1. Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMMS), and more particularly, to methods and systems for packaging MEMS devices.
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
One aspect of an electromechanical system device package includes a substrate, an electromechanical device formed on the substrate, a backplane, and a seal positioned proximate to a perimeter of the electromechanical device. In some embodiments the seal is in contact with the substrate and the backplane. In some embodiments the seal comprises glass.
In another aspect a method of sealing an electromechanical system device package includes forming a seal between a substrate and a backplane, wherein the substrate comprises an electromechanical device formed thereon and the seal is formed proximate to a perimeter of the electromechanical device, and wherein the seal comprises glass; and attaching the substrate, the seal, and the backplane, thereby encapsulating the electromechanical device.
In another aspect a system for sealing an electromechanical system device package includes a substrate, an electromechanical device formed on the substrate, a backplane and seal means positioned proximate to a perimeter of the electromechanical device. In some embodiments the seal means is in contact with the substrate and the backplane. In some embodiments the seal means includes glass.
A plurality of embodiments of MEMS device package structures including improved sealant structures are described below. In one embodiment, the MEMS device is packaged between a backplate and a substrate which are held together by a primary seal. In one embodiment, the primary seal includes a chemically reactant getter. As is known in the art, a getter is a substance that captures or binds another substance by absorption, adsorption, or chemical reaction for example. A chemically reactant getter is a getter configured to chemically react with a gettered substance as opposed to absorbing or adsorbing a gettered substance. In other embodiments, the package structure includes a secondary seal disposed along an outer periphery of the primary seal. In one embodiment, the secondary seal includes a hydrophobic material, for example. In yet another embodiment, the package structure comprises a getter positioned proximate an inner periphery of the seal and is configured to getter water vapor or contaminants attempting to enter the interior of the package structure. In the described embodiments, no further getter or desiccant may be necessary to meet the desired lifetime attributes of the packaged device, thereby allowing for reduced package dimensions and cost.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a pixel array 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
The moving parts of a MEMS device, such as an interferometric modulator array, preferably have a protected space in which to move. Packaging techniques for a MEMS device will be described in more detail below. A schematic of a basic package structure for a MEMS device, such as an interferometric modulator array, is illustrated in
The substrate 72 and the backplane 74 are joined by a seal 78 to form the package structure 70, such that the interferometric modulator array 76 is encapsulated by the substrate 72, backplane 74, and the seal 78. This forms a cavity 79 between the backplane 74 and the substrate 72. The seal 78 may be a non-hermetic seal, such as a conventional epoxy-based adhesive. In other embodiments, the seal 78 may be a polyisobutylene (sometimes called butyl rubber, and other times PIB), o-rings, polyurethane, thin film metal weld, liquid spin-on glass, solder, polymers, or plastics, among other types of seals that may have a range of permeability of water vapor of about 0.2-4.7 g mm/m2 kPa day. In still other embodiments, the seal 78 may be a hermetic seal and may comprise, for example, metals, welds, and glass frits. Methods of hermetic sealing comprise, for example, metal or solder thin film or preforms, laser or resistive welding techniques, and anodic bonding techniques, wherein the resulting package structure may or may not require a desiccant to achieve the desired internal package requirements.
The seal 78 may be implemented as a closed seal or an open seal, and may be applied or formed on the substrate 72, backplane 74, or both the substrate and backplane 74 in a method of packaging the interferometric modulator array 76. The seal 78 may be applied through simple in-line manufacturing processes and may have advantages for lower temperature processes, whereas the techniques of welding and soldering may require very high temperature processes that can damage the package structure 20, are relatively expensive. In some cases, localized heating methods can be used to reduce the process temperatures and yield a viable process solution.
In some embodiments, the package structure 70 includes a getter such as a desiccant 80 configured to reduce moisture within the cavity 79. The skilled artisan will appreciate that a desiccant may not be necessary for a hermetically sealed package, but may be desirable to control moisture resident within the package. In one embodiment, the desiccant 80 is positioned between the interferometric modulator array 76 and the backplane 74. Desiccants may be used for packages that have either hermetic or non-hermetic seals. In packages having a hermetic seal, desiccants are typically used to control moisture resident within the interior of the package. In packages having a non-hermetic seal, a desiccant may be used to control moisture moving into the package from the environment. Generally, any substance that can trap moisture while not interfering with the optical properties of the interferometric modulator array may be used as the desiccant 80. Suitable getter and desiccant materials include, but are not limited to, zeolites, molecular sieves, surface adsorbents, bulk adsorbents, and chemical reactants.
The desiccant 80 may be in different forms, shapes, and sizes. In addition to being in solid form, the desiccant 80 may alternatively be in powder form. These powders may be inserted directly into the package or they may be mixed with an adhesive for application. In an alternative embodiment, the desiccant 80 may be formed into different shapes, such as cylinders, rings, or sheets, before being applied inside the package.
The skilled artisan will understand that the desiccant 80 can be applied in different ways. In one embodiment, the desiccant 80 is deposited as part of the interferometric modulator array 76. In another embodiment, the desiccant 80 is applied inside the package 70 as a spray or a dip coat.
The substrate 72 may be a semi-transparent or transparent substance capable of having thin film, MEMS devices built upon it. Such transparent substances include, but are not limited to, glass, plastic, and transparent polymers. The interferometric modulator array 76 may comprise membrane modulators or modulators of the separable type. The skilled artisan will appreciate that the backplane 74 may be formed of any suitable material, such as glass, metal, foil, polymer, plastic, ceramic, or semiconductor materials (e.g., silicon).
The packaging process may be accomplished in a vacuum, pressure between a vacuum up to and including ambient pressure, normal atmospheric pressure conditions, or pressure higher than ambient pressure. The packaging process may also be accomplished in an environment of varied and controlled high or low pressure during the sealing process. There may be advantages to packaging the interferometric modulator array 76 in a completely dry environment, but it is not necessary. Similarly, the packaging environment may be of an inert gas at ambient conditions. Packaging at ambient conditions allows for a lower cost process and more potential for versatility in equipment choice because the device may be transported through ambient conditions without affecting the operation of the device.
Generally, it is desirable to minimize the permeation of water vapor into the package structure 70, and thus control the environment in the cavity 79 of the package structure 70 and hermetically seal it to ensure that the environment remains constant. When the humidity or water vapor level within the package exceeds a level beyond which surface tension from the water vapor becomes higher than the restoration force of a movable element (not shown) in the interferometric modulator array 76, the movable element may become permanently adhered to the surface. There is thus a need to reduce the moisture level within the package.
In embodiments of the package structure 70 where the seal 78 includes an adhesive, the adhesive component alone may not act as a suitable environmental barrier because it eventually allows water vapor and/or contaminates to permeate into the cavity 79 of the package structure 70. Accordingly, certain embodiments of a package structure 70 include a getter inside the package structure 70 or incorporated into the seal 78. The getter may be configured to getter contaminant gases that are outgassed from the interferometric modulator array 76 or packaging components after the package structure 70 is assembled, such as substances outgassed or evaporated from an adhesive in the seal 78 into the cavity 79 while the adhesive is curing. The getter may be a chemically reactant getter configured to chemically react with specific substances, or the getter may be configured to physical transform in the presence of a specific substance, such as water. For example, the getter may comprise a desiccant such as zeolites, configured to physically transform in contact with water or water vapor. In other embodiments the getter is positioned inside the package structure 70 proximate an inner perimeter of the seal 78 so as to getter water vapor or contaminants inside the package structure 70 as they are released from components inside the cavity 79, or substances that have permeated through the seal 78. In yet another embodiment, the package structure 70 includes a secondary seal applied to the outside of the seal 78, wherein the secondary seal comprises a hydrophobic material configured to keep water vapor out of the package structure 70, or reduce the rate of permeation of water vapor into the package structure 70.
In one embodiment of a package structure 70, the seal 78 comprises a chemically reactant getter configured to getter substances attempting to permeate the seal 78 and enter the package structure 70, and/or substances within the package structure 78 that were present at the time of manufacture or assembly, or released during or subsequent to manufacture or assembly. The chemically reactant getter may include, for example, calcium oxide, strontium (Sr), strontium oxide, and aluminum complexes. In certain embodiments, the seal 78 comprises a mixture of the chemically reactant getter and an adhesive. In some embodiments, the seal 78 includes a sufficient amount of getter to getter or capture substantially all of the substances outgassed or released from the sealant components during manufacture or assembly, such as substances outgassed from an adhesive material while curing. The amount of getter included in the seal may be limited to such amount so as not to adversely effect the permeability of the seal, yet still capture the substances released from the sealant components during manufacture or assembly of the package structure 70.
Another embodiment of a package structure 800, as illustrated in cross-section in
In certain embodiments, the secondary seal 804 comprises a low permeation rate adhesive or a hydrophobic material, such as PTFE or related compounds. In some embodiments, the secondary seal 804 comprises polyisobutylene (sometimes called butyl rubber, and other times PIB), o-rings, polyurethane, thin film metal weld, liquid spin-on glass, solder, polymers, or plastics, or combinations thereof.
In other embodiments, the secondary seal 804 comprises a low-cost sealant material regardless of permeation attributes and is configured to act in concert with the primary seal 802 to reduce the permeation rate of water vapor or other contaminants into the cavity 79 of the package structure 800. Embodiments of a method of applying or forming the secondary seal 804 may comprise, for example, dispensing or printing a bead of sealant material, spray-on, placement of preform, printing, or other methods known to those skilled in the art.
In embodiments where the primary seal 802 comprises a getter such as a desiccant, the permeation rate of water vapor through the primary seal 802 may increase rapidly as the desiccant approaches or reaches its maximum capacity to absorb or react with water molecules. The secondary seal 804 advantageously reduces this water vapor permeation rate, thereby extending the life of the interferometric modulator array 76 within the package structure 800. Although the package structure 800 is illustrated in
The getter 902 as illustrated in
In embodiments of the package structure 900 wherein the seal 78 comprises a metal seal, for example, contaminant substances may be outgassed or released due to a chemical reaction during formation of the seal. For example, where the seal 78 comprises a solder, an oxide may be released during application or formation of the seal, or assembly of the package structure 900. Accordingly, the getter 902 is preferably configured to getter the substances outgassed or released from the seal during application or formation of the seal, or assembly of the package structure 900.
In certain embodiments, as illustrated in
In one embodiment, the getter may include calcium oxide, or aluminosilicate-structured minerals such as sodium aluminosilicate. In another embodiment, the getter may include microporous silicate-structured minerals. It will be appreciated that active components other than zeolites that can act as absorbing filters on the molecular level can also be implemented as the getter. The adhesives discussed above may include an adhesive with low outgassing numbers, or an adhesive with various outgassing numbers.
The skilled artisan will understand that the amount of material for the seal 78 or the amount of getter or hydrophobic material may depend on the estimated amount of moisture or contaminant gases that will need to be removed from the package structure during its desired operational lifetime. The amount of material for the seal 78, or amount of getter or hydrophobic material, either incorporated into the seal 78 or inside or outside the cavity 79 of the package structure 70 also depends not only on the amount of moisture or contaminant gases inside the package structure 20 when the package is formed, but also the permeation rate of the seal 78 and the outgassing potential of the package components.
In certain embodiments, the seal 78 is preferably formed to a thickness in a range of about 100-300 Å (using thin films, for example), about 10-30 μm, or about 50 μm. The skilled artisan will appreciate that the thickness of the seal 78 and the amount of getter incorporated into the seal 78 or the cavity 79 of the package structure 70, or the secondary seal proximate the outer periphery of the seal 78, will depend on various factors, such as the desired lifetime of the packaged device, the material components of the seal 78, the amount of contaminants and moisture that are estimated to permeate into the package structure 70 during the lifetime, the anticipated humidity level of the ambient environment for the package structure 70, and whether an additional getter or desiccant 80 is included within the package structure 70.
As discussed above, the package structures may or may not include the desiccant 80 described in connection with
In some embodiments, the getter comprises zeolites. Zeolites may absorb water molecules at relatively high temperatures. Zeolites can trap moisture and contaminant gases in their pores. The skilled artisan will understand that zeolites having deferent pore sizes can be selected for the seal 78 material to absorb different contaminants. In some embodiments, the getter includes zeolites that are selected to absorb contaminant molecules, such as aromatic branched-chain hydrocarbons that have critical diameters of up to ten angstroms. In another embodiment, zeolites having pore sizes between two and three angstroms may be selected to abort contaminant molecules having diameters of less than two angstroms, such as hydrogen and moisture molecules. In still another embodiment, zeolites having pore sizes of fifty angstroms can be used to absorb nitrogen and carbon dioxide molecules. The skilled artisan will appreciate that the seal 78 and getters or hydrophobic materials used inside and outside the package structure may comprise a mixture of zeolites or other tailored or functionalized getter materials having various pore sizes.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 11/102,554 entitled, “METHOD AND SYSTEM FOR PACKAGING MEMS DEVICES WITH INCORPORATED GETTER,” and filed on Apr. 8, 2005, which claims priority to U.S. Provisional Patent Application No. 60/613,476 entitled, “METHOD AND DEVICE FOR PACKAGING INTERFEROMETRIC MODULATORS WITH HERMETIC BARRIER,” and filed on Sep. 27, 2004. The disclosure of each of the above-described applications is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2534846 | Ambrose et al. | Dec 1950 | A |
3439973 | Bernt et al. | Apr 1969 | A |
3443854 | Herbert | May 1969 | A |
3653741 | Alvin | Apr 1972 | A |
3656836 | Baudoin et al. | Apr 1972 | A |
3704806 | Plachenov et al. | Dec 1972 | A |
3813265 | Marks | May 1974 | A |
3900440 | Ohara et al. | Aug 1975 | A |
3955880 | Lierke | May 1976 | A |
4036360 | Deffeyes | Jul 1977 | A |
4074480 | Burton | Feb 1978 | A |
4099854 | Decker et al. | Jul 1978 | A |
4228437 | Shelton | Oct 1980 | A |
4310220 | Kuwagaki et al. | Jan 1982 | A |
4377324 | Durand et al. | Mar 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4400870 | Islam | Aug 1983 | A |
4403248 | Te Velde | Sep 1983 | A |
4431691 | Greenlee | Feb 1984 | A |
4441791 | Hornbeck | Apr 1984 | A |
4445050 | Marks | Apr 1984 | A |
4459182 | Te Velde | Jul 1984 | A |
4482213 | Piliavin et al. | Nov 1984 | A |
4500171 | Penz et al. | Feb 1985 | A |
4519676 | Te Velde | May 1985 | A |
4531126 | Sadones | Jul 1985 | A |
4552806 | Hayashi et al. | Nov 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4662746 | Hornbeck | May 1987 | A |
4663083 | Marks | May 1987 | A |
4681403 | Te Velde et al. | Jul 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4748366 | Taylor | May 1988 | A |
4786128 | Birnbach | Nov 1988 | A |
4790635 | Apsley | Dec 1988 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4950344 | Glover et al. | Aug 1990 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4977009 | Anderson et al. | Dec 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5022745 | Zayhowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5044736 | Jaskie et al. | Sep 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5075796 | Schildkraut et al. | Dec 1991 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5091983 | Lukosz | Feb 1992 | A |
5095375 | Bolt | Mar 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5124834 | Cusano et al. | Jun 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142414 | Koehler | Aug 1992 | A |
5153771 | Link et al. | Oct 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5179274 | Sampsell | Jan 1993 | A |
5192395 | Boysel et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5212582 | Nelson | May 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5231532 | Magel et al. | Jul 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5244707 | Shores | Sep 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5293511 | Poradish et al. | Mar 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5304419 | Shores | Apr 1994 | A |
5305640 | Boysel et al. | Apr 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5381253 | Sharp et al. | Jan 1995 | A |
5401983 | Jokerst et al. | Mar 1995 | A |
5411769 | Hornbeck | May 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5459602 | Sampsell | Oct 1995 | A |
5459610 | Bloom et al. | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5489952 | Gove et al. | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5500635 | Mott | Mar 1996 | A |
5500761 | Goossen et al. | Mar 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5526688 | Boysel et al. | Jun 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5547823 | Murasawa et al. | Aug 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5550373 | Cole et al. | Aug 1996 | A |
5551293 | Boysel et al. | Sep 1996 | A |
5552924 | Tregilgas | Sep 1996 | A |
5553440 | Bulger et al. | Sep 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5563398 | Sampsell | Oct 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579149 | Moret et al. | Nov 1996 | A |
5581272 | Conner et al. | Dec 1996 | A |
5583688 | Hornbeck | Dec 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5591379 | Shores | Jan 1997 | A |
5597736 | Sampsell | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606441 | Florence et al. | Feb 1997 | A |
5608468 | Gove et al. | Mar 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5610624 | Bhuva | Mar 1997 | A |
5610625 | Sampsell | Mar 1997 | A |
5619059 | Li et al. | Apr 1997 | A |
5619365 | Rhoads et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5641713 | Kyle | Jun 1997 | A |
5646729 | Koskinen et al. | Jul 1997 | A |
5646768 | Kaeriyama | Jul 1997 | A |
5650881 | Hornbeck | Jul 1997 | A |
5654741 | Sampsell et al. | Aug 1997 | A |
5657099 | Doherty et al. | Aug 1997 | A |
5659374 | Gale, Jr. et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5703710 | Brinkman et al. | Dec 1997 | A |
5710656 | Goossen | Jan 1998 | A |
5739945 | Tayebati | Apr 1998 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5784190 | Worley | Jul 1998 | A |
5784212 | Hornbeck | Jul 1998 | A |
5815141 | Phares | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | Goossen | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5842088 | Thompson | Nov 1998 | A |
5843140 | Strojnik | Dec 1998 | A |
5853662 | Watanabe | Dec 1998 | A |
5912758 | Knipe et al. | Jun 1999 | A |
5939785 | Klonis et al. | Aug 1999 | A |
5986796 | Miles | Nov 1999 | A |
6028690 | Carter et al. | Feb 2000 | A |
6038056 | Florence et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6061075 | Nelson et al. | May 2000 | A |
6099132 | Kaeriyama | Aug 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6129603 | Sun et al. | Oct 2000 | A |
6147790 | Meier et al. | Nov 2000 | A |
6160833 | Floyd et al. | Dec 2000 | A |
6180428 | Peeters et al. | Jan 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6232936 | Gove et al. | May 2001 | B1 |
6238755 | Harvey et al. | May 2001 | B1 |
6282010 | Sulzbach et al. | Aug 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6323982 | Hornbeck | Nov 2001 | B1 |
6355328 | Baratuci et al. | Mar 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6455927 | Glenn et al. | Sep 2002 | B1 |
6465355 | Horsley | Oct 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6467139 | Tanaka | Oct 2002 | B1 |
6473274 | Maimone et al. | Oct 2002 | B1 |
6480177 | Doherty et al. | Nov 2002 | B2 |
6489670 | Peterson et al. | Dec 2002 | B1 |
6495895 | Peterson et al. | Dec 2002 | B1 |
6496122 | Sampsell | Dec 2002 | B2 |
6538312 | Peterson et al. | Mar 2003 | B1 |
6545335 | Chua et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6552840 | Knipe | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6582789 | Sumi | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6600201 | Hartwell et al. | Jul 2003 | B2 |
6603182 | Low et al. | Aug 2003 | B1 |
6606175 | Sampsell et al. | Aug 2003 | B1 |
6621134 | Zurn | Sep 2003 | B1 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6627814 | Stark | Sep 2003 | B1 |
6630786 | Cummings et al. | Oct 2003 | B2 |
6632698 | Ives | Oct 2003 | B2 |
6643069 | Dewald | Nov 2003 | B2 |
6646709 | Matsumoto | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6661084 | Peterson et al. | Dec 2003 | B1 |
6666561 | Blakley | Dec 2003 | B1 |
6674159 | Peterson et al. | Jan 2004 | B1 |
6674562 | Miles et al. | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6709750 | Pohlmann et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6741384 | Martin et al. | May 2004 | B1 |
6741503 | Farris et al. | May 2004 | B1 |
6743656 | Orcutt et al. | Jun 2004 | B2 |
6747785 | Chen et al. | Jun 2004 | B2 |
6775174 | Huffman et al. | Aug 2004 | B2 |
6778155 | Doherty et al. | Aug 2004 | B2 |
6791660 | Hayashi et al. | Sep 2004 | B1 |
6794119 | Miles | Sep 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6819469 | Koba | Nov 2004 | B1 |
6822628 | Dunphy et al. | Nov 2004 | B2 |
6829132 | Martin et al. | Dec 2004 | B2 |
6838309 | McCann | Jan 2005 | B1 |
6853129 | Cummings et al. | Feb 2005 | B1 |
6855610 | Tung et al. | Feb 2005 | B2 |
6859218 | Luman et al. | Feb 2005 | B1 |
6861277 | Monroe et al. | Mar 2005 | B1 |
6862022 | Slupe | Mar 2005 | B2 |
6862029 | D'souza et al. | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
6872984 | Leung | Mar 2005 | B1 |
6912078 | Kudrle et al. | Jun 2005 | B2 |
6999225 | Lin et al. | Feb 2006 | B2 |
7012726 | Miles | Mar 2006 | B1 |
7012732 | Miles | Mar 2006 | B2 |
7015885 | Novotny et al. | Mar 2006 | B2 |
7034984 | Pan et al. | Apr 2006 | B2 |
7042643 | Miles | May 2006 | B2 |
7060895 | Kothari et al. | Jun 2006 | B2 |
7119945 | Kothari et al. | Oct 2006 | B2 |
7122937 | Hatakeyama et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126741 | Wagner et al. | Oct 2006 | B2 |
7138984 | Miles | Nov 2006 | B1 |
7164520 | Palmateer et al. | Jan 2007 | B2 |
7307776 | Miles et al. | Dec 2007 | B2 |
7317281 | Hayashi et al. | Jan 2008 | B2 |
7327510 | Cummings et al. | Feb 2008 | B2 |
7381583 | Ebel et al. | Jun 2008 | B1 |
7385748 | Miles | Jun 2008 | B2 |
RE40436 | Kothari et al. | Jul 2008 | E |
7471444 | Miles | Dec 2008 | B2 |
7532385 | Lin | May 2009 | B2 |
8287995 | Shibuya et al. | Oct 2012 | B2 |
8379392 | Bita et al. | Feb 2013 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20020000649 | Tilmans et al. | Jan 2002 | A1 |
20020056898 | Lopes et al. | May 2002 | A1 |
20020056900 | Liu et al. | May 2002 | A1 |
20020075551 | Daneman | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020121909 | Sato et al. | Sep 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020146200 | Kudrle et al. | Oct 2002 | A1 |
20020160583 | Song | Oct 2002 | A1 |
20020187254 | Ghosh | Dec 2002 | A1 |
20030010808 | Uhland et al. | Jan 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030053233 | Felton | Mar 2003 | A1 |
20030054588 | Patel et al. | Mar 2003 | A1 |
20030062186 | Boroson et al. | Apr 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030075794 | Felton et al. | Apr 2003 | A1 |
20030103185 | Kim et al. | Jun 2003 | A1 |
20030104651 | Kim et al. | Jun 2003 | A1 |
20030108306 | Whitney et al. | Jun 2003 | A1 |
20030143423 | McCormick et al. | Jul 2003 | A1 |
20030155643 | Freidhoff | Aug 2003 | A1 |
20030170966 | Lutz | Sep 2003 | A1 |
20030183916 | Heck et al. | Oct 2003 | A1 |
20030184412 | Gorrell | Oct 2003 | A1 |
20030202264 | Weber et al. | Oct 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20030214007 | Tao et al. | Nov 2003 | A1 |
20040048037 | Klausmann et al. | Mar 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040061207 | Ding | Apr 2004 | A1 |
20040061492 | Lopes et al. | Apr 2004 | A1 |
20040066258 | Cohn et al. | Apr 2004 | A1 |
20040070706 | Freeman | Apr 2004 | A1 |
20040082145 | Reichenbach et al. | Apr 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040108588 | Gilleo | Jun 2004 | A1 |
20040140557 | Sun et al. | Jul 2004 | A1 |
20040145049 | McKinnell et al. | Jul 2004 | A1 |
20040147056 | McKinnell et al. | Jul 2004 | A1 |
20040160143 | Shreeve et al. | Aug 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040179281 | Reboa | Sep 2004 | A1 |
20040184133 | Su et al. | Sep 2004 | A1 |
20040212026 | Van Brocklin et al. | Oct 2004 | A1 |
20040217378 | Martin et al. | Nov 2004 | A1 |
20040217919 | Piehl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040218334 | Martin et al. | Nov 2004 | A1 |
20040227493 | Van Brocklin et al. | Nov 2004 | A1 |
20040232535 | Tarn | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040240138 | Martin et al. | Dec 2004 | A1 |
20040245588 | Nikkel et al. | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050001545 | Aitken et al. | Jan 2005 | A1 |
20050001828 | Martin et al. | Jan 2005 | A1 |
20050012197 | Smith et al. | Jan 2005 | A1 |
20050023976 | Wang | Feb 2005 | A1 |
20050036090 | Hayashi et al. | Feb 2005 | A1 |
20050036192 | Lin et al. | Feb 2005 | A1 |
20050038950 | Adelmann | Feb 2005 | A1 |
20050046919 | Taguchi et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050068583 | Gutkowski et al. | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050074919 | Patel et al. | Apr 2005 | A1 |
20050077584 | Uhland et al. | Apr 2005 | A1 |
20050093134 | Tarn | May 2005 | A1 |
20050157376 | Huibers et al. | Jul 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050174048 | Matsukaze | Aug 2005 | A1 |
20050253283 | Dcamp et al. | Nov 2005 | A1 |
20050254155 | Kunii et al. | Nov 2005 | A1 |
20050258516 | Hong et al. | Nov 2005 | A1 |
20060076634 | Palmateer et al. | Apr 2006 | A1 |
20060152106 | Yan et al. | Jul 2006 | A1 |
20060214247 | Dcamp et al. | Sep 2006 | A1 |
20080003493 | Bates | Jan 2008 | A1 |
20100302618 | Patel et al. | Dec 2010 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
0667548 | Aug 1995 | EP |
1 093 162 | Apr 2001 | EP |
1 418 154 | May 2004 | EP |
1 457 804 | Sep 2004 | EP |
2841380 | Dec 2003 | FR |
59-6842 | Jan 1984 | JP |
2068513 | Mar 1990 | JP |
3199920 | Aug 1991 | JP |
04-085859 | Mar 1992 | JP |
11-145337 | May 1999 | JP |
WO 0145140 | Jun 2001 | WO |
WO 0242716 | May 2002 | WO |
WO 03009318 | Jan 2003 | WO |
WO 03026369 | Mar 2003 | WO |
WO 03105198 | Dec 2003 | WO |
WO 2004025727 | Mar 2004 | WO |
WO 2005113376 | Dec 2005 | WO |
Entry |
---|
Office Action dated Sep. 18, 2009, in Chinese App. No. 200510105032.9. |
Substantive Examination Report dated Aug. 30, 2010 in Malaysian App. No. PI 20054174. |
Jung et al., Soldered sealing process to assemble a protective cap for a MEMS CSP, Design, Test, Integration and Packaging of MEMS/MOEMS 2003 Symposium, pp. 255-260. |
Kim et al., Fabrication and characteriziation of a low-temperature hermetic MEMS package bonded by a closed loop AuSn solder-line, Proceedings of the IEEE 16th Annual International Conference on Micro Electro Mechanical Systems, Jan. 2003, pp. 614-617. |
Liang, Zhi-Hao et al., “A Low Temperature Wafer-Level Hermetic MEMS Package Using UV Curable Adhesive”, Electronic Components and Technology Conference, 2004 IEEE, pp. 1486-1491. |
Maharbiz et al., Batch micropackaging by compression-bonded wafer-wafer transfer, Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Jan. 17-21, 1999, pp. 482-489. |
Moraja, et al., Advanced Getter Solutions at Wafer Level to Assure High Reliability to the last Generations MEMS, IEEE Reliability Physics Symposium Proceedings, 2003, pp. 458-459. |
Sparks, et al. Chip-Level Vacuum Packaging of Micromachines Using NanoGetters, IEEE Transactions on Advanced Packaging, vol. 26 Issue 3, Aug. 2003, pp. 277-282. |
Tao et al., Selective Bonding and encapsulation for wafer-level vacuum packaging of mems and related micro systems, Microelectronics and Reliability, 44(2):251-258, Feb. 2004. |
Tilmans et al., The indent reflow sealing (IRS) technique—A method for the fabrication of scaled cavities for mems devices, Journal of Microelectromechanical Systems, 9(2), Jun. 2000. |
Tominetti, et al., Moisture and impurities detection and removal in packaged MEMS, Proceedings of the SPIE, Reliability, Testing and Characterization of MEMS/MOEMS, Oct. 2001, pp. 215-225. |
Yang et al., Localized induction heating solder bonding for wafer level MEMS packaging, 17th IEEE International Conference on Micro Electro Mechanical Systems, Jan. 2004, pp. 729-732. |
Extended European Search Report for App. No. 05255676.8 dated Nov. 6, 2007. |
Notice of Reasons for Rejection dated Sep. 9, 2008 in Japanese App. No. 2005-264841. |
Office Action dated Mar. 28, 2008 in Chinese App. No. 200510105032.9. |
Office Action dated Oct. 24, 2008 in Chinese App. No. 200510105032.9. |
Official Action received Jun. 3, 2009 in Russian App. No. 2005129946. |
Office Action dated May 9, 2007 in U.S. Appl. No. 11/102,554. |
Office Action dated Nov. 29, 2007 in U.S. Appl. No. 11/102,554. |
Office Action dated Jun. 24, 2008 in U.S. Appl. No. 11/102,554. |
Office Action dated Dec. 26, 2008 in U.S. Appl. No. 11/102,554. |
Office Action dated Jul. 27, 2009 in U.S. Appl. No. 11/102,554. |
Akasaka Y., “Three-Dimensional IC Trends,” Proceedings of IEEE, 1986, vol. 74 (12), pp. 1703-1714. |
Aratani K, et al., “Process and Design Considerations for Surface Micromachined Beams for a Tuneable Interferometer Array in Silicon,” Proc. IEEE Microelectromechanical workshop fort Lauderdale FL, 1993, 230-235. |
Aratani K. et al., “Surface Micromachined Tuneable Interferometer Array,” Sensors and Actuators A, Elsevier Sequoia S.A., Lausanne, CH, A, 1993, 43(1/3), 17-23. |
Conner, “Hybrid Color Display using Optical Interference Filter Array,” SID Digest, 1993, 577-580. |
Goossen, et al., “Silicon Modulator Based on Mechnically-Active Anti-Reflection Layer With 1Mbit/Sec Capability for Fiber-In-The-Loop Applications,” IEEE Photonics Technology Letters, 1994, 1119-1121. |
Goossen K.W. et al., “Possible Display Applications of the Silicon Mechanical Antireflection Switch,” Society for Information Display, 1994. |
Gosch, “West Germany Grabs the Lead in X-Ray Lithography,” Electronics, 1987, 78-80. |
Howard, et al., “Nanometer-Scale Fabrication Techniques,” VLSI Electronics: Microstructure Science, 1982, vol. 5, 145-153, 166-173. |
Jackson, “Classical Electrodynamics,” John Wiley & Sons Inc, 1962, pp. 568-573. |
Jerman et al., “A Miniature Fabry-Perot Interferometer with a Corrugated Silicon Diaphragm Support”, IEEE Electron Devices Society, pp. 140-144, 1990. |
Johnson, “Optical Scanners,” Microwave Scanning Antennas, 1964, vol. 1(2), 251-261. |
Light Over Matter Circle No. 36, Jun. 1993. |
Miles M.W., “A New Reflective FPD Technology using Interferometric Modulation,” Journal of the SID, 1997, vol. 5(4), 379-382. |
Newsbreaks, “Quantum-trench devices might operated at terahertz frequencies”, Laser Focus World, May 1993. |
Oliner, “Radiating Elements and Mutual Coupling,” Microwave Scanning Antennas, 1966, vol. 2, 131-157 and pp. 190-194. |
Raley, et al:, “A Fabry-Perot Microinterferometer for Visible Wavelengths,” IEEE Solid-State Sensor and Actuator Workshop, 1992, 170-173. |
Sperger, et al., “High Performance Patterned All-Dielectric Interference Colour Filter for Display Applications,” SID Digest, 1994, 81-83. |
Stone J.M., “Radiation and Optics, An Introduction to the Classic Theory,” 1963, McGraw-Hill, pp. 340-343. |
Walker, et al., “Electron-Beam-Tunable Interference Filter Spatial Light Modulator,” Optics Letters, 1988, vol. 13(5), 345-347. |
Winton et al., “A novel way to capture solar energy,” Chemical Week, pp. 17-18 (May 15, 1985). |
Wu, et al., “Design of a Reflective Color LCD using Optical Interference Reflectors, ”ASIA Display, Changchun Institute of Physics, 1995, 929-931. |
Number | Date | Country | |
---|---|---|---|
20090189230 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
60613476 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11102554 | Apr 2005 | US |
Child | 12415986 | US |