Method and system for performing remote treatment and monitoring

Information

  • Patent Grant
  • 8733935
  • Patent Number
    8,733,935
  • Date Filed
    Friday, July 15, 2011
    12 years ago
  • Date Issued
    Tuesday, May 27, 2014
    10 years ago
Abstract
The disclosure relates to medical databases, remote monitoring, diagnosis and treatment systems and methods. In one particular embodiment, a system for remote monitoring, diagnosis, or treatment of eye conditions, disorders and diseases is provided. This method generally includes administering a stream of droplets to the eye of a subject from an ejector device, and storing data related to the administration in a memory of the ejector device. The data may then be monitored and analyzed.
Description
FIELD OF THE INVENTION

The disclosure relates to medical systems and methods. In particular, it relates to medical database, remote monitoring, diagnosis and treatment systems and methods.


BACKGROUND OF THE INVENTION

The monitoring, diagnosis and treatment of various conditions, disorders and diseases, such as eye conditions, disorders, diseases, etc., typically involve the regular physical intervention by a medical professional, requiring the subject to make an appointment and visit the doctor's or practitioner's offices. On the part of the subject, this involves travel time to the doctor and back, a waiting period and typically a face-to-face discussion with a nurse practitioner or doctor's assistant, followed by a discussion and examination by a doctor. Insofar as the subject is issued with a prescription, he or she then has to proceed to a pharmacy, wait for the prescription to be filled and finally proceed home. Thus, the treatment and monitoring of subjects is a highly time-consuming exercise.


From the practitioner's or provider's perspective, the number of subjects he or she can see is limited by the face-to-face time with each subject to discuss the subject's condition, arrange slip lamps and other scanning devices, examine the subject, update the subject's records and record the tests conducted for compliance and insurance purposes.


Even when subjects are scheduled for follow-up examinations pursuant to the use of certain medications, the practitioner merely has the opportunity to determine whether there is a change in the subject's condition, but still remains unable to verify whether or not the subject has regularly taken the medication and has done so in the correct dose. This equally applies to veterinary doctors. Thus, notwithstanding the time-consuming nature of in-person examinations, the decisions that can be drawn from the analysis remain largely speculative and inconclusive.


Thus, comparisons to prior results of a particular subject, and comparisons to other subjects treated with the same drugs, can only act as an approximation due to the many unknowns. The inaccuracies in the results may be ascribed to both human error and the limitations of current dispensing devices. An additional problem is that subjects may forget to dose or double-dose or cross-dose with other medications. Even when subjects administer medication correctly (or have the medication correctly administered), current technology does not provide a satisfactory way of controlling the amount of medication that is dispensed, nor does it provide a way of ensuring that the medication that is dispensed actually reaches the eye and remains in the eye.


Current approaches fail to provide an accurate way of monitoring the administration of medication and dosages. The present disclosure addresses such shortcomings in addition to others.


SUMMARY OF THE INVENTION

In one aspect, according to the disclosure, there is provided a system for monitoring a subject, e.g., for compliance with a dosing regimen, for analysis of treatment, for diagnosis, etc., the system generally comprising at least one ejector device configured for administering a stream of droplets to the eye of a subject in need thereof, wherein the ejector device comprises a memory for storing subject-specific data and a communication interface for communicating said stored data. In certain embodiments, the system further comprises a docking station configured to interface with the ejector device and to communicate with said ejector device. In certain embodiments, the system comprises at least one database or server in communication with said ejector device. In some embodiments, the ejector device is in communication with said database or server via the docking station.


In another embodiment, methods are provided which generally include: (1) administering a stream of droplets to the eye of a subject in need thereof using an ejector device as described herein; and (2) storing data in a memory of the device, the data relating to, e.g., dosing regimen information, image information, etc. In certain embodiments, the method may further include (3) communicating the stored data from the ejector device, e.g., to a docking station, database or server, and/or user terminal. The communicated data may then be stored in memory in the docking station, the database or server, or in a memory on the user terminal. In yet other embodiments, the data communicated from the device (e.g., from the docking station, database or server, or via the user terminal) may be reviewed and analyzed. Based on such review and analysis, in one embodiment, the method may include adjusting dosages and medicaments as needed.


In another embodiment, the ejector device may include an image capturing device, and the method may include communicating image information (e.g., ocular image information). The method may include reviewing and analyzing the image information to diagnose the subject, e.g., by comparing image information to previous images obtained from the same subject or to images obtained from other subjects.


In another embodiment, approved providers may sign onto the system and through a user interface set parameters, with, for example, a look-up table, that the device will read to adjust dosage amounts, dosage timing and other reminders.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a front view of an ejector device in an embodiment of the disclosure;



FIG. 2 shows a docking station of an embodiment of the disclosure;



FIG. 3 shows a system in an embodiment of the disclosure; and



FIGS. 4-8 show exemplary user interface depictions in accordance with embodiments of the disclosure.





DETAILED DESCRIPTION OF THE INVENTION

A major concern in medical treatment of glaucoma, is the failure by subjects to regularly take their medication. Subjects either forget to take the medication or fail to take the correct dosage, e.g., to get the correct number of drops into the eye due to the difficulty of using a conventional eye dropper. In part, to address issues encountered with the use of conventional eye droppers, ejector devices, such as those described in U.S. Patent Publication No. 2011/0143152 filed concurrently herewith, entitled Drop-Generating Device, the contents of which are herein incorporated by reference in their entirety may be used in connection with the present disclosure.


As described in U.S. Patent Publication No. 2012/0143152, again herein incorporated by reference in its entirety, the ejector device may generally be device for delivering a fluid to an eye of a subject. For instance, the device may comprise: a housing; a reservoir disposed within the housing for receiving a volume of ophthalmic fluid; and an ejector mechanism configured to eject a stream of droplets to the eye of a subject upon activation of the device by a user. The ejected stream of droplets may have an average ejected droplet diameter greater than 15 microns and a low entrained airflow such that the ejected stream of droplets is deposit on the eye of the subject during use. In certain embodiments, the ejector device includes a piezo electric ejector mechanism comprising an ejector plate having a first surface coupled to a fluid delivery area of the reservoir and including a plurality of openings formed through its thickness, and a piezo electric actuator coupled to a second surface of the ejector plate, the piezo electric actuator operable to oscillate the ejector plate at a frequency and generate the ejected stream of droplets.


In another aspect, the disclosure provides a device for administering a fluid to the eye, such as an eye medication (e.g., anti-histamine) eye solution, eye lubricant or eye wetting agent, pupil dilator, fluorescein, anesthetic, suspended solid, etc., in a stream of droplets to the eye. However, the disclosure is not limited to use in connection with administration to the eye. For instance, other topical, inhaled, parenteral, oral, etc., delivery routes are envisioned as within the scope of the present disclosure. In one embodiment, the disclosure may be implemented using a device or applicator in the form of a thermal ejector, ultrasonic ejector, or piezo ejector generating ejected fluid droplets.


In one embodiment, an ejector device is provided with a memory for storing data such as subject-related information, e.g., dosing regimen information, etc. Any suitable memory or data storage media may be used, in certain embodiments, such memory may be in the form of a Flash memory drive with a universal serial bus (USB) port, which allows communication with a processing device, computer or user terminal. The Flash memory device (FMD) in one embodiment is preprogrammed to include its own user interface, which may be implemented as a graphical user interface (GUI). The FMD may include content data, e.g., subject information data, and applications. The GUI may include links for accessing at least some of the content data remotely. The GUI may also include Internet links, typically in the form of Web links. The FMD may be operable to launch a browser when an Internet link is clicked. The browser may be a browser that is installed on the processing device, computer or user terminal with which the FMD is in communication. Instead, a browser may be locally stored on the FMD or may be downloaded from a server. The FMD may be implemented to launch the browser automatically when the FMD is in communication with a processing device, computer, or user terminal, if such device, etc., is detected to have Internet access, or the browser may be launched manually by the user, e.g., by clicking an Internet link. In certain embodiments, the processing device, computer, user terminal, etc., may include a desktop computer, laptop, Personal Digital Assistant (PDA), smartphone, etc.


In certain embodiments, the ejector device may include an a controller or processor for controlling the dosing of a medicament (L e., dosing regimen). In order to ensure proper use by the subject, the controller may control dispensing of one or more medications to correspond to defined dosing times and dosing amounts and may monitor the amount of fluid dispensed during each dosing time to ensure delivery of the full dose. Such information may then be stored in the memory of the ejector device. The controller may also be programmed with dosage information (e.g., by a medical professional) and may be updated remotely to include new dosing information or new medication information, if needed.


More specifically, in one embodiment, with reference to FIG. 1, the present disclosure, in part, relates to an ejector device 100 having an alarm, which in this embodiment comprises an audible alarm, e.g., in the form of a speaker 110, a visual alarm, e.g., in the form of a LED 112 mounted on the device housing, a tactile alarm, e.g., a vibration mechanism (not shown).


The subject is notified when a dose needs to be taken, or a missed dose is detected. In an embodiment, a controller, processor or other programmable means (not shown) may be programmed with dosage and treatment regimen information to send a signal to the speaker 110 and/or LED 112 at the time a dose needs to be taken. In another embodiment, the device 100 alarm may be remotely initiated, e.g., by cell-phone, remote calendar, etc. Device 100 also may include a targeting mechanism 130 to aid in aligning dosing of the device. In certain aspects, targeting mechanism may be a low-intensity light beam, e.g., a low-intensity or filtered light emitting diode (LED) which emits a beam when, e.g., the ejector device is activated. In certain embodiments, the light beam may be configured to shine into the user's eye when the ejector device is correctly aligned with the eye. In other embodiments, ejector device 100 may include one or more illuminating devices, e.g., LEDs or other illuminating devices in addition to the targeting device 130, capable at illuminating at varying desired wavelengths. In certain instances, such illuminating devices may be useful in treatment or diagnosis of subjects alone or in connection with administration of agents (e.g., pupil-dilating agents, dyes, therapeutic agents, etc.). Alternatively, illuminating devices may be used in connection with image capture device 150 (below) to aid in obtaining quality image capture.


By way of example, the ejector device may include one more illuminating devices of varying wavelengths such as a red light, blue light, green light, white light, and/or IR light, which may be implemented by making use of LEDs. Monochromatic light sources may be used for monochromatic fundus imaging, preferably below 540 nm wavelength. This involves the imaging of the ocular fundus with the use of colored or monochromatic illumination to enhance the visual contrast of anatomical details of the fundus.


The device may also include an image capture device for obtaining images of the eye or structures of the eye (e.g., retina, pupil, cornea, etc.). By way of example, in the embodiment of FIG. 1, the image capturing device may comprise a camera in the form of a charge coupled device (CCD) 150, retinal scanner or other camera to capture images of the eye. In one embodiment, the images may include images showing the effect of pressure on the cornea, for purposes of diagnosing potential glaucoma, or may include images taken using different wavelength illumination to obtain information about the health of the eye, etc. The images may be stored in the memory in the device, and subsequently downloaded to the docking station and/or a remote memory or database, as discussed herein.


In some embodiments, the image capture device may be utilized to detect the presence of an eye and to ensure that the eye is open and/or that correct alignment of the eye is detected. The image capture device may provide information to the controller or processor, which, in one embodiment, provides a signal to initiate activation of the ejector device when opening of the eye and/or correct alignment of the eye, is detected. Alternatively, a reflective surface mounted on or incorporated within the ejector device, or an infra-red (IR) transmitter (e.g., IR LED) and photo detector may be mounted on the front surface of the ejector device (not shown). In certain aspects, the IR transmitter may transmit an infra-red beam or pulse, which is received by an IR photo detector when the ejector device is correctly aligned with the eye, and the IR beam or pulse is reflected off the eye and the beam or pulse is reflected to the IR photo detector.


In one embodiment, the ejector device described herein provides a user, e.g., a medical professional and/or subject, information regarding a subject's compliance with a particular dosage regimen. In one embodiment, the device includes a memory and controller, processor, etc., further includes software, programmable executable code, etc., to store information regarding dosing, e.g., the dates and times that the device is used and the volumes ejected. This information may be stored on a memory chip or other suitable memory storage media for subsequent retrieval. In certain implementations, the information may be retrieved via an input/output (I/O) port or wireless interface, such as a Universal Serial Bus (USB), an Infrared Data Association IrDA interface, a Bluetooth transceiver, etc.


It will be appreciated that the disclosure has been described with respect to different embodiments of the ejector device; however, the invention is not limited to the specific embodiments, but can be implemented in different ways without departing from the scope of the disclosure.


In another embodiment, the ejector device may communicate with a docking station. For example, with reference to FIG. 2, the ejector device may communicate with docking station 200. In certain embodiments, docking station 200 may generally include a memory (volatile, non-volatile, or combinations thereof), an I/O port or wireless interface for communicating with a public or private network, and a communication interface for communication with the ejector device. In certain embodiments, there may be a single communication interface for communicating with networks and the ejector device, or the docking station may include multiple communication interfaces. Docking station 200 may allow the data stored in memory of the ejector device to be downloaded or otherwise communicated to the docking station via, e.g., engagement of a docking port of the device with the communication interface of the docking station. Alternatively, input/output port or wireless interface of the ejector device may interface and/or communicate with the communication interface of the docking station. Such data may be downloaded or otherwise communicated on-demand (i.e., upon user docking), or at predetermined communication intervals (i.e., at predetermined times such that the ejector device attempts communication with the docking station, e.g., via a wireless communication network).


Docking station 200 may also include charging contacts (not shown) to engage with receiving contacts on the device to charge re-chargeable batteries in the device, if desired. In certain embodiments, the data may be stored in memory in the docking station 200. The docking station 200 may also be in communication, either wired or wirelessly, with a private or public network, e.g., via the I/O port or wireless interface of the docking station. In certain embodiments, data stored in memory of the device may be transferred or communicated, via the docking station and/or the I/O port of the device, and via a network to a remote server for storage in a remote memory or database.


In accordance with certain embodiments of the invention, the docking station may include a processor or controller, which in certain embodiments, may comprise software or computer executable code that enable functionality/diagnostics checks of the operation of the ejector device when the ejector device is in communication with the docking station, or at predetermined time intervals, etc.


In other embodiments (not shown), the docking station may include tactile, visual, and/or audible alarms. Such alarms may provide dosing reminders to a user, both on an automated treatment and a corrective treatment basis (e.g., based automated dosing regimen reminders and reminders if doses are missed). As explained herein, a medical professional may communicate with the ejector device through the communication interface of the docking station, or may communicate directly with the ejector device (e.g., to modify dosing regimen).


In another embodiment, a system including at least one ejector device and an optional docking station is provided. The systems of the present disclosure may also include the ability to communicate, e.g., via a communication network to a database or server, or user terminal. In one embodiment, a system for monitoring subject compliance with a dosing regimen is provided. Such systems can further be utilized to monitor and analyze treatment and, e.g., adjust dosing regimens accordingly, as discussed herein. Further, such systems may be used to diagnosis subjects based on data collected. The system generally comprising an ejector device configured for administering a stream of droplets to the eye of a subject in need thereof, wherein the ejector device comprises a memory for storing subject specific data and a communication interface for communicating the stored data. In some embodiments, the ejector device comprises an image capture device. In certain embodiments, the system further comprises a docking station configured to interface with the ejector device and to communicate with the ejector device.


In certain embodiments, the system comprises one or more databases or servers in communication with the ejector device(s). The databases or servers are configured to store data received from the ejector device, the docking station, or combinations thereof In some embodiments, the ejector device is in communication with the database or server via the docking station. In certain embodiments, the database or server may be a compliance database or an adherence database. The database or server may store one or more medical records for a user of the ejector device, and the record may include data collected by the ejector device. In certain embodiments, the database may be integrated with an Electronic Medical Record (EMR) system, as the term is understood by those of skill in the art.


By way of example, FIG. 3 illustrates a system 300 including an ejector device 301 interfaced (e.g., physically interfaced, in wired or wireless communication, etc.) with a docking station 302, which is networked (wired or wirelessly, including via a public or private network such as the Internet as depicted by the communication network cloud 304) for communicating data for storage in a memory of a database or a server 306. A user or medical professional, e.g., physician, or other expert located remotely at user terminal 310 can then access some or all of the data on the server or database 306. In certain embodiments, as understood by those in the art, the database or server 306 may be secured, e.g., by a user identification code or other security measure, to ensure that only authorized users have access to the data. Further, in certain embodiments, the database or server may be secured so as to only give access to certain portions of the data to certain users, etc. (e.g., based on subject privacy concerns). In certain aspects, the device 300, database or server 306, terminal 310, etc., may be configured to allow two-way communication, e.g., via communication network 304, such that a user may upload data to ejector device 300. By way of example, the data may include subject-specific information, such as compliance information, dosing regimen information, e.g., two drops twice a day of drug A in both eyes at defined times of the day, 1 drop in each eye of drug B, etc.


Although the example of FIG. 3 shows the database or server 306 as being separate (and at a separate location) from the ejector device 301, the base station 302, and the user terminal 310 (not shown) this is not necessarily the case. However, the database or server 306 may be co-located with the user terminal 310, or may be configured to interact with multiple devices similar to the ejector device 301, such that the database 306 may store information for multiple devices used by a particular user and/or information about multiple patients, each of whom use one or more devices such as the ejector device 301. Further, in some embodiments, database or server 306 may be distributed across multiple databases and servers, or the information may be distributed across database or server 306, and one or more of ejection device 301, base station 302, or user terminal 310.


In certain embodiments, a user may access, review and/or analyze data from an ejector device, database, server, etc., via a user interface such as a graphical user interface (GUI) on a computer in communication with the device, database, server, etc. Exemplary GUI embodiments are illustrated in FIGS. 4-8. FIG. 4 shows an overview page with various subject identifiers 400 (e.g., names and dates of birth). Column 402 defines a right and left eye treatment for each subject. Columns 404 provide individual columns for the various treatment weeks, each eye for each subject being, e.g., coded to indicated full compliance by the subject with dosage requirements (green), partial compliance (orange) or no compliance (red). In another embodiment (not shown) coding may be used to indicate different drug types.



FIG. 5 shows an individual subject record. The various columns correspond to information by week, and the rows correspond to each day. The upper portion provides subject details 500 and treatment regimen details 502. As shown in FIG. 6, clicking on any of the cells in the subject detail array allows additional information to be viewed, insofar as there is additional information, such as images captured of the eye, date of the image and subject details, etc., thereby allowing a visual record over time. This allows a medical professional to remotely monitor not only subject compliance with dosing regimen, but also to remotely monitor visual diagnostic information and interact with the subject as needed.



FIG. 7 illustrates yet another embodiment including subject compliance detail information. FIG. 7 shows compliance data detail, e.g., for each medicament to be administered per a dosing regimen in section 700, and a graphical display 702 showing level of compliance for each eye and a selected medicament. As shown in FIG. 8, clicking on any of the cells in the subject detail array allows additional information to be viewed, insofar as there is additional information, such as images captured of the eye, date of the image and subject details, etc., thereby allowing a visual record over time. Again, this allows a medical professional to remotely monitor not only subject compliance with dosing regimen, but also to remotely monitor visual diagnostic information and interact with the subject as needed.


In certain embodiments, the systems and ejector devices described herein allow for the remote monitoring of one or more subjects, and may allow a medical professional to remotely diagnosis, treat and adjust treatment as needed. By way of example, the systems and ejector devices may allow for the capturing, storage, and communication of data related to dosing regimen compliance information, image information, etc., which information may be reviewed and analyzed. If desired, the information may be compared to earlier information related to the same subject, information from multiple subjects (i.e., information from multiple subjects may be stored in a central database and compared based on demographics information about the users, dosage and type of medicament, etc.).


In yet another embodiment, methods are provided which generally include: (1) administering a stream of droplets to the eye of a subject in need thereof using an ejector device, such as those described herein; and (2) storing data in a memory of the device, the data relating to, e.g., dosing regimen information, image information, etc. In certain embodiments, the method may further including (3) communicating the stored data from the ejector device, e.g., to a docking station, database or server, and/or user terminal. The communicated data may then be stored in memory in the docking station, the database or server, or in a memory on the user terminal. In yet other embodiments, the data communicated from the device (e.g., from the docking station, database or server, or via the user terminal) may be reviewed and analyzed. Based on such review and analysis, in one embodiment, the method may include adjusting dosages and medicaments as needed. In one example, if desired results are not observed in the data, the dosage regimen may be increased (dosage amounts, number of dosages, etc.). Alternatively, if results indicate such, the dosage regimen may be decreased. In yet another embodiment, the ejector device may include two or more medicaments, wherein a first medicament is used and monitored for a first period of time and if the desired results are not achieved, administration is changing to a second or third medicament.


In another embodiment, the ejector device may include an image capturing device, and the method may include communicating image information (e.g., ocular image information). The method may include reviewing and analyzing the image information to diagnose the subject, e.g., by comparing image information to previous images obtained from the same subject or to images obtained from other subjects. In some embodiments, image information may be obtained independently of administration of a stream of droplets, prior to such administration, concurrently with such administration, subsequent to such administration, or a combination thereof.


In one embodiment, a method for monitoring ophthalmic subjects is provided. The method generally includes administering a stream of droplets to the eye of a subject in need thereof using an ejector device described herein (e.g., a device including a memory for storing subject-specific data and a communication interface for communicating said stored data); and storing said data in the memory of the device. The method can further include analyzing the communicated data from the ejector device and adjusting administration of the stream of droplets to the eye of the subject as needed, based on said analysis.


In other embodiments, the method includes receiving subject-specific data from an ejector device, the ejector device configured for administering a stream of droplets to the eye of a subject in need thereof; storing the data in at least one database; analyzing the stored data; and adjusting administration of the stream of droplets to the eye of the subject as needed, based on said analysis.


In yet other embodiments, the ejector device may further include an image capturing device for capturing images of the eye of the subject. The method may further include capturing images of the subject's eye; and storing the images in the memory of the device.


In one embodiment, the subject is being treated for glaucoma, and the stream of droplets administered to the eye comprises a medicament for the treatment of glaucoma. In certain embodiments, the subject-specific data includes dosing regimen information related to the treatment of glaucoma, information related to the subject's compliance with the dosing regimen, etc.


In yet another embodiment, a method for diagnosis of ophthalmic subjects is provided. The method generally includes: capturing images of a subject's eye using an ejector device; storing the images in the memory of the device; and analyzing the images to thereby diagnose the subject based, at least in part, on analysis of said images.


In another embodiment, methods for the diagnosis for glaucoma are provided, which typically include the exertion of pressure on the cornea, e.g., Goldmann applanation tonometry, and which involves the application of Fluress® (comprising a fluorescent agent, an anesthetic, a preservative, and a wetting agent and stabilizing agent), followed by the applanation using a 3.06 mm2 device. For intraocular pressures of 20 mmHg or less, the accuracy of the measurement should be within +0.5 and −0.5 mmHg The present disclosure provides a method for diagnosis of glaucoma, generally comprising applying pressure to avoid the use of an applanation device. By ejecting a selectable number of droplets of liquid, e.g., saline solution onto the eyeball from a defined distance, the pressure exerted on the cornea and intraocular pressure can be determined based on the deformation, which can be captured by the image capture device. In one embodiment, a reservoir includes a saline compartment, which is manually selectable by means of a selector switch mounted on the device, or the saline compartment is selected by having the physician upload medication type and dose information that selects a certain number of droplets of saline solution to define a certain pressure. Feedback information captured by the image capture device may be uploaded to the database or server, to allow the doctor to diagnose the condition and either adjust the pressure of a second ejection cycle or schedule a follow-up appointment for the subject.


In certain embodiments, the systems and methods of the disclosure may be used to monitor the treatment of chronic problems such as glaucoma. Stored data may be reviewed and analyzed, e.g., to evaluate patient compliance, to evaluate efficacy of dosing regimen, to determine necessary changes to dosing regimen, and to implement changes as needed.


The systems and methods of the present disclosure may also be used for situational applications, such as the delivery of medication after cataract or other ophthalmic surgery to facilitate self-administration of prescribed medications at defined times and defined dosages. Other embodiments include, but are not limited to: conjunctivitis treatments; allergy treatments; saline application for those who wear contact lenses; sore, irritated, red-eye treatments; application of dilation medications; decongestants that shrink or constrict blood vessels and cause the eye to whiten; corticosteroids such as Prednisolone®, Dexamethasone®, Hydrocortisone®, Fluoromethalone®, Medrysone®, Rimexolone®, etc.


In the case of medicaments where the exact or low dosage is of importance, the systems and methods of the disclosure may be of particular use. For instance, some of the medications that can be dispensed using the device of the invention include, but are not limited to: glaucoma medications such as ocular hypotensive agents for glaucoma, including but not limited to the prostaglandin analogues, such as Xalatan® (latanoprost) by Pfizer, Lumigan® (bimatroprost,) by Allergan, Travatan® (travoprost) by Alcon may be applied; alpha agonists such as Alphagan® P (brimonidine) by Allergan, and Combigan® (brimonidine/timolol) by Allergan, and beta blockers such as Timolol®; carbonic anhydrase inhibitors such as Trusopt® (dorzolamide) by Merck, Cosopt® (dorzolamide/timolol) by Merck, and Azopt® (brinzolamide) by Alcon; antibiotics such as “4th Generation” Fluoroquinolones for perioperative infection prophylaxis); Zymar® (gatifloxacin) by Allergan; Vigamox® (moxifloxacin) by Alcon; anti-inflammatory such as steroids like Prednisolone® acetate 1%-generic, Pred forte® by Allergan, Omnipred® by Alcon, and Difluprednate (Durezol®) by Alcon; non-steroidal such as Acuvail® (ketorolac) by Allergan, Xibrom® (bromfenac) by Ista; Nevanac® (nepafenac) by Alcon, and Ketorolac®; combination antibiotic/steroid preparations frequently used for post operative subjects, including Tobradex® (tobramycin/dexametasone solution, Alcon); etc.


As discussed herein, medicaments are generally discussed in the context of ophthalmic medication including a therapeutically active agent. However, medicaments are not so limited and include all ophthalmic liquids, such as an eye medication (e.g., anti-histamine) eye solution, eye lubricant or eye wetting agent, pupil dilator, fluorescein, anesthetic, etc.


In another embodiment, providers can get onto the system and through a user interface, set parameters of a database so that the device will read to adjust dosage amounts, dosage timing and other reminders. Additionally, with patient-identifying information removed, such as for example in accordance with HIPAA privacy policies, this database becomes a significant asset for example to pharmaceutical companies for data mining and insurance companies for underwriting. Once patient-identifying data is scrubbed, a host of reports can be generated for interested parties. Indeed, the capabilities of this database, in combination with the device, promise a new standard of care in the industry, providing a comprehensive solution to improve overall compliance/adherence, minimize office visits, reduce probability of blindness due to glaucoma and improve quality of life.


The present disclosure has been disclosed with reference to specific embodiments. It will, however, be appreciated that the invention is not so limited.

Claims
  • 1. A system for treating ophthalmic subjects, comprising: at least one piezo electric ejector device configured for administering an ejected stream of droplets to the eye of a subject in need thereof upon activation of said ejector device by a user;said at least one ejector device comprising: a housing; a reservoir disposed within the housing for receiving a volume of ophthalmic fluid; an ejector mechanism comprising an ejector plate having a first surface coupled to a fluid delivery area of the reservoir, the ejector plate including a plurality of openings formed through its thickness; and a piezo electric actuator coupled to a second surface of the ejector plate, the actuator being operable to oscillate the ejector plate at a frequency to thereby generate the ejected stream of droplets upon actuation;a memory for storing subject-specific data;a communication interface for communicating said stored subject-specific data;an image capture device for obtaining images of the eye or structures of the eye of said subject sufficient to obtain information about the diagnosis or health of the eye, the subject-specific data including image information captured by said image capture device, andat least one database or server in communication with said at least one ejector device via said communication interface.
  • 2. A system of claim 1, further comprising at least one docking station comprising a communication interface for communicating with said at least one ejector device.
  • 3. A system of claim 2, wherein said communication interface of said at least one ejector device and said communication interface of said at least one docking station are each individually selected from a wired or wireless communication interface.
  • 4. A system of claim 2, wherein said at least one ejector device comprises at least one I/O port configured to interface with said communication interface of said at least one docking station.
  • 5. A system of claim 2, wherein said at least one ejector device is in communication, with said at least one database or server via said at least one docking station.
  • 6. A system of claim 1 wherein the image capture device is a charge coupled device (CCD) configured capture images of the eye or structures of the eye at different wavelength illuminations.
  • 7. A system of claim 1, further comprising a user terminal.
  • 8. A system of claim 7, wherein said user terminal is selected from the group consisting of a computer, a smartphone, and a PDA.
  • 9. A system of claim 7, wherein said system is configured for two-way communication between said at least one ejector device and said user terminal via a communication network.
  • 10. A method for monitoring the treatment of ophthalmic subjects, the method comprising: administering an ejected stream of droplets to the eye of a subject in need thereof using a piezo electric ejector device, said ejector device comprising: a housing: a reservoir disposed within the housing for receiving a volume of ophthalmic fluid; an ejector mechanism comprising an ejector plate having a first surface coupled to a fluid delivery area of the reservoir, the ejector plate including a plurality of openings formed through its thickness; and a piezo electric actuator coupled to a second surface of the ejector plate, the actuator being operable to oscillate the ejector plate at a frequency to thereby generate the ejected stream of droplets upon actuation; a memory for storing subject-specific data; an image capture device for obtaining images of the eye or structures of the eye of said subject sufficient to obtain information about the diagnosis or health of the eye the subject-specific data including image information captured by said image capture device; and a communication interface for communicating said stored subject-specific data;capturing images of the eye or structures of the eye of said subject sufficient to obtain information about the diagnosis or health of the eye prior to, concurrently with, subsequent to, or a combination thereof, said administration of the ejected stream of droplets to the eye of said subject;storing said subject-specific data including image information in the memory of said piezo electric ejector device;communicating said stored subject-specific data from said piezo electric ejector device to a docking station, database or server, and/or user terminal; andanalyzing the communicated subject-specific data to thereby monitor the treatment of said ophthalmic subject.
  • 11. A method of claim 10, wherein said analysis comprises comparing said images of the eye or structures of the eye of said subject to previous images captured of the eye or structures of the eye of said subject.
  • 12. A method of claim 10, further comprising adjusting administration of said ejected stream of droplets to the eye of said subject based on said analysis.
  • 13. A method of claim 10, wherein said subject is being treated for glaucoma, and said stream of droplets administered to the eye comprises a medicament for the treatment of glaucoma.
  • 14. A method of claim 13, wherein said subject-specific data includes dosing regimen information related to the treatment of glaucoma.
  • 15. A method of claim 14, wherein said subject-specific data includes information related to said subject's compliance with the dosing regimen.
  • 16. A method for monitoring the treatment of ophthalmic subjects, the method comprising: receiving subject-specific data at, at least one database or server via a communication network via a communication interface of a piezo electric ejector device used to administer an ejected stream of droplets to an eye of a subject need thereof and to capture images of the eye or structures of the eye of said subject sufficient to obtain information about the diagnosis or health of the eye prior to, concurrently with, subsequent to, or a combination thereof, said administering of the ejected stream of droplets to the eye of said subject, the subject-specific data comprising said images of the eye or structures of the eye of the subject sufficient to obtain information about the diagnosis or health of the eye;storing said subject-specific data in the at least one database or server; andanalyzing the stored subject-specific data to thereby monitor the treatment of said ophthalmic subject.
  • 17. A method of claim 16, further comprising adjusting administration of said ejected stream of droplets to the eye of said subject based on said analysis.
  • 18. A method of claim 16, wherein said subject is being treated for glaucoma, and said stream of droplets administered to the eye comprises a medicament for the treatment of glaucoma.
  • 19. A method of claim 18, wherein said subject-specific data includes dosing regimen information related to the treatment of glaucoma.
  • 20. A method of claim 19, wherein said subject-specific data includes information related to said subject's compliance with said dosing regimen.
  • 21. A method of claim 16, wherein said analysis comprises comparing said images of the eye or structures of the eye of said subject to previous images captured of the eye or structures of the eye of said subject.
RELATED APPLICATIONS

The present application claims the benefit of the filing date of U.S. Provisional Application No. 61/400,864, filed Jul. 15, 2010, U.S. Provisional Application No. 61/401,850, filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,920 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,918 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,848 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,849 filed Aug. 20, 2010, U.S. Provisional Application No. 61/462,576 filed Feb. 4, 2011, U.S. Provisional Application No. 61/462,791 filed Feb. 5, 2011, U.S. Provisional Application No. 61/463,280 filed Feb. 15, 2011, U.S. Provisional Application No. 61/516,462, filed Apr. 4, 2011, U.S. Provisional Application No. 61/516,496 filed Apr. 4, 2011, U.S. Provisional Application No. 61/516,495 filed Apr. 4, 2011, and U.S. Provisional Application No. 61/516,694, filed Apr. 6, 2011, the entire contents of each of which is specifically hereby incorporated by reference for all purposes. The present application is also related to U.S. Provisional Application No. 61/396,531 filed May 28, 2010, the entire contents of which is specifically hereby incorporated by reference for all purposes.

US Referenced Citations (395)
Number Name Date Kind
1482747 Howe Feb 1924 A
1988637 Tinkham Jan 1935 A
2189643 Ward Feb 1940 A
2200008 Nowak May 1940 A
2249608 Greene Jul 1941 A
2322808 Hothersall Jun 1943 A
2552857 Knapp May 1951 A
2595317 White May 1952 A
2987439 Wittlinger Jun 1961 A
3170462 Hall Feb 1965 A
3187757 Jones et al. Jun 1965 A
3237809 Daragan et al. Mar 1966 A
3310830 Gattone Mar 1967 A
3314426 Caroll Apr 1967 A
3439674 Lelicoff Apr 1969 A
3602399 Litman et al. Aug 1971 A
3658257 Rood Apr 1972 A
3709235 Washburn et al. Jan 1973 A
3779245 Windsor Dec 1973 A
3780950 Brennan Dec 1973 A
3795351 Lehmann Mar 1974 A
3812854 Michaels et al. May 1974 A
3826258 Abraham Jul 1974 A
3845764 Windsor Nov 1974 A
3901443 Mitsui et al. Aug 1975 A
3906949 Holland Sep 1975 A
3913575 Windsor Oct 1975 A
3934585 Maurice Jan 1976 A
4002168 Petterson Jan 1977 A
4012798 Liautaud Mar 1977 A
4052985 Coleman et al. Oct 1977 A
4067499 Cohen Jan 1978 A
4098431 Palmer et al. Jul 1978 A
D249709 Trovinger Sep 1978 S
4119096 Drews Oct 1978 A
4122556 Poler Oct 1978 A
4131115 Peng Dec 1978 A
4173226 Shell Nov 1979 A
4175704 Cohen Nov 1979 A
4175706 Gerstmann Nov 1979 A
4264837 Gaboriaud Apr 1981 A
4296071 Weiss et al. Oct 1981 A
4319155 Nakai et al. Mar 1982 A
4323530 Voss et al. Apr 1982 A
4338936 Nelson Jul 1982 A
4356528 Coffee Oct 1982 A
4381533 Coffee Apr 1983 A
4388343 Voss et al. Jun 1983 A
4390542 Schachar Jun 1983 A
4398909 Portnoff Aug 1983 A
4465234 Maehara et al. Aug 1984 A
4471890 Dougherty Sep 1984 A
4476515 Coffee Oct 1984 A
4479609 Maeda et al. Oct 1984 A
4493119 Baumann Jan 1985 A
4543096 Keene Sep 1985 A
4544570 Plunkett et al. Oct 1985 A
4564016 Maurice et al. Jan 1986 A
4580721 Coffee et al. Apr 1986 A
4605167 Maehara Aug 1986 A
4605398 Herrick Aug 1986 A
4627845 DeMotte Dec 1986 A
4641384 Landsberger et al. Feb 1987 A
4642581 Erickson Feb 1987 A
4658290 McKenna et al. Apr 1987 A
4659014 Soth et al. Apr 1987 A
4679551 Anthony Jul 1987 A
4685906 Murphy Aug 1987 A
4701167 Chekan Oct 1987 A
4702418 Carter et al. Oct 1987 A
4706848 D'Andrade Nov 1987 A
4740206 Allander Apr 1988 A
4742713 Abe et al. May 1988 A
4750650 Ling Jun 1988 A
4750902 Wuchinich et al. Jun 1988 A
4758237 Sacks Jul 1988 A
4758727 Tomei et al. Jul 1988 A
4759755 Hein et al. Jul 1988 A
4779768 St. Amand Oct 1988 A
4784652 Wikström Nov 1988 A
4790479 Matsumoto et al. Dec 1988 A
4792334 Py Dec 1988 A
4793339 Matsumoto et al. Dec 1988 A
4796807 Bendig et al. Jan 1989 A
4798599 Thomas Jan 1989 A
4809914 Goncalves Mar 1989 A
4815661 Anthony Mar 1989 A
4826025 Abiko et al. May 1989 A
4850534 Takahashi et al. Jul 1989 A
4863073 Burt et al. Sep 1989 A
4863443 Hornung Sep 1989 A
4863457 Lee Sep 1989 A
4871091 Preziosi Oct 1989 A
4877989 Drews et al. Oct 1989 A
4880146 Hudgins Nov 1989 A
4881283 Liautaud Nov 1989 A
4886189 Vanderjagt Dec 1989 A
4896832 Howlett Jan 1990 A
4908024 Py Mar 1990 A
4912357 Drews et al. Mar 1990 A
4917274 Asa et al. Apr 1990 A
4927062 Walsh May 1990 A
4927115 Bahroos et al. May 1990 A
4946452 Py Aug 1990 A
4952212 Booth et al. Aug 1990 A
4961885 Avrahami et al. Oct 1990 A
4969869 Burgin et al. Nov 1990 A
4981479 Py Jan 1991 A
4996502 Endo Feb 1991 A
5007905 Bauer Apr 1991 A
5019037 Wang et al. May 1991 A
5029579 Trammell Jul 1991 A
5030214 Spector Jul 1991 A
5032111 Morris et al. Jul 1991 A
5037012 Langford Aug 1991 A
5040706 Davis et al. Aug 1991 A
5047009 Morris et al. Sep 1991 A
5048727 Vlasich Sep 1991 A
5053000 Booth et al. Oct 1991 A
5054477 Terada et al. Oct 1991 A
5064420 Clarke et al. Nov 1991 A
5066276 Wang Nov 1991 A
5069204 Smith et al. Dec 1991 A
5069675 Menchel et al. Dec 1991 A
5085651 Py Feb 1992 A
5098375 Baier Mar 1992 A
5133702 Py Jul 1992 A
5134993 van der Linden et al. Aug 1992 A
5139496 Hed Aug 1992 A
5145113 Burwell et al. Sep 1992 A
5152435 Stand et al. Oct 1992 A
5152456 Ross et al. Oct 1992 A
5163929 Py Nov 1992 A
5164740 Ivri Nov 1992 A
5170782 Kocinski Dec 1992 A
5171306 Vo Dec 1992 A
5176856 Takahashi et al. Jan 1993 A
5193745 Holm Mar 1993 A
5201726 Kirkham Apr 1993 A
5203506 Gross et al. Apr 1993 A
5226538 Roselle Jul 1993 A
5252318 Joshi et al. Oct 1993 A
5259385 Miller et al. Nov 1993 A
5261601 Ross et al. Nov 1993 A
5265288 Allison Nov 1993 A
5267986 Py Dec 1993 A
5276867 Kenley et al. Jan 1994 A
5299739 Takahashi et al. Apr 1994 A
5316159 Douglas et al. May 1994 A
5318014 Carter Jun 1994 A
5320845 Py Jun 1994 A
5354032 Sims et al. Oct 1994 A
5364405 Zaleski Nov 1994 A
5368582 Bertera Nov 1994 A
5401259 Py Mar 1995 A
5405614 D'Angelo et al. Apr 1995 A
5431663 Carter Jul 1995 A
5435282 Haber et al. Jul 1995 A
5435465 El-Amin Jul 1995 A
5462586 Sugiyama et al. Oct 1995 A
5485828 Hauser Jan 1996 A
5496411 Candy Mar 1996 A
5499751 Meyer Mar 1996 A
D368774 Py Apr 1996 S
5515841 Robertson et al. May 1996 A
5518179 Humberstone et al. May 1996 A
5529055 Gueret Jun 1996 A
D374719 Py Oct 1996 S
5564016 Korenshtein Oct 1996 A
5584823 Valberg Dec 1996 A
5586550 Ivri et al. Dec 1996 A
5588564 Hutson et al. Dec 1996 A
5607410 Branch Mar 1997 A
5613957 Py Mar 1997 A
5614545 Martin et al. Mar 1997 A
5630793 Rowe May 1997 A
5657926 Toda Aug 1997 A
5665079 Stahl Sep 1997 A
5685869 Py Nov 1997 A
5687874 Omori et al. Nov 1997 A
5707636 Rodriguez et al. Jan 1998 A
5724021 Perrone Mar 1998 A
5730723 Castellano et al. Mar 1998 A
5735811 Brisken Apr 1998 A
5740947 Flaig et al. Apr 1998 A
5746728 Py May 1998 A
5758637 Ivri et al. Jun 1998 A
5803106 Cohen et al. Sep 1998 A
5807357 Kang Sep 1998 A
5823428 Humberstone et al. Oct 1998 A
5838350 Newcombe et al. Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5855322 Py Jan 1999 A
5881956 Cohen et al. Mar 1999 A
5893515 Hahn et al. Apr 1999 A
5894841 Voges Apr 1999 A
5938117 Ivri Aug 1999 A
D413668 Mannberg et al. Sep 1999 S
5957943 Vaitekunas Sep 1999 A
5970974 Van Der Linden et al. Oct 1999 A
5996903 Asai et al. Dec 1999 A
5997518 Laibovitz et al. Dec 1999 A
6008468 Tanaka et al. Dec 1999 A
6027450 Brown Feb 2000 A
6039565 Chou et al. Mar 2000 A
6062212 Davison et al. May 2000 A
6083922 Montgomery Jul 2000 A
6085740 Ivri et al. Jul 2000 A
6135427 Tsai Oct 2000 A
6152383 Chen Nov 2000 A
6159188 Laibovitz et al. Dec 2000 A
6193683 Ludin et al. Feb 2001 B1
6203759 Pelc et al. Mar 2001 B1
6216966 Prendergast et al. Apr 2001 B1
6221038 Brisken Apr 2001 B1
6228046 Brisken May 2001 B1
6235024 Tu May 2001 B1
6254579 Cogger et al. Jul 2001 B1
6254587 Christ et al. Jul 2001 B1
6263872 Schuster et al. Jul 2001 B1
6273342 Terada et al. Aug 2001 B1
6296626 Stein Oct 2001 B1
6318361 Sosiak Nov 2001 B1
6336917 Berke Jan 2002 B1
6341732 Martin et al. Jan 2002 B1
6357442 Casper et al. Mar 2002 B1
6357671 Cewers Mar 2002 B1
6367685 Jiang et al. Apr 2002 B1
6394363 Arnott et al. May 2002 B1
6398737 Moore et al. Jun 2002 B2
6398766 Branch Jun 2002 B1
6422431 Pelc et al. Jul 2002 B2
6423040 Benktzon et al. Jul 2002 B1
6425888 Embleton et al. Jul 2002 B1
6427682 Klimowicz et al. Aug 2002 B1
6442423 Domb et al. Aug 2002 B1
6443146 Voges Sep 2002 B1
6467476 Ivri et al. Oct 2002 B1
6524287 Cogger Feb 2003 B1
6526976 Baran Mar 2003 B1
6530370 Heinonen Mar 2003 B1
6540153 Ivri Apr 2003 B1
6540154 Ivri et al. Apr 2003 B1
6543443 Klimowicz et al. Apr 2003 B1
6546927 Litherland et al. Apr 2003 B2
6550472 Litherland et al. Apr 2003 B2
6554201 Klimowicz et al. Apr 2003 B2
6554801 Steward et al. Apr 2003 B1
6569131 Michael et al. May 2003 B1
6569387 Furner et al. May 2003 B1
6601581 Babaev Aug 2003 B1
6610033 Melanson et al. Aug 2003 B1
6612302 Rand Sep 2003 B1
6615824 Power Sep 2003 B2
6619562 Hamaguchi et al. Sep 2003 B2
6622720 Hadimioglu Sep 2003 B2
6629646 Ivri Oct 2003 B1
6640804 Ivri et al. Nov 2003 B2
6650935 Watmough Nov 2003 B1
6651650 Yamamoto et al. Nov 2003 B1
6659364 Humberstone et al. Dec 2003 B1
6669961 Kim et al. Dec 2003 B2
6676034 Tanaka et al. Jan 2004 B2
6679436 Onishi et al. Jan 2004 B1
6684681 Zombo Feb 2004 B1
6684879 Coffee et al. Feb 2004 B1
6719770 Laufer et al. Apr 2004 B2
6732944 Litherland et al. May 2004 B2
6736904 Poniatowski et al. May 2004 B2
6740107 Loeb et al. May 2004 B2
6748944 Della Vecchia et al. Jun 2004 B1
6761286 Py et al. Jul 2004 B2
6789741 Varanasi et al. Sep 2004 B2
6814071 Klimowicz et al. Nov 2004 B2
6851626 Patel et al. Feb 2005 B2
6854662 Chen Feb 2005 B2
6863224 Terada et al. Mar 2005 B2
6877642 Maddox et al. Apr 2005 B1
6885818 Goldstein Apr 2005 B2
6901926 Yamamoto et al. Jun 2005 B2
6913205 Cornet et al. Jul 2005 B2
6921020 Ivri Jul 2005 B2
6926208 Ivri Aug 2005 B2
6946117 Schutt et al. Sep 2005 B1
6964647 Babaev Nov 2005 B1
6969165 Olsen Nov 2005 B2
6974450 Weber et al. Dec 2005 B2
6976279 Berke et al. Dec 2005 B1
6976969 Messerly Dec 2005 B2
6978945 Wong et al. Dec 2005 B2
7017573 Rasor et al. Mar 2006 B1
7032590 Loeffler et al. Apr 2006 B2
7040549 Ivri et al. May 2006 B2
7066398 Borland et al. Jun 2006 B2
7081757 Unsworth et al. Jul 2006 B2
7083112 Ivri Aug 2006 B2
7104463 Litherland et al. Sep 2006 B2
7108197 Ivri Sep 2006 B2
7121275 Noolandi et al. Oct 2006 B2
D533658 Collins, Jr. et al. Dec 2006 S
7153315 Miller Dec 2006 B2
7161269 Kayama et al. Jan 2007 B2
7168633 Wang et al. Jan 2007 B2
D537160 Lowell Feb 2007 S
7174888 Ivri et al. Feb 2007 B2
7192129 Droege et al. Mar 2007 B2
7201732 Anderson et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7229028 Chen et al. Jun 2007 B2
7234460 Greenleaf et al. Jun 2007 B2
7314187 Hochrainer et al. Jan 2008 B2
7316067 Blakey Jan 2008 B2
7331339 Smith et al. Feb 2008 B2
7357133 Goodchild Apr 2008 B2
7472701 Pfichner et al. Jan 2009 B2
D597206 Collins, Jr. et al. Jul 2009 S
7574787 Xu et al. Aug 2009 B2
7678089 Py et al. Mar 2010 B2
7712466 Addington et al. May 2010 B2
7819115 Sexton et al. Oct 2010 B2
7883031 Collins, Jr. et al. Feb 2011 B2
8012136 Collins, Jr. et al. Sep 2011 B2
20010025190 Weber et al. Sep 2001 A1
20010049608 Hochman Dec 2001 A1
20010056258 Evans Dec 2001 A1
20020016576 Lee Feb 2002 A1
20020039502 Matsumoto et al. Apr 2002 A1
20020043262 Langford et al. Apr 2002 A1
20020073989 Hadimioglu Jun 2002 A1
20020074362 Py et al. Jun 2002 A1
20020107492 Brach et al. Aug 2002 A1
20020121285 Poniatowski et al. Sep 2002 A1
20020124843 Skiba et al. Sep 2002 A1
20020161344 Peclat et al. Oct 2002 A1
20030032930 Branch Feb 2003 A1
20030078551 Hochrainer et al. Apr 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030144594 Gellman Jul 2003 A1
20030185892 Bell et al. Oct 2003 A1
20030192532 Hopkins Oct 2003 A1
20040010239 Hochrainer et al. Jan 2004 A1
20040039355 Gonzalez et al. Feb 2004 A1
20040045547 Yamamoto et al. Mar 2004 A1
20040050953 Terada et al. Mar 2004 A1
20040082884 Pal et al. Apr 2004 A1
20040164099 Diestelhorst et al. Aug 2004 A1
20040176757 Sinelnikov et al. Sep 2004 A1
20040186384 Babaev Sep 2004 A1
20040204674 Anderson et al. Oct 2004 A1
20040256487 Collins, Jr. et al. Dec 2004 A1
20050001981 Anderson et al. Jan 2005 A1
20050029307 Py et al. Feb 2005 A1
20050077315 Pavlu et al. Apr 2005 A1
20050077392 Geser et al. Apr 2005 A1
20050089545 Kuwano et al. Apr 2005 A1
20050195598 Dancs et al. Sep 2005 A1
20050199236 Fink et al. Sep 2005 A1
20050240162 Chen et al. Oct 2005 A1
20050244339 Jauernig et al. Nov 2005 A1
20050261641 Warchol et al. Nov 2005 A1
20050263608 Ivri Dec 2005 A1
20050275310 Ripoll Dec 2005 A1
20050279350 Rasor et al. Dec 2005 A1
20060024374 Gasco et al. Feb 2006 A1
20060057216 Salamone et al. Mar 2006 A1
20060174869 Gumaste et al. Aug 2006 A1
20060196518 Hon Sep 2006 A1
20060201501 Morrison et al. Sep 2006 A1
20060209129 Onozawa Sep 2006 A1
20060213503 Borgschulte et al. Sep 2006 A1
20060258993 Hochrainer et al. Nov 2006 A1
20070023547 Borland et al. Feb 2007 A1
20070044792 Ivri Mar 2007 A1
20070113841 Fuchs May 2007 A1
20070119968 Collins, Jr. et al. May 2007 A1
20070119969 Collins, Jr. et al. May 2007 A1
20070211212 Bennwik Sep 2007 A1
20080017189 Ruckdeschel et al. Jan 2008 A1
20080097359 Hochrainer et al. Apr 2008 A1
20080142624 Ivri et al. Jun 2008 A1
20080164339 Duru Jul 2008 A1
20080233053 Gross et al. Sep 2008 A1
20080299049 Stangl Dec 2008 A1
20080303850 Shin et al. Dec 2008 A1
20080308096 Borgschulte et al. Dec 2008 A1
20090025713 Keller et al. Jan 2009 A1
20090114742 Collins, Jr. May 2009 A1
20090149829 Collins, Jr. Jun 2009 A1
20090192443 Collins, Jr. et al. Jul 2009 A1
20090212133 Collins, Jr. et al. Aug 2009 A1
20100044460 Sauzade Feb 2010 A1
20100211408 Park et al. Aug 2010 A1
20100222752 Collins, Jr. Sep 2010 A1
20100283601 Tai et al. Nov 2010 A1
20120143152 Hunter et al. Jun 2012 A1
Foreign Referenced Citations (52)
Number Date Country
196 16 300 Oct 1997 DE
19616300 Oct 1997 DE
199 34 582 Jan 2001 DE
0 011 269 May 1980 EP
0 150 571 Aug 1985 EP
0 224 352 Jun 1987 EP
0 389 665 Oct 1990 EP
0 590 165 Apr 1994 EP
0 823 246 Feb 1996 EP
0 933 138 Aug 1999 EP
1493410 Jan 2005 EP
EP 1 493 410 Jan 2005 EP
1 271 341 Jul 1961 FR
558866 Jul 1942 GB
1 569 707 Jul 1980 GB
I293898 Jul 1994 TW
WO 8500761 Feb 1985 WO
WO 9112687 Aug 1991 WO
WO 9114468 Oct 1991 WO
WO 9413305 Jun 1994 WO
WO 9423788 Oct 1994 WO
WO 9705960 Feb 1997 WO
WO 9712687 Apr 1997 WO
WO 9819383 May 1998 WO
WO 9917888 Apr 1999 WO
WO 0018455 Apr 2000 WO
WO 0066277 Nov 2000 WO
WO 0103645 Jan 2001 WO
WO 0119437 Mar 2001 WO
WO 0158236 Aug 2001 WO
WO 0185245 Nov 2001 WO
WO 0228545 Apr 2002 WO
WO 02055131 Jul 2002 WO
02062488 Aug 2002 WO
WO 02062488 Aug 2002 WO
WO 02072169 Sep 2002 WO
WO 03002045 Jan 2003 WO
WO 03002265 Jan 2003 WO
WO 03026556 Apr 2003 WO
WO 03097139 Nov 2003 WO
2004028420 Apr 2004 WO
WO 2004028420 Apr 2004 WO
WO 2004050065 Jun 2004 WO
WO 2004103478 Dec 2004 WO
WO 2004105864 Dec 2004 WO
WO 2006006963 Jan 2006 WO
WO 2006082588 Aug 2006 WO
WO 2008015394 Feb 2008 WO
2009148345 Dec 2009 WO
WO 2009148345 Dec 2009 WO
WO 2012009696 Jan 2012 WO
WO 2012009706 Jan 2012 WO
Non-Patent Literature Citations (19)
Entry
“Alcon®: Sharing One Vision,” 2009 Annual Report, 46 pages (2009).
Conover (Ed.), “View into the Future of Ophthalmology Treatments,” Healthcare Observer, 1(8):2-37 (2009).
Dhand, “Nebulizers That Use a Vibrating Mesh or Plate with Multiple Apertures to Generate Aerosol,” Respir Care, 47(12):1406-1418 (2002).
Donnelly et al., “Using ultrasonic atomization to produce and aerosol of micron-scale particles,” Review of Scientific Instruments, 76:113301-1-113301-10 (2005).
Durnan et al., “Gold-Chlorine and Gold-Bromine Equilibria in Fused Salts,” The Journal of Physical Chemistry, 68(4):847-850 (1964).
Galambos et al., “Drop ejection utilizing sideways actuation of a MEMS piston,” Sensors and Actuators A, 141:182-191 (2008).
Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborene Particles, pp. 42-71, 11-119, & 294-301 (1999).
Instruction Manual for Omron® Model NE-U03V MicroAir® Nebulizer, 20 pages (No date).
International Search Report mailed on Dec. 12, 2011, in International Application No. PCT/US2011/044291.
International Search Report mailed on Dec. 13, 2011, in International Application No. PCT/US2011/044286.
Product Description for Xalatan®: Iatanoprost ophthalmic solution, Pfizer Manufacturing, Belgium, NV, 8 pages (2009).
Quigley, “Improving Eye Drop Treatment for Glaucoma through Better Adherence,” Optometry and Vision Science, 85(6):374-375 (2008).
Ranade et al., “Chapter seven: Intranasal and ocular drug delivery,” Drug Delivery Systems: Second Edition, CLC Press, 39 pages (2004).
Rosen et al., “Printing High Viscosity Fluids Using Ultrasonic Droplet Generation,” The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, pp. 239-253 (2008).
Shidhaye et al., “Novel drug delivery devices,” Pharma Times, 38(7):24-27 (2006).
Tamilvanan et al., “The potential of lipid emulsion for ocular delivery of lipophilic drugs,” European Journal of Pharmaceutics and Biopharmaceutics, 58:357-368 (2004).
Xia et al., “A potential application of a piezoelectric atomiser for ophthalmic drug delivery,” BOB, 4(1):9-17 (2007).
Yee et al., “Trends in Glaucoma Treatment,” EyeWorld Educational Symposium, San Francisco, 8 pages (2006).
Yuan et al., “MEMS-based piezoelectric array microjet,” Microelectronic Engineering, 66:767-772 (2003).
Related Publications (1)
Number Date Country
20120062840 A1 Mar 2012 US
Provisional Applications (13)
Number Date Country
61400864 Jul 2010 US
61401850 Aug 2010 US
61401920 Aug 2010 US
61401918 Aug 2010 US
61401848 Aug 2010 US
61401849 Aug 2010 US
61462576 Feb 2011 US
61462791 Feb 2011 US
61463280 Feb 2011 US
61516462 Apr 2011 US
61516496 Apr 2011 US
61516495 Apr 2011 US
61516694 Apr 2011 US