit. The control unit further comprises a firmware, a program memory, and a storage.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A˜1B show a typical structure for an acoustic probe in a prior art.



FIG. 2A shows a measuring arrangement for reference signal in a prior art.



FIG. 2B shows a measuring arrangement for an acoustic probe in a prior art.



FIG. 3A shows a reference signal for an acoustic probe in a prior art.



FIG. 3B shows an echo signal for an acoustic probe in a prior art.



FIGS. 4A˜4B show a negative-going unipolar pulse used as a wideband reference signal and its energy spectrum for a first embodiment according to the present invention.



FIGS. 5A˜5B show a positive-going unipolar pulse used as a wideband reference signal and its energy spectrum for a second embodiment according to the present invention.



FIG. 6A shows a typical energy spectrum of wideband reference signal based on a unipolar pulse signal for a first and second embodiments according to the present invention.



FIG. 6B shows a typical frequency response for an acoustic transducer in the first and second embodiments according to the present invention.



FIGS. 7A˜7B show a negative-positive bipolar pulse used as a wideband reference signal and its energy spectrum for a third embodiment according to the present invention.



FIGS. 8A˜8B show a positive-negative bipolar pulse used as a wideband reference signal and its energy spectrum for a fourth embodiment according to the present invention.



FIG. 9A shows a typical energy spectrum of wideband reference signal based on a bipolar pulse signal for the third and fourth embodiments according to the present invention.



FIG. 9B shows a typical frequency response for an acoustic transducer in the third and fourth embodiments according to the present invention.



FIG. 10A shows a measuring arrangement for a wideband reference signal according to the present invention.



FIG. 10B shows a measuring arrangement for an acoustic probe according to the present invention.



FIG. 11A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a negative-going unipolar pulse for a first embodiment.



FIG. 11B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the negative-going unipolar pulse for the first embodiment.



FIG. 12A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a positive-going unipolar pulse for a second embodiment.



FIG. 12B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the positive-going unipolar pulse for the second embodiment.



FIG. 13A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a first bipolar pulse for a third embodiment.



FIG. 13B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the first bipolar pulse for the third embodiment.



FIG. 14A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a second bipolar pulse for a fourth embodiment.



FIG. 14B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the second bipolar pulse for the fourth embodiment.



FIG. 15 shows a flow chart for measuring a wideband loop sensitivity of an acoustic transducer according to the present invention.



FIG. 16A shows a measured curve of wideband loop sensitivity versus frequency that is obtained in a one-shot measurement for an acoustic transducer according to the present invention.



FIG. 16B shows a table of selected readings from the measured curve of wideband loop sensitivity versus frequency that is obtained in a one-shot measurement for an acoustic transducer according to the present invention.



FIG. 17 shows a system for measuring a wideband loop sensitivity of an acoustic transducer in an acoustic probe according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses a method and system for measuring wideband characteristics of an acoustic transducer in an acoustic probe; the wideband characteristics includes normalized loop frequency response {circumflex over (X)}(f) and wideband loop sensitivity SL(f). The “loop” means the pulse-echo mode in which an acoustic transducer transmits an acoustic wave out and a corresponding reflected echo wave is received by the same acoustic transducer.


A method for measuring a wideband loop sensitivity for an acoustic transducer in an acoustic probe is introduced according to the present invention.


A pulse signal is adopted as a wideband reference signal Vr(t) for measuring wideband characteristics of an acoustic transducer according to the present invention. There are four embodiments of adopted pulse signal used in the present invention, which include a negative-going unipolar pulse 400 for a first embodiment, a positive-going unipolar pulse 500 for a second embodiment, a negative-positive bipolar pulse 700 for a third embodiment, and a positive-negative bipolar pulse 800 for a fourth embodiment, according to the present invention.



FIGS. 4A˜4B show a negative-going unipolar pulse used as a wideband reference signal and its energy spectrum for a first embodiment according to the present invention. The wideband reference signal Vr(t) of negative-going unipolar pulse 400 is adopted in the first embodiment, and an energy spectrum of wideband reference signal 1/50|{circumflex over (V)}r(f)|2 of negative-going unipolar pulse 404 is obtained, in which the function {circumflex over (V)}r(f) is a Fourier Transform of the wideband reference signal Vr(t) of negative-going unipolar pulse 400.



FIGS. 5A˜5B show a positive-going unipolar pulse used as a wideband reference signal and its energy spectrum for a second embodiment according to the present invention. The wideband reference signal Vr(t) of positive-going unipolar pulse 500 is adopted in the second embodiment, and an energy spectrum of wideband reference signal 1/50|{circumflex over (V)}r(f)|2 of positive-going unipolar pulse 504 is obtained, in which the function {circumflex over (V)}r(f) is a Fourier Transform of the wideband reference signal Vr(t) of positive-going unipolar pulse 500.



FIG. 6A shows a typical energy spectrum of wideband reference signal based on a unipolar pulse signal for the first and second embodiments according to the present invention. A maximum energy spectrum density of the energy spectrum of wideband reference signal 404, 504 is at 0 Hz (f0). An upper bound frequency (f4) of the energy spectrum of wideband reference signal 404, 504 is a frequency where the energy spectrum density drops down to a certain decibel value (e.g., −6 dB) relative to the maximum energy spectrum density at 0 Hz (f0).



FIG. 6B shows a typical frequency response for an acoustic transducer in the first and second embodiments according to the present invention. A maximum frequency response of an acoustic transducer is usually at its central frequency or resonant frequency. The upper bound frequency (f3) and lower bound frequency (f2) for the frequency response of acoustic transducer 600 are frequencies where the frequency response drops down to a certain decibel value (e.g., −6 dB) relative to its maximum response located at between (f2) and (f3), respectively.


To assure a good signal-to-noise ratio for the measurement in the first and second embodiments, the requirement is that the upper bound frequency (f4) of the energy spectrum of wideband reference signal 404, 504 is greater than the upper bound frequency (f3) of the frequency response of the acoustic transducer 600, that is, f4>f3, according to the present invention.



FIGS. 7A˜7B show a negative-positive bipolar pulse used as a wideband reference signal and its energy spectrum for a third embodiment according to the present invention. The wideband reference signal Vr(t) of negative-positive bipolar pulse 700 is adopted in the third embodiment, and an energy spectrum of wideband reference signal 1/50|{circumflex over (V)}r(f)|2 of negative-positive bipolar pulse 704 is obtained, in which the function {circumflex over (V)}r(f) is a Fourier Transform of the wideband reference signal Vr(t) of negative-positive bipolar pulse 700.



FIGS. 8A˜8B show a positive-negative bipolar pulse used as a wideband reference signal and its energy spectrum for a fourth embodiment according to the present invention. The wideband reference signal Vr(t) of positive-negative bipolar pulse 800 is adopted in the fourth embodiment, and an energy spectrum of wideband reference signal 1/50|{circumflex over (V)}r(f)|2 of positive-negative bipolar pulse 804 is obtained, in which the function {circumflex over (V)}r(f) is a Fourier Transform of the wideband reference signal Vr(t) of positive-negative bipolar pulse 800.



FIG. 9A shows a typical energy spectrum of wideband reference signal based on a bipolar pulse signal for the third and fourth embodiments according to the present invention. The lower bound frequency (f1) and upper bound frequency (f4) of the energy spectrum of wideband reference signal 704, 804 are frequencies where the energy spectrum density drops down to a certain decibel value (e.g., −6 dB) relative to its maximum located at between (f1) and (f4), respectively.



FIG. 9B shows a typical frequency response for an acoustic transducer in the third and fourth embodiments according to the present invention. A maximum frequency response for the acoustic transducer is usually at its central frequency or resonant frequency. The upper bound frequency (f3) and lower bound frequency (f2) for the frequency response of acoustic transducer 900 are frequencies where the frequency response drops down to a certain decibel value (e.g., −6 dB) relative to its maximum response located at between (f2) and (f3), respectively.


To assure a good signal-to-noise ratio for the measurement in the third and fourth embodiments, the requirement is that the upper bound frequency (f4) of the energy spectrum of wideband reference signal 704, 804 is greater than the upper bound frequency (f3) of the frequency response of the acoustic transducer 900 and the lower bound frequency (f1) of the energy spectrum of wideband reference signal 704, 804 is smaller than the lower bound frequency (f2) of the frequency response of the acoustic transducer 900; that is, f4>f3>f2>f1, according to the present invention.



FIG. 10A shows a measuring arrangement for a wideband reference signal according to the present invention. An external 50-ohm load is electrically coupled to a pulse generator of 50-ohm source impedance 1000 that generates unipolar pulse and/or bipolar pulse to obtain a wideband reference signal Vr(t) 400, 500, 700, 800 on the 50-ohm load.



FIG. 10B shows a measuring arrangement for an acoustic probe according to the present invention. The pulse generator of 50-ohm source impedance 1000 electrically couples to an acoustic probe 113 for measuring the wideband characteristics of an acoustic transducer 117. The acoustic probe 113 is immersed into a water bath 208 with an acoustic mirror 212. The acoustic probe 113 is aligned so that the acoustic wave is normally incident to and reflected from the acoustic mirror 212. An acoustic transducer 117 in the acoustic probe 113 is driven by the pulse generator of 50-ohm source impedance 1000 and transmits a wideband acoustic wave toward the acoustic mirror 212. The transmitted wideband acoustic wave 1004 travels and reaches the acoustic mirror 212 in the water bath 208 and is reflected backward to the acoustic transducer 117. The acoustic transducer 117 receives the reflected wideband acoustic wave 1008 and outputs a wideband echo signal Ve(t) 1100, 1200, 1300, 1400 respectively in the four embodiments.



FIG. 11A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a negative-going unipolar pulse for a first embodiment. The wideband reference signal Vr(t) of negative-going unipolar pulse 400 is adopted in the first embodiment and a function {circumflex over (V)}r(f), that is a Fourier Transform of the wideband reference signal Vr(t) of negative-going unipolar pulse 400, is obtained. Meanwhile, an energy of reference signal (Er) for wideband reference signal Vr(t) of negative-going unipolar pulse 400 is calculated as one of a time-integral of the power of wideband reference signal and a frequency-integral of the energy spectrum density of wideband reference signal; that is,






E
r= 1/50∫Vr(t)2dt= 1/50∫|{circumflex over (V)}r(f)|2df.



FIG. 11B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the negative-going unipolar pulse for the first embodiment. A wideband echo signal Ve(t) based on negative-going unipolar pulse 1100 is obtained in the first embodiment and a function {circumflex over (V)}e(f), that is a Fourier Transform of the wideband echo signal Ve(t) based on negative-going unipolar pulse 1100, is further obtained. Meanwhile, an energy of echo signal (Ee) for wideband echo signal Ve(t) based on negative-going unipolar pulse 1100 is calculated as one of a time-integral of the power of wideband echo signal and a frequency-integral of the energy spectrum density of wideband echo signal; that is,






E
e= 1/50∫Ve(t)2dt= 1/50∫|{circumflex over (V)}e(f)|2df.



FIG. 12A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a positive-going unipolar pulse for a second embodiment. The wideband reference signal Vr(t) of positive-going unipolar pulse 500 is adopted in the second embodiment and a function {circumflex over (V)}r(f), that is a Fourier Transform of the wideband reference signal Vr(t) of positive-going unipolar pulse 500, is obtained. Meanwhile, an energy of reference signal (Er) for wideband reference signal Vr(t) of positive-going unipolar pulse 500 is calculated as one of a time-integral of the power of wideband reference signal and a frequency-integral of the energy spectrum density of wideband reference signal; that is,






E
r= 1/50∫Vr(t)2dt= 1/50∫|{circumflex over (V)}r(f)|2df.



FIG. 12B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the positive-going unipolar pulse for the second embodiment. A wideband echo signal Ve(t) based on positive-going unipolar pulse 1200 is obtained in the second embodiment and a function {circumflex over (V)}e(f), that is a Fourier Transform of the wideband echo signal Ve(t) based on positive-going unipolar pulse 1200, is further obtained. Meanwhile, an energy of echo signal (Ee) for wideband echo signal Ve(t) based on positive-going unipolar pulse 1200 is calculated as one of a time-integral of the power of wideband echo signal and a frequency-integral of the energy spectrum density of wideband echo signal; that is,






E
e= 1/50∫Ve(t)2dt= 1/50∫|{circumflex over (V)}e(f)|2df.



FIG. 13A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a first bipolar pulse for a third embodiment. The wideband reference signal Vr(t) of negative-positive bipolar pulse 700 is adopted in the third embodiment and a function {circumflex over (V)}r(f), that is a Fourier Transform of the wideband reference signal Vr(t) of negative-positive bipolar pulse 700, is obtained. Meanwhile, an energy of reference signal (Er) for wideband reference signal Vr(t) of negative-positive bipolar pulse 700 is calculated as one of a time-integral of the power of wideband reference signal and a frequency-integral of the energy spectrum density of wideband reference signal; that is,






E
r= 1/50∫Vr(t)2dt= 1/50∫|{circumflex over (V)}r(f)|2df.



FIG. 13B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the first bipolar pulse for the third embodiment. A wideband echo signal Ve(t) based on negative-positive bipolar pulse 1300 is obtained in the third embodiment and a function {circumflex over (V)}e(f), that is a Fourier Transform of the wideband echo signal Ve(t) based on negative-positive bipolar pulse 1300, is further obtained. Meanwhile, an energy of echo signal (Ee) for wideband echo signal Ve(t) based on negative-positive bipolar pulse 1300 is calculated as one of a time-integral of the power of wideband echo signal and a frequency-integral of the energy spectrum density of wideband echo signal; that is,






E
e= 1/50∫Ve(t)2dt= 1/50∫|{circumflex over (V)}e(f)|2df.



FIG. 14A shows an electrical waveform of a wideband reference signal and its Fourier Transform according to the present invention based on a second bipolar pulse for a fourth embodiment. The wideband reference signal Vr(t) of positive-negative bipolar pulse 800 is adopted in the fourth embodiment and a function {circumflex over (V)}r(f), that is a Fourier Transform of the wideband reference signal Vr(t) of positive-negative bipolar pulse 800, is obtained. Meanwhile, an energy of reference signal (Er) for wideband reference signal Vr(t) of positive-negative bipolar pulse 800 is calculated as one of a time-integral of the power of wideband reference signal and a frequency-integral of the energy spectrum density of wideband reference signal; that is,






E
r= 1/50∫Vr(t)2dt= 1/50∫|{circumflex over (V)}r(f)|2df.



FIG. 14B shows an electrical waveform of a wideband echo signal and its Fourier Transform according to the present invention based on the second bipolar pulse for the fourth embodiment. A wideband echo signal Ve(t) based on positive-negative bipolar pulse 1400 is obtained in the fourth embodiment and a function {circumflex over (V)}e(f), that is a Fourier Transform of the wideband echo signal Ve(t) based on positive-negative bipolar pulse 1400, is further obtained. Meanwhile, an energy of echo signal (Ee) for wideband echo signal Ve(t) based on positive-negative bipolar pulse 1400 is calculated as one of a time-integral of the power of wideband echo signal and a frequency-integral of the energy spectrum density of wideband echo signal; that is,






E
e= 1/50∫Ve(t)2dt= 1/50∫|{circumflex over (V)}e(f)|2df.


A normalized loop frequency response {circumflex over (X)}(f) for the acoustic transducer is defined as a ratio of the function {circumflex over (V)}e(f) which is a Fourier Transform of the wideband echo signal Ve(t) to the function {circumflex over (V)}r(f) which is a Fourier Transform of the wideband reference signal Vr(t); that is,









X
^



(
f
)




=
def






V
^

e



(
f
)





V
^

r



(
f
)




,




according to the present invention.


A wideband loop sensitivity SL(f) for the acoustic transducer is defined as an absolute square of the normalized loop frequency response {circumflex over (X)}(f) in decibel; that is, SL(f)custom-character10 log|{circumflex over (X)}(f)|2, according to the present invention.



FIG. 15 shows a flow chart for measuring a wideband loop sensitivity of an acoustic transducer according to the present invention.


The measuring step for obtaining and storing a function {circumflex over (V)}r(f) that is a Fourier Transform of a wideband reference signal Vr(t) comprises:

    • preparing a pulse generator and a signal processing unit;
    • generating a pulse to create a wideband signal as a reference signal;
    • obtaining a wideband reference signal Vr(t);
    • obtaining a function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t); and
    • storing the function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t) in one of a firmware and a program memory.


The pulse is one of a unipolar pulse and a bipolar pulse. The unipolar pulse is one of a negative-going pulse 400 and a positive-going pulse 500. The bipolar pulse is one of a negative-positive bipolar pulse 700 and a positive-negative bipolar pulse 800.


The measuring step for obtaining and storing a function {circumflex over (V)}e(f) that is a Fourier Transform of a wideband echo signal Ve(t) comprises:

    • coupling the pulse generator and the signal processing unit to an acoustic transducer;
    • generating a wideband acoustic wave from the acoustic transducer;
    • obtaining a wideband echo signal Ve(t) after the acoustic wave being reflected from an acoustic mirror;
    • obtaining a function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t); and
    • storing the function {circumflex over (V)}e(f) in a program memory.


The measuring step for defining a normalized loop frequency response {circumflex over (X)}(f) for the acoustic transducer comprises:

    • obtaining the function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t);
    • obtaining the function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t);
    • defining a normalized loop frequency response {circumflex over (X)}(f) as follows:









X
^



(
f
)




=
def






V
^

e



(
f
)





V
^

r



(
f
)




;




and

    • storing the normalized loop frequency response {circumflex over (X)}(f) in the program memory.


The measuring step for defining a wideband loop sensitivity SL(f) for the acoustic transducer comprises:

    • obtaining the normalized loop frequency response {circumflex over (X)}(f);
    • defining a wideband loop sensitivity SL(f) which is a function of frequency for the acoustic transducer as follows:





SL(f)custom-character10 log|{circumflex over (X)}(f)|2;

    • storing the wideband loop sensitivity SL(f) in a storage device; and
    • outputting data stored in the storage device.


Furthermore, obtain a plurality of wideband loop sensitivity SL(f) for each and all acoustic transducers in an acoustic transducer array; the measuring step for which comprises:

    • performing the measuring step for calculating the wideband loop sensitivity SL(f) sequentially or randomly over each and all acoustic transducers in an acoustic transducer array;
    • obtaining a plurality of wideband loop sensitivity SL(f);
    • storing the plurality of wideband loop sensitivity SL(f) in the storage device; and
    • outputting data stored in the storage device.


An example of measuring a wideband loop sensitivity of an acoustic transducer in an acoustic probe was performed according to the present invention and the results are shown in FIGS. 16A˜16B. FIG. 16A shows a measured curve of wideband loop sensitivity versus frequency that is obtained in a one-shot measurement for an acoustic transducer according to the present invention. From the measured curve of wideband loop sensitivity versus frequency, some important parameters of the acoustic transducer can be observed; for instance, the central frequency or resonant frequency is at the vicinity of 7.3 MHz, the fractional bandwidth over −6 dB is around 80%, and the averaged wideband loop sensitivity over −6 dB bandwidth is −49.9 dB.



FIG. 16B shows a table of selected readings from the measured curve of wideband loop sensitivity versus frequency that is obtained in a one-shot measurement for an acoustic transducer according to the present invention. The selected readings of loop sensitivity versus frequency include −60 dB at 4 MHz, −47 dB at 6 MHz, −47 dB at 8 MHz, −51 dB at 10 MHz, and −66 dB at 12 MHz etc.


The acoustic transducer under test in the example is in a transducer array of a commercial acoustic probe containing one hundred and ninety-two (192) acoustic transducers. In the measurement, a negative-going unipolar pulse with an amplitude of −75 volts and an upper bound frequency of 55 MHz was adopted as a wideband reference signal. The distance between the acoustic transducer and acoustic mirror is 20 mm. And, the material of the acoustic mirror is stainless-steel with an acoustic reflection coefficient of 0.93 in a water bath.



FIG. 17 shows a system for measuring a wideband loop sensitivity for an acoustic transducer in an acoustic probe according to the present invention. The system 1700 comprises a pulse generator 1701, a signal processing unit 1702, a transducer selector 1704, and a control unit 1706. The control unit 1706 further comprises a firmware 1707, a program memory 1708, and a storage 1709.


The control unit 1706 electrically couples to the pulse generator 1701, to the signal processing unit 1702, and to the external output devices 1730.


The pulse generator 1701 is electrically coupled to an acoustic transducer through the transducer selector 1704 for generating a pulse to create a wideband acoustic wave from the acoustic transducer. The pulse is one of a unipolar pulse and a bipolar pulse. The unipolar pulse is one of a negative-going pulse 400 and a positive-going pulse 500. The bipolar pulse is one of a negative-going pulse first and a positive-going pulse second 700 and a positive-going pulse first and a negative-going pulse second 800.


The reflected wideband echo wave is received by the acoustic transducer through the transducer selector 1704 to the signal processing unit 1702 for further processing. The transducer selector 1704 sequentially or randomly selects one transducer of a transducer array in an acoustic probe 113 for measuring.


The measuring method for obtaining a function {circumflex over (V)}r(f) that is a Fourier Transform of a wideband reference signal Vr(t) is embedded in one of the firmware 1707 and the program memory 1708 according to the present invention.


The measuring method for obtaining a function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t) is embedded in one of the firmware 1707 and the program memory 1708 according to the present invention.


The method for measuring a wideband loop sensitivity SL(f) for the acoustic transducer is embedded in one of the firmware 1707 and the program memory 1708 according to the present invention.


The method for measuring the plurality of wideband loop sensitivity SL(f) for each and all acoustic transducers in an acoustic transducer array is embedded in one of the firmware 1707 and the program memory 1708 according to the present invention.


All data of measurement are stored in the storage 1709 and can be output to the output devices 1730 according to the present in invention.


The present invention discloses a method and system for measuring wideband characteristics of an acoustic transducer in an acoustic probe; the wideband characteristics includes normalized loop frequency response {circumflex over (X)}(f) and wideband loop sensitivity SL(f). The important parameters of an acoustic transducer such as central frequency or resonant frequency, frequency bandwidth, and averaged wideband loop sensitivity can be obtained from wideband loop sensitivity SL(f).


While several embodiments have been described by way of example, it will be apparent to those skilled in the art that various modifications may be configured without departing from the spirit of the present invention. Such modifications are all within the scope of the present invention, as defined by the appended claims.


Numerical system




  • 113 acoustic probe


  • 117A transducer array


  • 117 acoustic transducer


  • 200 sine burst generator


  • 204 reference signal


  • 208 water bath


  • 212 acoustic mirror


  • 214 transmitted acoustic sine burst wave


  • 218 reflected sine burst wave


  • 224 echo signal


  • 400 wideband reference signal of negative-going unipolar pulse


  • 404 energy spectrum of wideband reference signal of negative-going unipolar pulse


  • 500 wideband reference signal of positive-going unipolar pulse


  • 504 energy spectrum of wideband reference signal of positive-going unipolar pulse


  • 600 frequency response of acoustic transducer


  • 700 wideband reference signal of negative-positive bipolar pulse


  • 704 energy spectrum of wideband reference signal of negative-positive bipolar pulse


  • 800 wideband reference signal of positive-negative bipolar pulse


  • 804 energy spectrum of wideband reference signal of positive-negative bipolar pulse


  • 900 frequency response of acoustic transducer


  • 1000 pulse generator


  • 1004 transmitted wideband acoustic wave


  • 1008 reflected wideband acoustic wave


  • 1100 wideband echo signal based on negative-going unipolar pulse


  • 1200 wideband echo signal based on positive-going unipolar pulse


  • 1300 wideband echo signal based on negative-positive bipolar pulse


  • 1400 wideband echo signal based on positive-negative bipolar pulse


  • 1700 system


  • 1701 pulse generator


  • 1702 signal processing unit


  • 1704 transducer selector


  • 1706 control unit


  • 1707 firmware


  • 1708 program memory


  • 1709 storage


  • 1730 output devices



Notation
Reference Signal



  • (Vppr) peak-to-peak voltage of reference signal

  • (Er) energy of reference signal; Er= 1/50∫Vr(t)2dt= 1/50∫|{circumflex over (V)}r(f)|2df

  • (BWr) bandwidth of reference signal;

  • (Dr) energy density of reference signal;








D
r

=


E
r


B






W
r







  • Vr(t) wideband reference signal;

  • {circumflex over (V)}r(f) Fourier Transform of the wideband reference signal Vr(t);

  • 1/50|{circumflex over (V)}r(f)|2 energy spectrum of wideband reference signal;



Echo Signal



  • (Vppe) peak-to-peak voltage of echo signal;

  • (Ee) energy of echo signal; Ee= 1/50∫Ve(t)2dt= 1/50∫|{circumflex over (V)}e(f)|2df

  • (BWe) bandwidth of echo signal;

  • (De) energy density of echo signal;








D
e

=


E
e


B






W
e







  • Ve(t) wideband echo signal;

  • {circumflex over (V)}e(f) Fourier Transform of the wideband echo signal Ve(t);

  • 1/50|{circumflex over (V)}e(f)|2 energy spectrum of wideband echo signal;



Definition



  • {circumflex over (X)}(f) normalized loop frequency response










X
^



(
f
)




=
def






V
^

e



(
f
)





V
^

r



(
f
)




;



X
^



(
f
)




=
def






V
^

e



(
f
)


/



V
^

r



(
f
)




;




  • X(t) normalized loop time response; Inverse Fourier Transform of the {circumflex over (X)}(f)






X(t)custom-characterInverse Fourier Transform of the {circumflex over (X)}(f)

  • SL(f) wideband loop sensitivity is defined as an absolute square of the {circumflex over (X)}(f) in decibel;





SL(f)custom-character10 log|{circumflex over (X)}(f)|2

  • (SLC) characteristic loop sensitivity







S
LC



=
def



10


log


(


D
e


D
r


)







  • G(t) Inverse Fourier Transform of the √{square root over ({circumflex over (X)}(f))};







G(t)=Inverse Fourier Transform of the √{square root over ({circumflex over (X)}(f))} self-deconvolution of the X(t); G(t)=Self-deconvolution of the X(t)

  • B(t) an optimum drive signal on energy efficiency basis for the acoustic transducer;





B(t)custom-characterα*G(t), wherein a coefficient α is determined to multiply the function G(t).

Claims
  • 1. A method for measuring a wideband loop sensitivity for an acoustic transducer, the measuring step comprising: generating a pulse to create a wideband signal as a reference signal;obtaining a wideband reference signal Vr(t); andobtaining a function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t).
  • 2. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 1, wherein the pulse is one of a unipolar pulse and a bipolar pulse.
  • 3. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 2, wherein the unipolar pulse is one of a negative-going pulse and a positive-going pulse.
  • 4. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 2, wherein the bipolar pulse is a negative-going pulse first and a positive-going pulse second.
  • 5. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 2, wherein the bipolar pulse is a positive-going pulse first and a negative-going pulse second.
  • 6. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 1, further comprising: storing the function {circumflex over (V)}r(f) in one of a firmware and a program memory.
  • 7. A method for measuring a wideband loop sensitivity for an acoustic transducer, the measuring step comprising: generating a wideband acoustic wave from the acoustic transducer;obtaining a wideband echo signal Ve(t) after the wideband acoustic wave being reflected from an acoustic mirror; andobtaining a function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t).
  • 8. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 7, further comprising: obtaining a function t that is a Fourier Transform of a wideband reference signal Vr(t); and defining a normalized loop frequency response {circumflex over (X)}(f) for the acoustic transducer:
  • 9. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 8, further comprising: defining a wideband loop sensitivity SL(f) which is a function of frequency for the acoustic transducer: SL(f)10 log|{circumflex over (X)}(f)|2.
  • 10. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 9, further comprising: storing the wideband loop sensitivity SL(f) in a storage device.
  • 11. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 10, further comprising: outputting data stored in the storage device.
  • 12. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 10, wherein the measuring step for calculating the wideband loop sensitivity SL(f) is performed sequentially or randomly over each and all acoustic transducers in an acoustic transducer array.
  • 13. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 12, further comprising: obtaining a plurality of wideband loop sensitivity SL(f); andstoring the plurality of wideband loop sensitivity SL(f) in the storage device.
  • 14. A method for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 13, further comprising: outputting data stored in the storage device.
  • 15. A method for measuring a wideband loop sensitivity for an acoustic transducer, the measuring step comprising: generating a pulse to create a wideband signal as a reference signal;obtaining a wideband reference signal Vr(t);obtaining a function {circumflex over (V)}r(f) that is a Fourier Transform of the wideband reference signal Vr(t);generating a wideband acoustic wave from the acoustic transducer;obtaining a wideband echo signal Ve(t) after the wideband acoustic wave being reflected from an acoustic mirror;obtaining a function {circumflex over (V)}e(f) that is a Fourier Transform of the wideband echo signal Ve(t);defining a normalized loop frequency response {circumflex over (X)}(f) for the acoustic transducer as follows:
  • 16. A method for measuring a wideband loop sensitivity for an acoustic transducer, as claimed in claim 15, the measuring step further comprising: defining a wideband loop sensitivity SL(f) which is a function of frequency for the acoustic transducer as follows: SL(f)10 log|{circumflex over (X)}(f)|2.
  • 17. A system for measuring a wideband loop sensitivity for an acoustic transducer, comprising: a pulse generator electrically coupled to an acoustic transducer for generating a pulse to create a wideband acoustic wave; anda control unit electrically coupled to the pulse generator.
  • 18. A system for measuring a wideband loop sensitivity for an acoustic transducer as claimed in claim 17, wherein the control unit further comprising a firmware and a program memory.