The disclosure relates to medical systems and methods. In particular, it relates to medical database, remote monitoring, diagnosis and treatment systems and methods.
The monitoring, diagnosis and treatment of various conditions, disorders and diseases, such as eye conditions, disorders, diseases, etc., typically involve the regular physical intervention by a medical professional, requiring the subject to make an appointment and visit the doctor's or practitioner's offices. On the part of the subject, this involves travel time to the doctor and back, a waiting period and typically a face-to-face discussion with a nurse practitioner or doctor's assistant, followed by a discussion and examination by a doctor. Insofar as the subject is issued with a prescription, he or she then has to proceed to a pharmacy, wait for the prescription to be filled and finally proceed home. Thus, the treatment and monitoring of subjects is a highly time-consuming exercise.
From the practitioner's or provider's perspective, the number of subjects he or she can see is limited by the face-to-face time with each subject to discuss the subject's condition, arrange slip lamps and other scanning devices, examine the subject, update the subject's records and record the tests conducted for compliance and insurance purposes.
Even when subjects are scheduled for follow-up examinations pursuant to the use of certain medications, the practitioner merely has the opportunity to determine whether there is a change in the subject's condition, but still remains unable to verify whether or not the subject has regularly taken the medication and has done so in the correct dose. This equally applies to veterinary doctors. Thus, notwithstanding the time-consuming nature of in-person examinations, the decisions that can be drawn from the analysis remain largely speculative and inconclusive.
Thus, comparisons to prior results of a particular subject, and comparisons to other subjects treated with the same drugs, can only act as an approximation due to the many unknowns. The inaccuracies in the results may be ascribed to both human error and the limitations of current dispensing devices. An additional problem is that subjects may forget to dose or double-dose or cross-dose with other medications. Even when subjects administer medication correctly (or have the medication correctly administered), current technology does not provide a satisfactory way of controlling the amount of medication that is dispensed, nor does it provide a way of ensuring that the medication that is dispensed actually reaches the eye and remains in the eye.
Current approaches fail to provide an accurate way of monitoring the administration of medication and dosages. The present disclosure addresses such shortcomings in addition to others.
In one aspect, according to the disclosure, there is provided a system for monitoring a subject, e.g., for compliance with a dosing regimen, for analysis of treatment, for diagnosis, etc., the system generally comprising at least one ejector device configured for administering a stream of droplets to the eye of a subject in need thereof, wherein the ejector device comprises a memory for storing subject-specific data and a communication interface for communicating said stored data. In certain embodiments, the system further comprises a docking station configured to interface with the ejector device and to communicate with said ejector device. In certain embodiments, the system comprises at least one database or server in communication with said ejector device. In some embodiments, the ejector device is in communication with said database or server via the docking station.
In another embodiment, methods are provided which generally include: (1) administering a stream of droplets to the eye of a subject in need thereof using an ejector device as described herein; and (2) storing data in a memory of the device, the data relating to, e.g., dosing regimen information, image information, etc. In certain embodiments, the method may further include (3) communicating the stored data from the ejector device, e.g., to a docking station, database or server, and/or user terminal. The communicated data may then be stored in memory in the docking station, the database or server, or in a memory on the user terminal. In yet other embodiments, the data communicated from the device (e.g., from the docking station, database or server, or via the user terminal) may be reviewed and analyzed. Based on such review and analysis, in one embodiment, the method may include adjusting dosages and medicaments as needed.
In another embodiment, the ejector device may include an image capturing device, and the method may include communicating image information (e.g., ocular image information). The method may include reviewing and analyzing the image information to diagnose the subject, e.g., by comparing image information to previous images obtained from the same subject or to images obtained from other subjects.
In another embodiment, approved providers may sign onto the system and through a user interface set parameters, with, for example, a look-up table, that the device will read to adjust dosage amounts, dosage timing and other reminders.
A major concern in medical treatment of glaucoma, is the failure by subjects to regularly take their medication. Subjects either forget to take the medication or fail to take the correct dosage, e.g., to get the correct number of drops into the eye due to the difficulty of using a conventional eye dropper. In part, to address issues encountered with the use of conventional eye droppers, ejector devices, such as those described in U.S. Patent Publication No. 2011/0143152 filed concurrently herewith, entitled Drop-Generating Device, the contents of which are herein incorporated by reference in their entirety may be used in connection with the present disclosure.
As described in U.S. Patent Publication No. 2012/0143152, again herein incorporated by reference in its entirety, the ejector device may generally be device for delivering a fluid to an eye of a subject. For instance, the device may comprise: a housing; a reservoir disposed within the housing for receiving a volume of ophthalmic fluid; and an ejector mechanism configured to eject a stream of droplets to the eye of a subject upon activation of the device by a user. The ejected stream of droplets may have an average ejected droplet diameter greater than 15 microns and a low entrained airflow such that the ejected stream of droplets is deposit on the eye of the subject during use. In certain embodiments, the ejector device includes a piezo electric ejector mechanism comprising an ejector plate having a first surface coupled to a fluid delivery area of the reservoir and including a plurality of openings formed through its thickness, and a piezo electric actuator coupled to a second surface of the ejector plate, the piezo electric actuator operable to oscillate the ejector plate at a frequency and generate the ejected stream of droplets.
In another aspect, the disclosure provides a device for administering a fluid to the eye, such as an eye medication (e.g., anti-histamine) eye solution, eye lubricant or eye wetting agent, pupil dilator, fluorescein, anesthetic, suspended solid, etc., in a stream of droplets to the eye. However, the disclosure is not limited to use in connection with administration to the eye. For instance, other topical, inhaled, parenteral, oral, etc., delivery routes are envisioned as within the scope of the present disclosure. In one embodiment, the disclosure may be implemented using a device or applicator in the form of a thermal ejector, ultrasonic ejector, or piezo ejector generating ejected fluid droplets.
In one embodiment, an ejector device is provided with a memory for storing data such as subject-related information, e.g., dosing regimen information, etc. Any suitable memory or data storage media may be used, in certain embodiments, such memory may be in the form of a Flash memory drive with a universal serial bus (USB) port, which allows communication with a processing device, computer or user terminal. The Flash memory device (FMD) in one embodiment is preprogrammed to include its own user interface, which may be implemented as a graphical user interface (GUI). The FMD may include content data, e.g., subject information data, and applications. The GUI may include links for accessing at least some of the content data remotely. The GUI may also include Internet links, typically in the form of Web links. The FMD may be operable to launch a browser when an Internet link is clicked. The browser may be a browser that is installed on the processing device, computer or user terminal with which the FMD is in communication. Instead, a browser may be locally stored on the FMD or may be downloaded from a server. The FMD may be implemented to launch the browser automatically when the FMD is in communication with a processing device, computer, or user terminal, if such device, etc., is detected to have Internet access, or the browser may be launched manually by the user, e.g., by clicking an Internet link. In certain embodiments, the processing device, computer, user terminal, etc., may include a desktop computer, laptop, Personal Digital Assistant (PDA), smartphone, etc.
In certain embodiments, the ejector device may include an a controller or processor for controlling the dosing of a medicament (L e., dosing regimen). In order to ensure proper use by the subject, the controller may control dispensing of one or more medications to correspond to defined dosing times and dosing amounts and may monitor the amount of fluid dispensed during each dosing time to ensure delivery of the full dose. Such information may then be stored in the memory of the ejector device. The controller may also be programmed with dosage information (e.g., by a medical professional) and may be updated remotely to include new dosing information or new medication information, if needed.
More specifically, in one embodiment, with reference to
The subject is notified when a dose needs to be taken, or a missed dose is detected. In an embodiment, a controller, processor or other programmable means (not shown) may be programmed with dosage and treatment regimen information to send a signal to the speaker 110 and/or LED 112 at the time a dose needs to be taken. In another embodiment, the device 100 alarm may be remotely initiated, e.g., by cell-phone, remote calendar, etc. Device 100 also may include a targeting mechanism 130 to aid in aligning dosing of the device. In certain aspects, targeting mechanism may be a low-intensity light beam, e.g., a low-intensity or filtered light emitting diode (LED) which emits a beam when, e.g., the ejector device is activated. In certain embodiments, the light beam may be configured to shine into the user's eye when the ejector device is correctly aligned with the eye. In other embodiments, ejector device 100 may include one or more illuminating devices, e.g., LEDs or other illuminating devices in addition to the targeting device 130, capable at illuminating at varying desired wavelengths. In certain instances, such illuminating devices may be useful in treatment or diagnosis of subjects alone or in connection with administration of agents (e.g., pupil-dilating agents, dyes, therapeutic agents, etc.). Alternatively, illuminating devices may be used in connection with image capture device 150 (below) to aid in obtaining quality image capture.
By way of example, the ejector device may include one more illuminating devices of varying wavelengths such as a red light, blue light, green light, white light, and/or IR light, which may be implemented by making use of LEDs. Monochromatic light sources may be used for monochromatic fundus imaging, preferably below 540 nm wavelength. This involves the imaging of the ocular fundus with the use of colored or monochromatic illumination to enhance the visual contrast of anatomical details of the fundus.
The device may also include an image capture device for obtaining images of the eye or structures of the eye (e.g., retina, pupil, cornea, etc.). By way of example, in the embodiment of
In some embodiments, the image capture device may be utilized to detect the presence of an eye and to ensure that the eye is open and/or that correct alignment of the eye is detected. The image capture device may provide information to the controller or processor, which, in one embodiment, provides a signal to initiate activation of the ejector device when opening of the eye and/or correct alignment of the eye, is detected. Alternatively, a reflective surface mounted on or incorporated within the ejector device, or an infra-red (IR) transmitter (e.g., IR LED) and photo detector may be mounted on the front surface of the ejector device (not shown). In certain aspects, the IR transmitter may transmit an infra-red beam or pulse, which is received by an IR photo detector when the ejector device is correctly aligned with the eye, and the IR beam or pulse is reflected off the eye and the beam or pulse is reflected to the IR photo detector.
In one embodiment, the ejector device described herein provides a user, e.g., a medical professional and/or subject, information regarding a subject's compliance with a particular dosage regimen. In one embodiment, the device includes a memory and controller, processor, etc., further includes software, programmable executable code, etc., to store information regarding dosing, e.g., the dates and times that the device is used and the volumes ejected. This information may be stored on a memory chip or other suitable memory storage media for subsequent retrieval. In certain implementations, the information may be retrieved via an input/output (I/O) port or wireless interface, such as a Universal Serial Bus (USB), an Infrared Data Association IrDA interface, a Bluetooth transceiver, etc.
It will be appreciated that the disclosure has been described with respect to different embodiments of the ejector device; however, the invention is not limited to the specific embodiments, but can be implemented in different ways without departing from the scope of the disclosure.
In another embodiment, the ejector device may communicate with a docking station. For example, with reference to
Docking station 200 may also include charging contacts (not shown) to engage with receiving contacts on the device to charge re-chargeable batteries in the device, if desired. In certain embodiments, the data may be stored in memory in the docking station 200. The docking station 200 may also be in communication, either wired or wirelessly, with a private or public network, e.g., via the I/O port or wireless interface of the docking station. In certain embodiments, data stored in memory of the device may be transferred or communicated, via the docking station and/or the I/O port of the device, and via a network to a remote server for storage in a remote memory or database.
In accordance with certain embodiments of the invention, the docking station may include a processor or controller, which in certain embodiments, may comprise software or computer executable code that enable functionality/diagnostics checks of the operation of the ejector device when the ejector device is in communication with the docking station, or at predetermined time intervals, etc.
In other embodiments (not shown), the docking station may include tactile, visual, and/or audible alarms. Such alarms may provide dosing reminders to a user, both on an automated treatment and a corrective treatment basis (e.g., based automated dosing regimen reminders and reminders if doses are missed). As explained herein, a medical professional may communicate with the ejector device through the communication interface of the docking station, or may communicate directly with the ejector device (e.g., to modify dosing regimen).
In another embodiment, a system including at least one ejector device and an optional docking station is provided. The systems of the present disclosure may also include the ability to communicate, e.g., via a communication network to a database or server, or user terminal. In one embodiment, a system for monitoring subject compliance with a dosing regimen is provided. Such systems can further be utilized to monitor and analyze treatment and, e.g., adjust dosing regimens accordingly, as discussed herein. Further, such systems may be used to diagnosis subjects based on data collected. The system generally comprising an ejector device configured for administering a stream of droplets to the eye of a subject in need thereof, wherein the ejector device comprises a memory for storing subject specific data and a communication interface for communicating the stored data. In some embodiments, the ejector device comprises an image capture device. In certain embodiments, the system further comprises a docking station configured to interface with the ejector device and to communicate with the ejector device.
In certain embodiments, the system comprises one or more databases or servers in communication with the ejector device(s). The databases or servers are configured to store data received from the ejector device, the docking station, or combinations thereof In some embodiments, the ejector device is in communication with the database or server via the docking station. In certain embodiments, the database or server may be a compliance database or an adherence database. The database or server may store one or more medical records for a user of the ejector device, and the record may include data collected by the ejector device. In certain embodiments, the database may be integrated with an Electronic Medical Record (EMR) system, as the term is understood by those of skill in the art.
By way of example,
Although the example of
In certain embodiments, a user may access, review and/or analyze data from an ejector device, database, server, etc., via a user interface such as a graphical user interface (GUI) on a computer in communication with the device, database, server, etc. Exemplary GUI embodiments are illustrated in
In certain embodiments, the systems and ejector devices described herein allow for the remote monitoring of one or more subjects, and may allow a medical professional to remotely diagnosis, treat and adjust treatment as needed. By way of example, the systems and ejector devices may allow for the capturing, storage, and communication of data related to dosing regimen compliance information, image information, etc., which information may be reviewed and analyzed. If desired, the information may be compared to earlier information related to the same subject, information from multiple subjects (i.e., information from multiple subjects may be stored in a central database and compared based on demographics information about the users, dosage and type of medicament, etc.).
In yet another embodiment, methods are provided which generally include: (1) administering a stream of droplets to the eye of a subject in need thereof using an ejector device, such as those described herein; and (2) storing data in a memory of the device, the data relating to, e.g., dosing regimen information, image information, etc. In certain embodiments, the method may further including (3) communicating the stored data from the ejector device, e.g., to a docking station, database or server, and/or user terminal. The communicated data may then be stored in memory in the docking station, the database or server, or in a memory on the user terminal. In yet other embodiments, the data communicated from the device (e.g., from the docking station, database or server, or via the user terminal) may be reviewed and analyzed. Based on such review and analysis, in one embodiment, the method may include adjusting dosages and medicaments as needed. In one example, if desired results are not observed in the data, the dosage regimen may be increased (dosage amounts, number of dosages, etc.). Alternatively, if results indicate such, the dosage regimen may be decreased. In yet another embodiment, the ejector device may include two or more medicaments, wherein a first medicament is used and monitored for a first period of time and if the desired results are not achieved, administration is changing to a second or third medicament.
In another embodiment, the ejector device may include an image capturing device, and the method may include communicating image information (e.g., ocular image information). The method may include reviewing and analyzing the image information to diagnose the subject, e.g., by comparing image information to previous images obtained from the same subject or to images obtained from other subjects. In some embodiments, image information may be obtained independently of administration of a stream of droplets, prior to such administration, concurrently with such administration, subsequent to such administration, or a combination thereof.
In one embodiment, a method for monitoring ophthalmic subjects is provided. The method generally includes administering a stream of droplets to the eye of a subject in need thereof using an ejector device described herein (e.g., a device including a memory for storing subject-specific data and a communication interface for communicating said stored data); and storing said data in the memory of the device. The method can further include analyzing the communicated data from the ejector device and adjusting administration of the stream of droplets to the eye of the subject as needed, based on said analysis.
In other embodiments, the method includes receiving subject-specific data from an ejector device, the ejector device configured for administering a stream of droplets to the eye of a subject in need thereof; storing the data in at least one database; analyzing the stored data; and adjusting administration of the stream of droplets to the eye of the subject as needed, based on said analysis.
In yet other embodiments, the ejector device may further include an image capturing device for capturing images of the eye of the subject. The method may further include capturing images of the subject's eye; and storing the images in the memory of the device.
In one embodiment, the subject is being treated for glaucoma, and the stream of droplets administered to the eye comprises a medicament for the treatment of glaucoma. In certain embodiments, the subject-specific data includes dosing regimen information related to the treatment of glaucoma, information related to the subject's compliance with the dosing regimen, etc.
In yet another embodiment, a method for diagnosis of ophthalmic subjects is provided. The method generally includes: capturing images of a subject's eye using an ejector device; storing the images in the memory of the device; and analyzing the images to thereby diagnose the subject based, at least in part, on analysis of said images.
In another embodiment, methods for the diagnosis for glaucoma are provided, which typically include the exertion of pressure on the cornea, e.g., Goldmann applanation tonometry, and which involves the application of Fluress® (comprising a fluorescent agent, an anesthetic, a preservative, and a wetting agent and stabilizing agent), followed by the applanation using a 3.06 mm2 device. For intraocular pressures of 20 mmHg or less, the accuracy of the measurement should be within +0.5 and −0.5 mmHg The present disclosure provides a method for diagnosis of glaucoma, generally comprising applying pressure to avoid the use of an applanation device. By ejecting a selectable number of droplets of liquid, e.g., saline solution onto the eyeball from a defined distance, the pressure exerted on the cornea and intraocular pressure can be determined based on the deformation, which can be captured by the image capture device. In one embodiment, a reservoir includes a saline compartment, which is manually selectable by means of a selector switch mounted on the device, or the saline compartment is selected by having the physician upload medication type and dose information that selects a certain number of droplets of saline solution to define a certain pressure. Feedback information captured by the image capture device may be uploaded to the database or server, to allow the doctor to diagnose the condition and either adjust the pressure of a second ejection cycle or schedule a follow-up appointment for the subject.
In certain embodiments, the systems and methods of the disclosure may be used to monitor the treatment of chronic problems such as glaucoma. Stored data may be reviewed and analyzed, e.g., to evaluate patient compliance, to evaluate efficacy of dosing regimen, to determine necessary changes to dosing regimen, and to implement changes as needed.
The systems and methods of the present disclosure may also be used for situational applications, such as the delivery of medication after cataract or other ophthalmic surgery to facilitate self-administration of prescribed medications at defined times and defined dosages. Other embodiments include, but are not limited to: conjunctivitis treatments; allergy treatments; saline application for those who wear contact lenses; sore, irritated, red-eye treatments; application of dilation medications; decongestants that shrink or constrict blood vessels and cause the eye to whiten; corticosteroids such as Prednisolone®, Dexamethasone®, Hydrocortisone®, Fluoromethalone®, Medrysone®, Rimexolone®, etc.
In the case of medicaments where the exact or low dosage is of importance, the systems and methods of the disclosure may be of particular use. For instance, some of the medications that can be dispensed using the device of the invention include, but are not limited to: glaucoma medications such as ocular hypotensive agents for glaucoma, including but not limited to the prostaglandin analogues, such as Xalatan® (latanoprost) by Pfizer, Lumigan® (bimatroprost,) by Allergan, Travatan® (travoprost) by Alcon may be applied; alpha agonists such as Alphagan® P (brimonidine) by Allergan, and Combigan® (brimonidine/timolol) by Allergan, and beta blockers such as Timolol®; carbonic anhydrase inhibitors such as Trusopt® (dorzolamide) by Merck, Cosopt® (dorzolamide/timolol) by Merck, and Azopt® (brinzolamide) by Alcon; antibiotics such as “4th Generation” Fluoroquinolones for perioperative infection prophylaxis); Zymar® (gatifloxacin) by Allergan; Vigamox® (moxifloxacin) by Alcon; anti-inflammatory such as steroids like Prednisolone® acetate 1%-generic, Pred forte® by Allergan, Omnipred® by Alcon, and Difluprednate (Durezol®) by Alcon; non-steroidal such as Acuvail® (ketorolac) by Allergan, Xibrom® (bromfenac) by Ista; Nevanac® (nepafenac) by Alcon, and Ketorolac®; combination antibiotic/steroid preparations frequently used for post operative subjects, including Tobradex® (tobramycin/dexametasone solution, Alcon); etc.
As discussed herein, medicaments are generally discussed in the context of ophthalmic medication including a therapeutically active agent. However, medicaments are not so limited and include all ophthalmic liquids, such as an eye medication (e.g., anti-histamine) eye solution, eye lubricant or eye wetting agent, pupil dilator, fluorescein, anesthetic, etc.
In another embodiment, providers can get onto the system and through a user interface, set parameters of a database so that the device will read to adjust dosage amounts, dosage timing and other reminders. Additionally, with patient-identifying information removed, such as for example in accordance with HIPAA privacy policies, this database becomes a significant asset for example to pharmaceutical companies for data mining and insurance companies for underwriting. Once patient-identifying data is scrubbed, a host of reports can be generated for interested parties. Indeed, the capabilities of this database, in combination with the device, promise a new standard of care in the industry, providing a comprehensive solution to improve overall compliance/adherence, minimize office visits, reduce probability of blindness due to glaucoma and improve quality of life.
The present disclosure has been disclosed with reference to specific embodiments. It will, however, be appreciated that the invention is not so limited.
The present application claims the benefit of the filing date of U.S. Provisional Application No. 61/400,864, filed Jul. 15, 2010, U.S. Provisional Application No. 61/401,850, filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,920 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,918 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,848 filed Aug. 20, 2010, U.S. Provisional Application No. 61/401,849 filed Aug. 20, 2010, U.S. Provisional Application No. 61/462,576 filed Feb. 4, 2011, U.S. Provisional Application No. 61/462,791 filed Feb. 5, 2011, U.S. Provisional Application No. 61/463,280 filed Feb. 15, 2011, U.S. Provisional Application No. 61/516,462, filed Apr. 4, 2011, U.S. Provisional Application No. 61/516,496 filed Apr. 4, 2011, U.S. Provisional Application No. 61/516,495 filed Apr. 4, 2011, and U.S. Provisional Application No. 61/516,694, filed Apr. 6, 2011, the entire contents of each of which is specifically hereby incorporated by reference for all purposes. The present application is also related to U.S. Provisional Application No. 61/396,531 filed May 28, 2010, the entire contents of which is specifically hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1482747 | Howe | Feb 1924 | A |
1988637 | Tinkham | Jan 1935 | A |
2189643 | Ward | Feb 1940 | A |
2200008 | Nowak | May 1940 | A |
2249608 | Greene | Jul 1941 | A |
2322808 | Hothersall | Jun 1943 | A |
2552857 | Knapp | May 1951 | A |
2595317 | White | May 1952 | A |
2987439 | Wittlinger | Jun 1961 | A |
3170462 | Hall | Feb 1965 | A |
3187757 | Jones et al. | Jun 1965 | A |
3237809 | Daragan et al. | Mar 1966 | A |
3310830 | Gattone | Mar 1967 | A |
3314426 | Caroll | Apr 1967 | A |
3439674 | Lelicoff | Apr 1969 | A |
3602399 | Litman et al. | Aug 1971 | A |
3658257 | Rood | Apr 1972 | A |
3709235 | Washburn et al. | Jan 1973 | A |
3779245 | Windsor | Dec 1973 | A |
3780950 | Brennan | Dec 1973 | A |
3795351 | Lehmann | Mar 1974 | A |
3812854 | Michaels et al. | May 1974 | A |
3826258 | Abraham | Jul 1974 | A |
3845764 | Windsor | Nov 1974 | A |
3901443 | Mitsui et al. | Aug 1975 | A |
3906949 | Holland | Sep 1975 | A |
3913575 | Windsor | Oct 1975 | A |
3934585 | Maurice | Jan 1976 | A |
4002168 | Petterson | Jan 1977 | A |
4012798 | Liautaud | Mar 1977 | A |
4052985 | Coleman et al. | Oct 1977 | A |
4067499 | Cohen | Jan 1978 | A |
4098431 | Palmer et al. | Jul 1978 | A |
D249709 | Trovinger | Sep 1978 | S |
4119096 | Drews | Oct 1978 | A |
4122556 | Poler | Oct 1978 | A |
4131115 | Peng | Dec 1978 | A |
4173226 | Shell | Nov 1979 | A |
4175704 | Cohen | Nov 1979 | A |
4175706 | Gerstmann | Nov 1979 | A |
4264837 | Gaboriaud | Apr 1981 | A |
4296071 | Weiss et al. | Oct 1981 | A |
4319155 | Nakai et al. | Mar 1982 | A |
4323530 | Voss et al. | Apr 1982 | A |
4338936 | Nelson | Jul 1982 | A |
4356528 | Coffee | Oct 1982 | A |
4381533 | Coffee | Apr 1983 | A |
4388343 | Voss et al. | Jun 1983 | A |
4390542 | Schachar | Jun 1983 | A |
4398909 | Portnoff | Aug 1983 | A |
4465234 | Maehara et al. | Aug 1984 | A |
4471890 | Dougherty | Sep 1984 | A |
4476515 | Coffee | Oct 1984 | A |
4479609 | Maeda et al. | Oct 1984 | A |
4493119 | Baumann | Jan 1985 | A |
4543096 | Keene | Sep 1985 | A |
4544570 | Plunkett et al. | Oct 1985 | A |
4564016 | Maurice et al. | Jan 1986 | A |
4580721 | Coffee et al. | Apr 1986 | A |
4605167 | Maehara | Aug 1986 | A |
4605398 | Herrick | Aug 1986 | A |
4627845 | DeMotte | Dec 1986 | A |
4641384 | Landsberger et al. | Feb 1987 | A |
4642581 | Erickson | Feb 1987 | A |
4658290 | McKenna et al. | Apr 1987 | A |
4659014 | Soth et al. | Apr 1987 | A |
4679551 | Anthony | Jul 1987 | A |
4685906 | Murphy | Aug 1987 | A |
4701167 | Chekan | Oct 1987 | A |
4702418 | Carter et al. | Oct 1987 | A |
4706848 | D'Andrade | Nov 1987 | A |
4740206 | Allander | Apr 1988 | A |
4742713 | Abe et al. | May 1988 | A |
4750650 | Ling | Jun 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4758237 | Sacks | Jul 1988 | A |
4758727 | Tomei et al. | Jul 1988 | A |
4759755 | Hein et al. | Jul 1988 | A |
4779768 | St. Amand | Oct 1988 | A |
4784652 | Wikström | Nov 1988 | A |
4790479 | Matsumoto et al. | Dec 1988 | A |
4792334 | Py | Dec 1988 | A |
4793339 | Matsumoto et al. | Dec 1988 | A |
4796807 | Bendig et al. | Jan 1989 | A |
4798599 | Thomas | Jan 1989 | A |
4809914 | Goncalves | Mar 1989 | A |
4815661 | Anthony | Mar 1989 | A |
4826025 | Abiko et al. | May 1989 | A |
4850534 | Takahashi et al. | Jul 1989 | A |
4863073 | Burt et al. | Sep 1989 | A |
4863443 | Hornung | Sep 1989 | A |
4863457 | Lee | Sep 1989 | A |
4871091 | Preziosi | Oct 1989 | A |
4877989 | Drews et al. | Oct 1989 | A |
4880146 | Hudgins | Nov 1989 | A |
4881283 | Liautaud | Nov 1989 | A |
4886189 | Vanderjagt | Dec 1989 | A |
4896832 | Howlett | Jan 1990 | A |
4908024 | Py | Mar 1990 | A |
4912357 | Drews et al. | Mar 1990 | A |
4917274 | Asa et al. | Apr 1990 | A |
4927062 | Walsh | May 1990 | A |
4927115 | Bahroos et al. | May 1990 | A |
4946452 | Py | Aug 1990 | A |
4952212 | Booth et al. | Aug 1990 | A |
4961885 | Avrahami et al. | Oct 1990 | A |
4969869 | Burgin et al. | Nov 1990 | A |
4981479 | Py | Jan 1991 | A |
4996502 | Endo | Feb 1991 | A |
5007905 | Bauer | Apr 1991 | A |
5019037 | Wang et al. | May 1991 | A |
5029579 | Trammell | Jul 1991 | A |
5030214 | Spector | Jul 1991 | A |
5032111 | Morris et al. | Jul 1991 | A |
5037012 | Langford | Aug 1991 | A |
5040706 | Davis et al. | Aug 1991 | A |
5047009 | Morris et al. | Sep 1991 | A |
5048727 | Vlasich | Sep 1991 | A |
5053000 | Booth et al. | Oct 1991 | A |
5054477 | Terada et al. | Oct 1991 | A |
5064420 | Clarke et al. | Nov 1991 | A |
5066276 | Wang | Nov 1991 | A |
5069204 | Smith et al. | Dec 1991 | A |
5069675 | Menchel et al. | Dec 1991 | A |
5085651 | Py | Feb 1992 | A |
5098375 | Baier | Mar 1992 | A |
5133702 | Py | Jul 1992 | A |
5134993 | van der Linden et al. | Aug 1992 | A |
5139496 | Hed | Aug 1992 | A |
5145113 | Burwell et al. | Sep 1992 | A |
5152435 | Stand et al. | Oct 1992 | A |
5152456 | Ross et al. | Oct 1992 | A |
5163929 | Py | Nov 1992 | A |
5164740 | Ivri | Nov 1992 | A |
5170782 | Kocinski | Dec 1992 | A |
5171306 | Vo | Dec 1992 | A |
5176856 | Takahashi et al. | Jan 1993 | A |
5193745 | Holm | Mar 1993 | A |
5201726 | Kirkham | Apr 1993 | A |
5203506 | Gross et al. | Apr 1993 | A |
5226538 | Roselle | Jul 1993 | A |
5252318 | Joshi et al. | Oct 1993 | A |
5259385 | Miller et al. | Nov 1993 | A |
5261601 | Ross et al. | Nov 1993 | A |
5265288 | Allison | Nov 1993 | A |
5267986 | Py | Dec 1993 | A |
5276867 | Kenley et al. | Jan 1994 | A |
5299739 | Takahashi et al. | Apr 1994 | A |
5316159 | Douglas et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5320845 | Py | Jun 1994 | A |
5354032 | Sims et al. | Oct 1994 | A |
5364405 | Zaleski | Nov 1994 | A |
5368582 | Bertera | Nov 1994 | A |
5401259 | Py | Mar 1995 | A |
5405614 | D'Angelo et al. | Apr 1995 | A |
5431663 | Carter | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435465 | El-Amin | Jul 1995 | A |
5462586 | Sugiyama et al. | Oct 1995 | A |
5485828 | Hauser | Jan 1996 | A |
5496411 | Candy | Mar 1996 | A |
5499751 | Meyer | Mar 1996 | A |
D368774 | Py | Apr 1996 | S |
5515841 | Robertson et al. | May 1996 | A |
5518179 | Humberstone et al. | May 1996 | A |
5529055 | Gueret | Jun 1996 | A |
D374719 | Py | Oct 1996 | S |
5564016 | Korenshtein | Oct 1996 | A |
5584823 | Valberg | Dec 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5588564 | Hutson et al. | Dec 1996 | A |
5607410 | Branch | Mar 1997 | A |
5613957 | Py | Mar 1997 | A |
5614545 | Martin et al. | Mar 1997 | A |
5630793 | Rowe | May 1997 | A |
5657926 | Toda | Aug 1997 | A |
5665079 | Stahl | Sep 1997 | A |
5685869 | Py | Nov 1997 | A |
5687874 | Omori et al. | Nov 1997 | A |
5707636 | Rodriguez et al. | Jan 1998 | A |
5724021 | Perrone | Mar 1998 | A |
5730723 | Castellano et al. | Mar 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5740947 | Flaig et al. | Apr 1998 | A |
5746728 | Py | May 1998 | A |
5758637 | Ivri et al. | Jun 1998 | A |
5803106 | Cohen et al. | Sep 1998 | A |
5807357 | Kang | Sep 1998 | A |
5823428 | Humberstone et al. | Oct 1998 | A |
5838350 | Newcombe et al. | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5855322 | Py | Jan 1999 | A |
5881956 | Cohen et al. | Mar 1999 | A |
5893515 | Hahn et al. | Apr 1999 | A |
5894841 | Voges | Apr 1999 | A |
5938117 | Ivri | Aug 1999 | A |
D413668 | Mannberg et al. | Sep 1999 | S |
5957943 | Vaitekunas | Sep 1999 | A |
5970974 | Van Der Linden et al. | Oct 1999 | A |
5996903 | Asai et al. | Dec 1999 | A |
5997518 | Laibovitz et al. | Dec 1999 | A |
6008468 | Tanaka et al. | Dec 1999 | A |
6027450 | Brown | Feb 2000 | A |
6039565 | Chou et al. | Mar 2000 | A |
6062212 | Davison et al. | May 2000 | A |
6083922 | Montgomery | Jul 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6135427 | Tsai | Oct 2000 | A |
6152383 | Chen | Nov 2000 | A |
6159188 | Laibovitz et al. | Dec 2000 | A |
6193683 | Ludin et al. | Feb 2001 | B1 |
6203759 | Pelc et al. | Mar 2001 | B1 |
6216966 | Prendergast et al. | Apr 2001 | B1 |
6221038 | Brisken | Apr 2001 | B1 |
6228046 | Brisken | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6254579 | Cogger et al. | Jul 2001 | B1 |
6254587 | Christ et al. | Jul 2001 | B1 |
6263872 | Schuster et al. | Jul 2001 | B1 |
6273342 | Terada et al. | Aug 2001 | B1 |
6296626 | Stein | Oct 2001 | B1 |
6318361 | Sosiak | Nov 2001 | B1 |
6336917 | Berke | Jan 2002 | B1 |
6341732 | Martin et al. | Jan 2002 | B1 |
6357442 | Casper et al. | Mar 2002 | B1 |
6357671 | Cewers | Mar 2002 | B1 |
6367685 | Jiang et al. | Apr 2002 | B1 |
6394363 | Arnott et al. | May 2002 | B1 |
6398737 | Moore et al. | Jun 2002 | B2 |
6398766 | Branch | Jun 2002 | B1 |
6422431 | Pelc et al. | Jul 2002 | B2 |
6423040 | Benktzon et al. | Jul 2002 | B1 |
6425888 | Embleton et al. | Jul 2002 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6442423 | Domb et al. | Aug 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6524287 | Cogger | Feb 2003 | B1 |
6526976 | Baran | Mar 2003 | B1 |
6530370 | Heinonen | Mar 2003 | B1 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6543443 | Klimowicz et al. | Apr 2003 | B1 |
6546927 | Litherland et al. | Apr 2003 | B2 |
6550472 | Litherland et al. | Apr 2003 | B2 |
6554201 | Klimowicz et al. | Apr 2003 | B2 |
6554801 | Steward et al. | Apr 2003 | B1 |
6569131 | Michael et al. | May 2003 | B1 |
6569387 | Furner et al. | May 2003 | B1 |
6601581 | Babaev | Aug 2003 | B1 |
6610033 | Melanson et al. | Aug 2003 | B1 |
6612302 | Rand | Sep 2003 | B1 |
6615824 | Power | Sep 2003 | B2 |
6619562 | Hamaguchi et al. | Sep 2003 | B2 |
6622720 | Hadimioglu | Sep 2003 | B2 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri et al. | Nov 2003 | B2 |
6650935 | Watmough | Nov 2003 | B1 |
6651650 | Yamamoto et al. | Nov 2003 | B1 |
6659364 | Humberstone et al. | Dec 2003 | B1 |
6669961 | Kim et al. | Dec 2003 | B2 |
6676034 | Tanaka et al. | Jan 2004 | B2 |
6679436 | Onishi et al. | Jan 2004 | B1 |
6684681 | Zombo | Feb 2004 | B1 |
6684879 | Coffee et al. | Feb 2004 | B1 |
6719770 | Laufer et al. | Apr 2004 | B2 |
6732944 | Litherland et al. | May 2004 | B2 |
6736904 | Poniatowski et al. | May 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6748944 | Della Vecchia et al. | Jun 2004 | B1 |
6761286 | Py et al. | Jul 2004 | B2 |
6789741 | Varanasi et al. | Sep 2004 | B2 |
6814071 | Klimowicz et al. | Nov 2004 | B2 |
6851626 | Patel et al. | Feb 2005 | B2 |
6854662 | Chen | Feb 2005 | B2 |
6863224 | Terada et al. | Mar 2005 | B2 |
6877642 | Maddox et al. | Apr 2005 | B1 |
6885818 | Goldstein | Apr 2005 | B2 |
6901926 | Yamamoto et al. | Jun 2005 | B2 |
6913205 | Cornet et al. | Jul 2005 | B2 |
6921020 | Ivri | Jul 2005 | B2 |
6926208 | Ivri | Aug 2005 | B2 |
6946117 | Schutt et al. | Sep 2005 | B1 |
6964647 | Babaev | Nov 2005 | B1 |
6969165 | Olsen | Nov 2005 | B2 |
6974450 | Weber et al. | Dec 2005 | B2 |
6976279 | Berke et al. | Dec 2005 | B1 |
6976969 | Messerly | Dec 2005 | B2 |
6978945 | Wong et al. | Dec 2005 | B2 |
7017573 | Rasor et al. | Mar 2006 | B1 |
7032590 | Loeffler et al. | Apr 2006 | B2 |
7040549 | Ivri et al. | May 2006 | B2 |
7066398 | Borland et al. | Jun 2006 | B2 |
7081757 | Unsworth et al. | Jul 2006 | B2 |
7083112 | Ivri | Aug 2006 | B2 |
7104463 | Litherland et al. | Sep 2006 | B2 |
7108197 | Ivri | Sep 2006 | B2 |
7121275 | Noolandi et al. | Oct 2006 | B2 |
D533658 | Collins, Jr. et al. | Dec 2006 | S |
7153315 | Miller | Dec 2006 | B2 |
7161269 | Kayama et al. | Jan 2007 | B2 |
7168633 | Wang et al. | Jan 2007 | B2 |
D537160 | Lowell | Feb 2007 | S |
7174888 | Ivri et al. | Feb 2007 | B2 |
7192129 | Droege et al. | Mar 2007 | B2 |
7201732 | Anderson et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7229028 | Chen et al. | Jun 2007 | B2 |
7234460 | Greenleaf et al. | Jun 2007 | B2 |
7314187 | Hochrainer et al. | Jan 2008 | B2 |
7316067 | Blakey | Jan 2008 | B2 |
7331339 | Smith et al. | Feb 2008 | B2 |
7357133 | Goodchild | Apr 2008 | B2 |
7472701 | Pfichner et al. | Jan 2009 | B2 |
D597206 | Collins, Jr. et al. | Jul 2009 | S |
7574787 | Xu et al. | Aug 2009 | B2 |
7678089 | Py et al. | Mar 2010 | B2 |
7712466 | Addington et al. | May 2010 | B2 |
7819115 | Sexton et al. | Oct 2010 | B2 |
7883031 | Collins, Jr. et al. | Feb 2011 | B2 |
8012136 | Collins, Jr. et al. | Sep 2011 | B2 |
20010025190 | Weber et al. | Sep 2001 | A1 |
20010049608 | Hochman | Dec 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020016576 | Lee | Feb 2002 | A1 |
20020039502 | Matsumoto et al. | Apr 2002 | A1 |
20020043262 | Langford et al. | Apr 2002 | A1 |
20020073989 | Hadimioglu | Jun 2002 | A1 |
20020074362 | Py et al. | Jun 2002 | A1 |
20020107492 | Brach et al. | Aug 2002 | A1 |
20020121285 | Poniatowski et al. | Sep 2002 | A1 |
20020124843 | Skiba et al. | Sep 2002 | A1 |
20020161344 | Peclat et al. | Oct 2002 | A1 |
20030032930 | Branch | Feb 2003 | A1 |
20030078551 | Hochrainer et al. | Apr 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030144594 | Gellman | Jul 2003 | A1 |
20030185892 | Bell et al. | Oct 2003 | A1 |
20030192532 | Hopkins | Oct 2003 | A1 |
20040010239 | Hochrainer et al. | Jan 2004 | A1 |
20040039355 | Gonzalez et al. | Feb 2004 | A1 |
20040045547 | Yamamoto et al. | Mar 2004 | A1 |
20040050953 | Terada et al. | Mar 2004 | A1 |
20040082884 | Pal et al. | Apr 2004 | A1 |
20040164099 | Diestelhorst et al. | Aug 2004 | A1 |
20040176757 | Sinelnikov et al. | Sep 2004 | A1 |
20040186384 | Babaev | Sep 2004 | A1 |
20040204674 | Anderson et al. | Oct 2004 | A1 |
20040256487 | Collins, Jr. et al. | Dec 2004 | A1 |
20050001981 | Anderson et al. | Jan 2005 | A1 |
20050029307 | Py et al. | Feb 2005 | A1 |
20050077315 | Pavlu et al. | Apr 2005 | A1 |
20050077392 | Geser et al. | Apr 2005 | A1 |
20050089545 | Kuwano et al. | Apr 2005 | A1 |
20050195598 | Dancs et al. | Sep 2005 | A1 |
20050199236 | Fink et al. | Sep 2005 | A1 |
20050240162 | Chen et al. | Oct 2005 | A1 |
20050244339 | Jauernig et al. | Nov 2005 | A1 |
20050261641 | Warchol et al. | Nov 2005 | A1 |
20050263608 | Ivri | Dec 2005 | A1 |
20050275310 | Ripoll | Dec 2005 | A1 |
20050279350 | Rasor et al. | Dec 2005 | A1 |
20060024374 | Gasco et al. | Feb 2006 | A1 |
20060057216 | Salamone et al. | Mar 2006 | A1 |
20060174869 | Gumaste et al. | Aug 2006 | A1 |
20060196518 | Hon | Sep 2006 | A1 |
20060201501 | Morrison et al. | Sep 2006 | A1 |
20060209129 | Onozawa | Sep 2006 | A1 |
20060213503 | Borgschulte et al. | Sep 2006 | A1 |
20060258993 | Hochrainer et al. | Nov 2006 | A1 |
20070023547 | Borland et al. | Feb 2007 | A1 |
20070044792 | Ivri | Mar 2007 | A1 |
20070113841 | Fuchs | May 2007 | A1 |
20070119968 | Collins, Jr. et al. | May 2007 | A1 |
20070119969 | Collins, Jr. et al. | May 2007 | A1 |
20070211212 | Bennwik | Sep 2007 | A1 |
20080017189 | Ruckdeschel et al. | Jan 2008 | A1 |
20080097359 | Hochrainer et al. | Apr 2008 | A1 |
20080142624 | Ivri et al. | Jun 2008 | A1 |
20080164339 | Duru | Jul 2008 | A1 |
20080233053 | Gross et al. | Sep 2008 | A1 |
20080299049 | Stangl | Dec 2008 | A1 |
20080303850 | Shin et al. | Dec 2008 | A1 |
20080308096 | Borgschulte et al. | Dec 2008 | A1 |
20090025713 | Keller et al. | Jan 2009 | A1 |
20090114742 | Collins, Jr. | May 2009 | A1 |
20090149829 | Collins, Jr. | Jun 2009 | A1 |
20090192443 | Collins, Jr. et al. | Jul 2009 | A1 |
20090212133 | Collins, Jr. et al. | Aug 2009 | A1 |
20100044460 | Sauzade | Feb 2010 | A1 |
20100211408 | Park et al. | Aug 2010 | A1 |
20100222752 | Collins, Jr. | Sep 2010 | A1 |
20100283601 | Tai et al. | Nov 2010 | A1 |
20120143152 | Hunter et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
196 16 300 | Oct 1997 | DE |
19616300 | Oct 1997 | DE |
199 34 582 | Jan 2001 | DE |
0 011 269 | May 1980 | EP |
0 150 571 | Aug 1985 | EP |
0 224 352 | Jun 1987 | EP |
0 389 665 | Oct 1990 | EP |
0 590 165 | Apr 1994 | EP |
0 823 246 | Feb 1996 | EP |
0 933 138 | Aug 1999 | EP |
1493410 | Jan 2005 | EP |
EP 1 493 410 | Jan 2005 | EP |
1 271 341 | Jul 1961 | FR |
558866 | Jul 1942 | GB |
1 569 707 | Jul 1980 | GB |
I293898 | Jul 1994 | TW |
WO 8500761 | Feb 1985 | WO |
WO 9112687 | Aug 1991 | WO |
WO 9114468 | Oct 1991 | WO |
WO 9413305 | Jun 1994 | WO |
WO 9423788 | Oct 1994 | WO |
WO 9705960 | Feb 1997 | WO |
WO 9712687 | Apr 1997 | WO |
WO 9819383 | May 1998 | WO |
WO 9917888 | Apr 1999 | WO |
WO 0018455 | Apr 2000 | WO |
WO 0066277 | Nov 2000 | WO |
WO 0103645 | Jan 2001 | WO |
WO 0119437 | Mar 2001 | WO |
WO 0158236 | Aug 2001 | WO |
WO 0185245 | Nov 2001 | WO |
WO 0228545 | Apr 2002 | WO |
WO 02055131 | Jul 2002 | WO |
02062488 | Aug 2002 | WO |
WO 02062488 | Aug 2002 | WO |
WO 02072169 | Sep 2002 | WO |
WO 03002045 | Jan 2003 | WO |
WO 03002265 | Jan 2003 | WO |
WO 03026556 | Apr 2003 | WO |
WO 03097139 | Nov 2003 | WO |
2004028420 | Apr 2004 | WO |
WO 2004028420 | Apr 2004 | WO |
WO 2004050065 | Jun 2004 | WO |
WO 2004103478 | Dec 2004 | WO |
WO 2004105864 | Dec 2004 | WO |
WO 2006006963 | Jan 2006 | WO |
WO 2006082588 | Aug 2006 | WO |
WO 2008015394 | Feb 2008 | WO |
2009148345 | Dec 2009 | WO |
WO 2009148345 | Dec 2009 | WO |
WO 2012009696 | Jan 2012 | WO |
WO 2012009706 | Jan 2012 | WO |
Entry |
---|
“Alcon®: Sharing One Vision,” 2009 Annual Report, 46 pages (2009). |
Conover (Ed.), “View into the Future of Ophthalmology Treatments,” Healthcare Observer, 1(8):2-37 (2009). |
Dhand, “Nebulizers That Use a Vibrating Mesh or Plate with Multiple Apertures to Generate Aerosol,” Respir Care, 47(12):1406-1418 (2002). |
Donnelly et al., “Using ultrasonic atomization to produce and aerosol of micron-scale particles,” Review of Scientific Instruments, 76:113301-1-113301-10 (2005). |
Durnan et al., “Gold-Chlorine and Gold-Bromine Equilibria in Fused Salts,” The Journal of Physical Chemistry, 68(4):847-850 (1964). |
Galambos et al., “Drop ejection utilizing sideways actuation of a MEMS piston,” Sensors and Actuators A, 141:182-191 (2008). |
Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborene Particles, pp. 42-71, 11-119, & 294-301 (1999). |
Instruction Manual for Omron® Model NE-U03V MicroAir® Nebulizer, 20 pages (No date). |
International Search Report mailed on Dec. 12, 2011, in International Application No. PCT/US2011/044291. |
International Search Report mailed on Dec. 13, 2011, in International Application No. PCT/US2011/044286. |
Product Description for Xalatan®: Iatanoprost ophthalmic solution, Pfizer Manufacturing, Belgium, NV, 8 pages (2009). |
Quigley, “Improving Eye Drop Treatment for Glaucoma through Better Adherence,” Optometry and Vision Science, 85(6):374-375 (2008). |
Ranade et al., “Chapter seven: Intranasal and ocular drug delivery,” Drug Delivery Systems: Second Edition, CLC Press, 39 pages (2004). |
Rosen et al., “Printing High Viscosity Fluids Using Ultrasonic Droplet Generation,” The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, pp. 239-253 (2008). |
Shidhaye et al., “Novel drug delivery devices,” Pharma Times, 38(7):24-27 (2006). |
Tamilvanan et al., “The potential of lipid emulsion for ocular delivery of lipophilic drugs,” European Journal of Pharmaceutics and Biopharmaceutics, 58:357-368 (2004). |
Xia et al., “A potential application of a piezoelectric atomiser for ophthalmic drug delivery,” BOB, 4(1):9-17 (2007). |
Yee et al., “Trends in Glaucoma Treatment,” EyeWorld Educational Symposium, San Francisco, 8 pages (2006). |
Yuan et al., “MEMS-based piezoelectric array microjet,” Microelectronic Engineering, 66:767-772 (2003). |
Number | Date | Country | |
---|---|---|---|
20120062840 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61400864 | Jul 2010 | US | |
61401850 | Aug 2010 | US | |
61401920 | Aug 2010 | US | |
61401918 | Aug 2010 | US | |
61401848 | Aug 2010 | US | |
61401849 | Aug 2010 | US | |
61462576 | Feb 2011 | US | |
61462791 | Feb 2011 | US | |
61463280 | Feb 2011 | US | |
61516462 | Apr 2011 | US | |
61516496 | Apr 2011 | US | |
61516495 | Apr 2011 | US | |
61516694 | Apr 2011 | US |