A fault may be considered a finite complex three-dimensional surface discontinuity in a volume of earth or rock. Fractures, including, without limitation, joints, veins, dikes, pressure solution seams with stylolites, and so forth, may be propagated intentionally, to increase permeability in formations such as shale, in which optimizing the number, placement, and size of fractures in the formation increases the yield of resources like shale gas.
Stress, in continuum mechanics, may be considered a measure of the internal forces acting within a volume. Such stress may be defined as a measure of the average force per unit area at a surface within the volume on which internal forces act. The internal forces may be produced between the particles in the volume as a reaction to external forces applied to the volume.
Understanding the origin and evolution of faults and the tectonic history of faulted regions can be accomplished by relating fault orientation, slip direction, geologic and geodetic data to the state of stress in the earth's crust. In certain inverse problems, the directions of the remote principal stresses and a ratio of their magnitudes are constrained by analyzing field data on fault orientations and slip directions as inferred from artifacts such as striations on exposed fault surfaces.
Certain methods for stress inversion that use measured striations and/or throw on faults, may be based on the assumptions that the stress field is uniform within the rock mass embedding the faults (assuming no perturbed stress field), and that the slip on faults has the same direction and sense as the resolved far field stress on the fault plane. However, it has been shown that slip directions may be affected by one or more of: anisotropy in fault compliance caused by irregular tip-line geometry; anisotropy in fault friction (e.g., surface corrugations); heterogeneity in host rock stiffness; and perturbation of the local stress field due to mechanical interactions of adjacent faults. Mechanical interactions due to complex faults geometry in heterogeneous media may be taken into account while doing the stress inversion. By doing so, determining the parameters of such paleostress in the presence of multiple interacting faults may involve running numerous simulations, and therefore a comparatively large amount of computation time in order to fit the observed data. The conventional parameters space may be scanned for possibilities (e.g., all possibilities), and for each simulation, the model and the post-processes may be recomputed.
Motion equations might not be invoked while using certain methods, and perturbations of the local stress field by fault slip might be ignored. The mechanical role played by the faults in tectonic deformation might not be explicitly included in such analyses. Still, a relatively full mechanical treatment may be applied for conventional paleostress inversion. However, the results might be improved if multiple types of data could be used to better constrain the inversion.
In general, in one aspect, embodiments relate to presenting stress domain. Multiple stress ratio values and orientation values are analyzed to obtain results. A stress domain diagram that relates the stress ratio values and the orientation values to the results is generated. Further, the stress domain diagram may be presented.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Embodiments of presenting a stress domain diagram are described with reference to the following figures. The same numbers are used throughout the figures to reference like features and components.
In the following detailed description of embodiments, numerous specific details are set forth in order to provide a more thorough understanding. However, it will be apparent to one of ordinary skill in the art that embodiments may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
An example of stress and fracture modeling using the principal of superposition is provided. An example system simulates linearly independent far field stress models for a subsurface earth volume, computing one or more stress, strain, and/or displacement values based on superposition of independent stress tensors. Based on the precomputed values, the system can generate real-time results, such as recovery of paleostress values, or, stress, strain, and displacement parameters for any point in the subsurface volume as the user varies the far field stress value. The system may recover one or more tectonic events, or a stress tensor represented by a ratio of principal magnitudes and associated orientation, using at least one of fault geometry, well bore data (including fracture orientation and secondary fault plane data), GPS, InSAR, folded and faulted horizons, tiltmeters, slip and slikenlines on faults. The system can use different types of geologic data from seismic interpretation, well bore readings, and field observation to provide numerous results, such as predicted fracture propagation based on perturbed stress field.
In general, example embodiments may provide a method and system for presenting results indicating how well stress ratio values and orientation values match observed data. Specifically, one or more embodiments are directed to generating a stress domain diagram. The stress domain diagram displays multiple points that relate stress ratio and orientation to a fitness value. The fitness value defines how well the analysis matches observed data.
Definitions
In the description below, certain variables are used in order to simplify the presentation. Table 1 below shows each variable that may be used and the variables' corresponding definition in accordance with one or more embodiments.
Overview
This disclosure describes stress and fracture modeling using the principle of superposition. Given diverse input data, such as faults geometry, and selectable or optional data sets or data measures, including one or more of fault throw, dip-slip or slickenline directions, stress measurements, fracture data, secondary fault plane orientations, global positioning system (GPS) data, interferometric synthetic aperture radar (InSAR) data, geodetic data from surface tilt-meters, laser ranging, etc., the example system can quickly generate or recover numerous types of results. The systems and methods described herein apply the principle of superposition to fault surfaces with complex geometry in at least three dimensions (3D), and the faults are, by nature, of finite dimension and not infinite or semi-infinite. The results may be rendered in real-time and may include, for example, one or more of real-time stress, strain, and/or displacement parameters in response to one or more of a user query or an updated parameter; remote stress states for multiple tectonic events; prediction of intended future fracturing; differentiation of preexisting fractures from induced fractures; and so forth. The diverse input data can be derived from well bore data, seismic interpretation, field observation, etc.
The example systems and methods described below are applicable to many different reservoir and subsurface operations, including, without limitation, exploration and production operations for natural gas and other hydrocarbons, storage of natural gas, hydraulic fracturing and matrix stimulation to increase reservoir production, water resource management including development and environmental protection of aquifers and other water resources, capture and underground storage of carbon dioxide (CO2), and so forth.
In an example implementation, a system applies a 3D boundary element technique using a principle of superposition that applies to linear elasticity for heterogeneous, isotropic whole- or half-space media. Based on precomputed values, the example system can assess a cost function to generate real-time results, such as stress, strain, and displacement parameters for any point in a subsurface volume as the user varies the far field stress value. In one implementation, the system may use fault geometry and well bore data, including, e.g., fracture orientation, secondary fault plane data, and/or in-situ stress measurement by hydraulic fracture, to recover one or more tectonic events or a stress tensor represented by a ratio of principal magnitudes and the associated orientation. The system can use many different types of geologic data from seismic interpretation, well bore readings, and field observation to provide a variety of results, such as predicted fracture propagation based on perturbed stress field.
Using the principle of superposition, the example stress and fracture modeling system 100 or engine 102 may perform each of three linearly independent simulations of stress tensor models in constant time regardless of the complexity of each underlying model. Each model does not have to be recomputed. Then, as introduced above, applications for the example system 100 may include one or more of stress interpolation and fracture modeling, recovery of tectonic event(s), quality control on interpreted faults, real-time computation of perturbed stress and displacement fields when the user is performing one or more of parameters estimation, prediction of fracture propagation, distinguishing preexisting fractures from induced fractures, and numerous other applications.
Example Environment
In the illustrated example, the computing device 200 is communicatively coupled via sensory devices (and control devices) with a real-world setting, for example, an actual subsurface earth volume 202, reservoir 204, depositional basin, seabed, etc., and associated wells 206 for producing a petroleum resource, for water resource management, or for carbon services, and so forth.
In the shown implementation, a computing device 200 implements a component, such as the stress and fracture modeling engine 102 and graphical display engine 231. The stress and fracture modeling engine 102 and graphical display engine are illustrated as software, but can be implemented as hardware or as a combination of hardware and software instructions.
The stress and fracture modeling engine 102 includes functionality to perform an analysis, e.g., using a cost function of a stress ratio value and an orientation value. Performing the analysis is discussed below. In one or more embodiments, the stress ratio value may be defined as Φ in the equations below. The stress and fracture modeling engine 102 may further include functionality to calculate, for a particular point in the stress domain diagram, a fracture prediction, a perturbed stress field, and/or a displacement field.
When executing, such as on processor 208, the stress and fracture modeling engine 102 is operatively connected to a graphical display engine 231. For example, the stress and fracture modeling engine 102 may be part of the same software application as the graphical display engine 231, the graphical display engine 231 may be a plug-in for the stress and fracture modeling engine 102, or another method may be used to connect the graphical display engine 231 to the stress and fracture modeling engine 102. The graphical display engine 231 includes functionality to generate a stress domain diagram from results. The stress domain diagram is discussed below and in
The computing device 200 may be a computer, computer network, or other device that has a processor 208, memory 210, data storage 212, and other associated hardware such as a network interface 214 and a media drive 216 for reading and writing a removable storage medium 218. The removable storage medium 218 may be, for example, a compact disc (CD); digital versatile disk/digital video disc (DVD); flash drive, etc. The removable storage medium 218 contains instructions, which when executed by the computing device 200, cause the computing device 200 to perform one or more example methods described herein. Thus, the removable storage medium 218 may include instructions for implementing and executing the example stress and fracture modeling engine 102 and/or the graphical display engine 231. At least some parts of the example stress and fracture modeling engine 102 can be stored as instructions on a given instance of the removable storage medium 218, removable device, or in local data storage 212, to be loaded into memory 210 for execution by the processor 208. Specifically, software instructions or computer readable program code to perform embodiments may be stored, temporarily or permanently, in whole or in part, on a non-transitory computer readable medium such as a CD, a DVD, a local or remote storage device, local or remote memory, a diskette, or any other computer readable storage device.
Although the illustrated example stress and fracture modeling engine 102 and the graphical display engine 231 are depicted as a program residing in memory 210, a stress and fracture modeling engine 102 and/or the graphical display engine 231 may be implemented as hardware, such as an application specific integrated circuit (ASIC) or as a combination of hardware and software.
In this example system, the computing device 200 receives incoming data 220, such as faults geometry and many other kinds of data, from multiple sources, such as well bore measurements 222, field observation 224, and seismic interpretation 226. The computing device 200 can receive one or more types of data sets 220 via the network interface 214, which may also receive data from a network (e.g., the Internet 228), such as GPS data and InSAR data.
The computing device 200 may compute and compile modeling results, simulator results, and control results, and a display controller 230 may output geological model images and simulation images and data to a display 232. The images may be 2D or 3D simulation 234 of stress and fracture results using the principle of superposition. The example stress and fracture modeling engine 102 may also generate one or more visual user interfaces (UIs) for input and/or display of data.
The example stress and fracture modeling engine 102 may also generate or ultimately produce control signals to be used via control devices, e.g., such as drilling and exploration equipment, or well control injectors and valves, in real-world control of the reservoir 204, transport and delivery network, surface facility, and so forth.
Thus, an example system 100 may include a computing device 200 and interactive graphics display unit 232. The computing system as a whole may constitute simulators, models, and the example stress and fracture modeling engine 102.
Example Engine
The example stress and fracture modeling engine 102 illustrated in
Operation of the Example System and Engine
In one implementation, the three linearly independent far field stress parameters are: (i) orientation toward the North, and (ii) & (iii) the two principal magnitudes. These far field stress parameters are modeled and simulated to generate a set of the variables for each of the three simulated models. As an example, four variables can be used: displacement on a fault, the displacement field at any data point or observation point, a strain tensor at each observation point, and the tectonic stress. The optimization parameters selector 308 selects an alpha for each simulation, i.e., a set of “alphas” for the three simulated stress models to act as changeable optimization parameters for iteratively converging on values for these variables in order to minimize one or more cost functions, to be described below. In one implementation, the optimization parameters selector 308 selects optimization parameters at random to begin converging the scaled strain, stress, and or displacement parameters to lowest cost. When the scaled (substantially optimized) parameters are assessed to have the lowest cost, the scaled strain, stress, and/or displacement parameters can be applied to predict a result, such as a new tectonic stress.
Because the example method of
While certain paleostress inversion methods may apply a full mechanical scenario, the stress and fracture modeling engine 102 improves upon certain techniques by using multiple types of data. Data sets 302 to be used are generally of two types: those which provide orientation information (such as fractures, secondary fault planes with internal friction angle, and fault striations, etc.), and those which provide magnitude information (such as fault slip, GPS data, InSAR data, etc.). Some paleostress inversion methods are computed using slip measurements on fault planes.
The technique shown in
The technique shown in
On the other hand, the example method diagrammed in
A numerical technique for performing the example methods is described next. Then, a reduced remote tensor used for simulation is described, and then the principle of superposition itself is described. An estimate of the complexity is also described.
In one implementation, a formulation applied by the stress and fracture modeling engine 102 can be executed using IBEM3D, a successor of POLY3D (POLY3D is described by F. Maerten, P. G. Resor, D. D. Pollard, and L. Maerten, Inverting for slip on three-dimensional fault surfaces using angular dislocations, Bulletin of the Seismological Society of America, 95:1654-1665, 2005, and by A. L. Thomas, Poly3D: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth's crust, Master's thesis, Stanford University, 1995.) IBEM3D is a boundary element code based on the analytical solution of an angular dislocation in a homogeneous or inhomogeneous elastic whole- or half-space. An iterative solver is employed for speed considerations and for parallelization on multi-core architectures. (see, for example, F. Maerten, L. Maerten, and M. Cooke, Solving 3d boundary element problems using constrained iterative approach, Computational Geosciences, 2009.) However, inequality constraints cannot be used as they are nonlinear and the principle of superposition does not apply. In the selected code, faults are represented by triangulated surfaces with discontinuous displacement. The advantage is that three-dimensional fault surfaces more closely approximate curvi-planar surfaces and curved tip-lines without introducing overlaps or gaps.
Mixed boundary conditions may be prescribed, and when traction boundary conditions are specified, the initialization engine 304 solves for unknown Burgers's components. After the system is solved, it is possible to compute anywhere, within the whole- or half-space, displacement, strain or stress at observation points, as a post-process. Specifically, the stress field at any observation point is given by the perturbed stress field due to slipping faults plus the contribution of the remote stress. Consequently, obtaining the perturbed stress field due to the slip on faults is not enough. Moreover, the estimation of fault slip from seismic interpretation is given along the dip-direction. Nothing is known along the strike-direction, and a full mechanical scenario may be involved to recover the unknown components of the slip vector as it will impact the perturbed stress field. Changing the imposed far field stress (orientation and or relative magnitudes) modifies the slip distribution and consequently the perturbed stress field. In general, a code such as IBEM3D is well suited for computing the full displacement vectors on faults, and may be optimized using an H-matrix technique. The unknown for purposes of modeling remains the estimation of the far field stress that has to be imposed as boundary conditions.
In an example method, which may be implemented by the stress and fracture modeling engine 102, a model composed of multiple fault surfaces is subjected to a constant far field stress tensor σR defined in the global coordinate system by Equation (1):
Assuming a sub-horizontal far field stress (but the present methodology is not restricted to that case), Equation (1) simplifies into Equation (2):
Since the addition of a hydrostatic stress does not change σR, the far field stress tensor can be written as in Equation (3):
Consequently, a definition of a far field stress with three unknowns is obtained, namely {
The far field stress tensor, as defined in Equation (3) can be computed using two parameters instead of the three {
σR=RθTRθ (4)
where, as in Equation (5):
the far field stress tensor σR is the matrix of principal values, and in Equation (6):
is the rotation matrix around the global z-axis (since a sub-horizontal stress tensor is assumed).
By writing, in Equation (7):
σ2=kσ1 (7)
Equation (4) then transforms into Equation (8):
Omitting the scaling parameter σ1 due to Property 1 discussed below (when σ1=δ in Property 1), σR can be expressed as a functional of two parameters and k, as in Equation (9):
These two parameters are naturally bounded by Equation (10):
assuming that uniaxial remote stress starts to occur when k≧10. For k=1, a hydrostatic stress tensor is found, which has no effect on the model. Also, using a lithostatic far field stress tensor (which is therefore a function of depth z) does not invalidate the presented technique, and Equation (9) transforms into Equation (11):
which is linearly dependent on z. The simplified tensor definition given by Equation (9) is used in the coming sections to determine (θ,k), or equivalently {
It is worth noting that even when 2-dimensional parameter-space is used for the Monte-Carlo simulation using (θ,k), three components are still used for the far field stress, specified by the parameters (α1,α2,α3). The conversions are given by Expression (12):
(θ,k)→(σ00,σ01,σ11)→(α1,α2,α3) (12)
where, in Equations (13):
and (α1,α2,α3) are given by Equation (20), further below.
Principle of Superposition
The example stress and fracture modeling engine 102 may use the principle of superposition, a well-known principle in the physics of linear elasticity, to recover the displacement, strain and stress at any observation point P using the precomputed specific values from linearly independent simulations. The principle of superposition stipulates that a given value f can be determined by a linear combination of specific solutions.
In the stress and fracture modeling engine 102, recovering a far field stress implies recovering the three parameters (α1,α2,α3). Therefore, the number of linearly independent solutions used is three. In other words, in Equation (14):
where (α1,α2,α3) are real numbers, and σ(i) (for i=1 to 3) are three linearly independent remote stress tensors. If F is selected to be the strain, stress or displacement Green's functions, then the resulting values ε, σ, and u, at P can be expressed as a combination of three specific solutions, as shown below. Thus, the strain, stress and displacement field for a tectonic loading are a linear combination of the three specific solutions, and are given by Equation (15):
Similarly, using (α1,α2,α3) allows recovery of the displacement discontinuities on the faults, as in Equation (16):
b
ε=α1bε(1)+α2bε(2)+α3bε(3) (16)
and any far field stress is also given as a combination of the three parameters, as in Equation (17):
σR=α1σR(1)+α2σR(2)+α3σR(3) (17)
Complexity Estimate
Changing σR may involve recomputing the entire model in order to determine the corresponding unknown displacement discontinuities. Then, at any observation point P, the stress is determined as a superimposition of the far field stress σR and the perturbed stress field due to slipping elements.
For a model made of n triangular discontinuous elements, computing the stress state at point P first may involve solving for the unknown displacement discontinuities on triangular elements (for which the complexity is O(n2), and then performing approximately 350 n multiplications using the standard method. By using the principle of superposition, on the other hand, the unknown displacement discontinuities on triangular elements do not have to be recomputed, and 18 multiplications may be performed by the example stress and fracture modeling engine 102. The complexity is independent of the number of triangular elements within the model, and is constant in time.
Some direct applications of the example methods will now be described, such as real-time evaluation of deformation and the perturbed stress field while a user varies a far field stress parameter. Paleostress estimation using different data sets 302 is also presented further below, as is an example method to recover multiple tectonic phases, and a description of how the example method can be used for quality control during fault interpretation.
Real-time Computation
Before describing the paleostress inversion method, another method is described first, for real-time computing displacement discontinuity on faults, and the displacement, strain, and stress fields at observation points while the orientation and/or magnitude of the far field stress is varied.
If the tectonic stress σR is given and three independent solutions are known, there exists a unique triple (α1,α2,α3) for which Equation (17) is honored, and Equations (15) and (16) can be applied.
In matrix form, Equation (17) is written in the format shown in Equation (18):
or, in compact form, as in Equation (19):
Aσα=σR (19)
Since the three particular solutions σ(i) are linearly independent, the system can be inverted, which gives Equation (20):
α=Aσ−1σR (20)
In Equation (20), Aσ−1 is precomputed by the initialization engine 304. Given a user-selected remote stress, σR, the stress and fracture modeling engine 102 recovers the three parameters (α1,α2,α3), then the fault slip and the displacement, strain and stress field are computed in real-time using Equations (16) and (15), respectively. To do so, the three particular solutions of the displacement, strain and stress are stored at initialization at each observation point, as well as the displacement discontinuity on the faults. In one implementation, the example stress and fracture modeling engine 102 enables the user to vary the orientation and magnitude of σR and to interactively display the associated deformation and perturbed stress field.
Paleostress Inversion Using Data Sets
As seen above, the main unknowns while doing forward modeling for the estimation of the slip distribution on faults, and consequently the associated perturbed stress field, are the orientation and relative magnitudes of the far field stress σR.
If field measurements are known at some given observation points (e.g., displacement, strain and/or stress, fractures orientation, secondary fault planes that formed in the vicinity of major faults, etc.), then it is possible to recover the triple (α1,α2,α3), and therefore also recover the tectonic stress σR and the corresponding tectonic regime (see Appendix A, below). The next section describes the method of resolution and the cost functions used to minimize cost for different types of data sets 302.
Method of Resolution
Applying a Monte Carlo technique allows the parameters (α1,α2,α3) to be found, which minimize the cost functions when given three independent far field stresses (see Equation 15). However, even if (α1,α2,α3) imply a 3-dimensional parameters-space, this space can be reduced to two dimensions (namely, to the parameters θ and k), the conversion being given by Equation (20) and (θ,k)→(σ00,σ01,σ11)→(α1,α2,α3), where, in Equations (21):
(see also
A simple sampling method can be performed by considering a two-dimensional rectangular domain for which the axes correspond to θ and k. The 2D-domain is sampled randomly with np points, and the associated cost function (to be defined in the coming sections) is used to determine the point of minimum cost. A refinement is then created around the selected point and the procedure is repeated with a smaller domain. Algorithm (1) depicts a simplified version of the example procedure, for which there is no refinement. The example sampling method presented here can be greatly optimized by various techniques.
2 to (α) ε
3
Another Formulation of the Monte-Carlo 2D Domain
Other formulations of the Monte-Carlo 2D Domain may be used without departing from the scope of the claims. For example, below is another formulation that may be used.
In the formulation below, θ is defined as a value between 0 and π, rather than between −π/2 and π/2. Further, θ=0 corresponds to the north and the angle is defined clockwise.
Equation (2) above may be changed to the following Equation (2′):
Equation (3) above may be changed to the following Equation (3′), where Rθ is the rotation matrix along the vertical axis (clockwise) with θ∈[0,π],:
Using the above embodiment, the definition of a regional stress has three unknowns, namely (σh−σv), (σH−σv), and θ. Expressing (2′) using σ1, σ2 and σ3 for the three Andersonian fault regimes (Anderson, 1905), factorizing with (σ1-σ3) and introducing the stress ratio, R=(σ2-σ3)/(σ1-σ3) ∈ [0,1], the following Equation (22) results as follows:
By changing R to R′ as shown in equation (23) as follows, a unique stress shape parameter R′ is created for the three fault regimes together:
Omitting the scaling factor 941-σ3), the regional stress tensor in (23) is defined with two parameters, θ and R′. This definition may be used as shown below to determine (θ, R′) according to the data utilized.
Continuing with another formulation, Equation (7) above is not used in an example formulation in one or more embodiments. Further, Equation 10 is replaced with the following equation (10′):
Equation (12) becomes Equation (12′) as follows:)
(θ,R′)→(σ00,σ01,σ11)→(α1,α2,α3) (12′)
Further, equation (13) and (21) are replaced by:
with β being an angle defined as:
Further, Algorithm (1) may be changed to the following Algorithm (1′):
2 to a ∈
3
While the above discussion presents one example formulation, other formulations may be used without departing from the scope of the claims.
Data Sets
The particularity of this method considers that many different kinds of data sets 302 can be used to constrain the inversion. Two groups of data are presented in the following sections: the first one includes orientation information and the second includes displacement and/or stress magnitude information.
Without Magnitude Information from the Data Set
For opening fractures (e.g., joints, veins, dikes) the orientation of the normal to the fracture plane indicates the direction of the least compressive stress direction in 3D (σ3). Similarly, the normals to pressure solution seams and stylolites indicate the direction of the most compressive stress (σ1). Using measurements of the orientations of fractures, pressure solution seams, and stylolites allows the stress and fracture modeling engine 102 to recover the tectonic regime which generated such features.
At any observation point P, the local perturbed stress field can be determined easily from a numerical point of view by using three linearly independent simulations.
By varying (α1,α2,α3), the state of stress at any observation point P can be computed quickly using the three precomputed models. The cost function to minimize is given in Equation (22):
where “•” is the dot-product, {right arrow over (n)} is the normal to a fracture plane, and m is the number of observation points.
The minimization of a function of the three parameters is expressed by Equation (23):
F
frac=minα
Similarly, for pressure solution seams and stylolites, the cost function is defined as in Equation (22) using the least compressive stress σ3 as in Equation (24) (see
Using Secondary Fault Planes
The orientation of secondary fault planes that develop in the vicinity of larger active faults may be estimated using a Coulomb failure criteria, defined by Equation (25):
tan(2θ)=1/μ (25)
where θ is the angle of the failure planes to the maximum principal compressive stress σ1 and μ is the coefficient of internal friction. Two conjugate failure planes intersect along σ2 and the fault orientation is influenced by the orientation of the principal stresses and the value of the friction.
The cost function is therefore defined by Equation (26):
where σ1 is the direction of the most compressive stress and σ2 is the direction of the intermediate principal stress. The first term of the right hand side in Equation (26) maintains an orthogonality between the computed σ2 and the normal of the fault plane, whereas the second term ensures that the angle between the computed σ1 and the fault plane is close to θ (see
Initially, the model is constrained by a far field stress at some observation points 604, where the two conjugate planes are computed using an internal friction angle of 30 degrees. Then, for each observation point 604, one of the conjugate fault planes is chosen randomly and used as input data for the stress inversion.
Using Fault Striations
In the case of fault striations, the cost function is defined as in Equation (27):
where {right arrow over (α)}ec and {right arrow over (α)}em represent the normalized slip vector from a simulation and the measured slip vector, respectively.
Data Sets Containing Magnitude Information
The magnitude of displacements may be used to determine the stress orientation, as well as the magnitude of the remote stress tensor, instead of just the principal stress ratio.
To do so, the procedure is similar to that described previously. However, given Equations (15) and (16), it is evident that there exists a parameter δ for which the computed displacement discontinuity on faults and the displacement, strain and stress fields at observation points scale linearly with the imposed far field stress. In other words, as in Equation (28):
This leads to the following property:
Property 1: Scaling the far field stress by δ ∈ scales the displacement discontinuity on faults as well as the displacement, strain, and stress fields at observation points by δ.
Using this property, one or more measurements at data points (e.g., all measurements) are globally normalized before any computation and the scaling factor is noted (the simulations are also normalized, but the scaling factor is irrelevant). After the system is solved, the recovered far field stress, displacement and stress fields are scaled back by a factor of δm−1.
Using GPS Data
In the case of a GPS data set, the cost function is defined in Equation (29):
where {right arrow over (u)}pm is the globally normalized measured elevation changed at point P from the horizon and {right arrow over (u)}pc is the globally normalized computed elevation change for a given set of parameters (α1,α2,α3). The first term on the right hand side in Equation (29) represents a minimization of the angle between the two displacement vectors, whereas the second term represents a minimization of the difference of the norm.
Using InSAR Data
When using an InSAR data set, there may be two possibilities. Either the global displacement vectors of the measures are computed using the displacement u along the direction of the satellite line of sight {right arrow over (s)}, in which case Equation (30) is used:
{right arrow over (u)}pm={right arrow over (u)}insar=u•{right arrow over (s)} (30)
and the same procedure that is used for the GPS data set (above) is applied with the computed {right arrow over (u)}pc, or, the computed displacement vectors are computed along the satellite line of sight, in which case Equation (31) is used:
upc={right arrow over (u)}•{right arrow over (s)} (31)
where “•” is the dot product. The cost function is consequently given by Equation (32):
Example
To utilize an InSAR data set, a forward model is run using one fault plane 804 and one observation grid (
Using a Flattened Horizon
Using the mean plane of a given seismic horizon (flattened horizon), the stress and fracture modeling engine 102 first computes the change in elevation for each point making the horizon. Then, the GPS cost function is used, for which the uz component is provided, giving Equation (33):
If pre- or post-folding of the area is observed, the mean plane can no longer be used as a proxy. Therefore, a smooth and continuous fitting surface has to be constructed which remove the faulting deformations while keeping the folds. Then, the same procedure as for the mean plane is used to estimate the paleostress. In some circumstances and prior to defining the continuous fitting surface, a method may filter the input horizon from noises possessing high frequencies, such as corrugations and bumps, while preserving natural deformations.
Example
In the example shown in
Using Dip-Slip Information
When dip-slip data is used, the cost function is defined as in Equation (34):
where bem is the measured dip-slip magnitude for a triangular element e, and bec is the computed dip-slip magnitude.
Using Available Information
The example stress and fracture modeling engine 102 can combine the previously described cost functions to better constrain stress inversion using available data (e.g., all available data, including, without limitation, fault and fracture plane orientation data, GPS data, InSAR data, flattened horizons data, dip-slip measurements from seismic reflection, fault striations, etc.). Furthermore, data can be weighted differently, and each datum can also support a weight for each coordinate.
Multiple Tectonic Events
For multiple tectonic events, it is possible to recover the major ones, e.g., those for which the tectonic regime and/or the orientation and/or magnitude are noticeably different. Algorithm (2), below, presents a way to determine different events from fracture orientation (joints, stylolites, conjugate fault planes) measured along well bores.
After doing a first simulation, a cost is attached at each observation point which shows the confidence of the recovered tectonic stress relative to the data attached to that observation point. A cost of zero means a good confidence, while a cost of one means a bad confidence. See
Seismic Interpretation Quality Control
It is useful to have a method for quality control (QC) for interpreted faults geometries from seismic interpretation. The basic idea is to use the fracture orientations from well bores to recover the far field stress and the displacement discontinuities on active faults. Then, the computed displacement field is used to deform the initially flattened horizons. The geometry of the resulting deformed horizons can be compared with the interpreted ones. If some mismatches are clearly identified (e.g., interpreted uplift and computed subsidence), then the fault interpretation is possibly false. For example, an interpreted fault might dip in the wrong direction. Note that an unfolded horizon can be approximated by its mean plane, as described above in relation to flattened horizons.
Conclusion and Perspectives
The example stress and fracture modeling engine 102 applies the property of superposition that is inherent to linear elasticity to execute real-time computation of the perturbed stress and displacement field around a complexly faulted area, as well as the displacement discontinuity on faults. Furthermore, the formulation executed by the example stress and fracture modeling engine 102 enables rapid paleostress inversion using multiple types of data such as fracture orientation, secondary fault planes, GPS, InSAR, fault throw, and fault slickenlines. In one implementation, using fracture orientation and/or secondary fault planes from well bores, the stress and fracture modeling engine 102 recovers one or more tectonic events, the recovered stress tensor being given by the orientation and ratio of the principal magnitudes. The example stress and fracture modeling engine 102 and associated methods can be applied across a broad range of applications, including stress interpolation in a complexly faulted reservoir, fractures prediction, quality control on interpreted faults, real-time computation of perturbed stress and displacement fields while doing interactive parameter estimation, fracture prediction, discernment of induced fracturing from preexisting fractures, and so forth.
In a variation, another application of the stress and fracture modeling engine 102 and associated methods is evaluation of the perturbed stress field (and therefore the tectonic event(s)) for recovering “shale gas.” Since shale has low matrix permeability, gas production in commercial quantities may involve fractures to provide permeability. This may be done by hydraulic fracturing to create extensive artificial fractures around well bores, and therefore involves a good understanding of how fractures will propagate according to the perturbed stress field.
Example Methods
While the various blocks in these flowcharts are presented and described sequentially, one of ordinary skill will appreciate that some or all of the blocks may be executed in different orders, may be combined or omitted, and some or all of the blocks may be executed in parallel. Furthermore, the blocks may be performed actively or passively. For example, some blocks may be performed using polling or be interrupt driven in accordance with one or more embodiments. By way of an example, determination blocks may not involve a processor to process an instruction unless an interrupt is received to signify that condition exists in accordance with one or more embodiments. As another example, determination blocks may be performed by performing a test, such as checking a data value to test whether the value is consistent with the tested condition in accordance with one or more embodiments.
At block 1202, linearly independent stress models for a subsurface volume are simulated.
At block 1204, stress, strain, and/or displacement parameters for the subsurface volume are computed, based on a superposition of the linearly independent stress models.
At block 1206, an attribute of the subsurface volume is iteratively predicted based on the precomputed stress, strain, and/or displacement values.
At block 1302, faults geometry for a subsurface earth volume is received.
At block 1304, at least one data set associated with the subsurface earth volume is also received.
At block 1306, three linearly independent far field stress tensor models are simulated in constant time to generate strain, stress, and/or displacement values.
At block 1308, a superposition of the three linearly independent far field stress tensor models is computed to provide precomputed strain, stress, and/or displacement values.
At block 1310, a post-process segment of the method commences, that can compute numerous real-time results based on the principle of superposition.
At block 1312, optimization parameters for each of the linearly independent far field stress tensor models are selected.
At block 1314, the precomputed stress, strain, and/or displacement values are scaled by the optimization parameters.
At block 1316, a cost associated with the scaled precomputed stress, strain, and/or displacement values is evaluated. If the cost is not satisfactory, then the method loops back to block 1312 to select new optimization parameters. If the cost is satisfactory, then the method continues to block 1318.
At block 1318, the scaled strain, stress, and/or displacement values are applied to the subsurface earth volume, e.g., with respect to a query about the subsurface earth volume or in response to an updated parameter about the subsurface earth volume.
At block 1320, a query or updated parameter regarding the subsurface earth volume is received, that seeds or initiates generation of the post-process results in the real-time results section (1310) of the method 1300.
Stress Domain Diagram
In one or more embodiments, the stress ratio axis 1406 is divided into multiple regions, where each region is represents type of fault. Specifically, as shown in
In one or more embodiments, the stress ratio, stress orientation, and stress regime form a solution created by one or more simulations using observed data. Such observed data may be data gathered by one or more detection devices, such as sensors, in the field. In one or more embodiments, the value of a particular point (specified by a specific stress orientation value, specific stress ratio value, and fault regime) is the output or result of a cost function. The output specifies how close of a fit the stress orientation and stress ratio in the particular fault regime (i.e., the solution) is to the observed data. In other words, the output is a fitness value. In one or more embodiments, the value of the point is between 0 and 1 or 0% and 100%, where 1 or 100% indicates that the stress orientation and stress ratio for the particular fault regime is close to the actual solution. In other words, values approaching 1 or 100% identifies that the solution from simulation better or best fit to data gathered from the field. If the value is close to 0 or 0%, then the stress orientation and stress ratio for the particular fault regime is not close to the actual solution (i.e., may be a worse or worst fit value to data gathered from the field). Other encodings besides 0 to 1 or 0% to 100% may be used to define the fitness value without departing from the scope of the claims.
Further, in one or more embodiments, the stress domain diagram shows how good or bad of a fit particular points are to the actual data gathered from the field, and also provides a confidence level for the solution. Specifically, the higher localization of better and best fit values, the greater the confidence level in the solution. When better and best fit values are not localized, but rather dispersed, the confidence level in the solution is low. With low confidence, the user may determine that the solution is not accurate. For example, if multiple points on the stress domain diagram are close to the actual solution, but dispersed in different parts of the diagram, then the solution is deemed to be dispersed and the user has lower confidence in the solution. However, if multiple points on the stress domain diagram are close to the actual solution, and within the vicinity of each other, then the solution may be deemed to be localized and the user has a high confidence in the solution.
In one or more embodiments, the values of the particular points are coded on the stress domain diagram. Specifically, each value may be assigned a corresponding color or grayscale value. The coding enables a user to quickly identify the actual solution and how localized the actual solution is.
At block 1500, inversion is performed using a definition of faults and observed data to obtain multiple solutions. Specifically, data may be obtained from the field. Data may be obtained, for example, by sensors or other detection devices located in the field. Using the equations above, and the definition of faults and observed data as inputs, inversion is performed to obtain one or more solutions. Each solution includes a stress ratio value and a stress orientation value.
At block 1502, the cost function is selected based on the type of data in one or more embodiments. As discussed above, different cost functions may be used depending on the type of data sets. For example, for a GPS data set, the selected cost function may be the one defined in equation (29). By way of another example, for an InSAR data set, the selected cost function may be the one defined in equation (32). Similarly, other costs functions may be used based on the type of data.
At block 1504, the stress ratio value and the orientation value are obtained from the solution in one or more embodiments. As discussed above, the stress ratio value and the orientation value are values of a particular point related to the stress domain diagram.
At block 1506, using a cost function, the stress ratio value and orientation value are analyzed to obtain a result. Specifically, the cost function is executed using the stress ratio value and the orientation value as input. Using the cost function to perform the analysis may be performed as discussed above. In one or more embodiments, the analysis defines how well the stress orientation and the stress ratio match the actual or observed data. The value represents the cost c (c∈[0,1]) for a given model (faults model+data to constrain the stress inversion). In one or more embodiments, a cost of 0 means a perfect prediction of the observed fractures for a given model, whereas a cost of 1 means that the given model did not at all predict the observed fractures.
At block 1508, the result is stored in one or more embodiments. The result may be stored, for example, in a cache, a temporary file, a permanent file, on a flash drive or another storage medium.
At block 1510, a determination is made whether to perform another analysis. As discussed above, multiple executions of the cost function are performed. Each execution results in a value for a particular point on the stress domain diagram.
If a determination is made to perform another analysis, then the flow may repeat starting with block 1504. Although not shown in
Continuing with
At block 1514, a determination is made whether a selection of a point on the stress domain diagram is received. Specifically, when a user views the stress domain diagram, the user may want further information about a particular solution.
At block 1516, if the selection of a point is received, then the selected point is identified in one or more embodiments.
At block 1518, one or more of fracture prediction, perturbed stress field, and displacement field are calculated for the selected point. Calculating the fracture prediction, perturbed stress field, and displacement field are discussed above.
In one or more embodiments, to calculate the fracture prediction as well as the perturbed stress field and displacement field, IBEM3D (discussed above in paragraph [0048]) may be used for forward modeling, using the selected point from the stress domain diagram. Specifically, the selected point gives the regional state of stress (stress ratio and orientation according to the north of the maximum principal horizontal stress) and therefore the initial boundary condition (applied far field stress) for the forward modeling. When the forward computation is completed, fracture prediction are performed in one or more embodiments. As an example, for a joint and at a given observation point, the perturbed stress tensor is computed using IBEM3D. The corresponding fracture plane has normal that coincides with the direction of σ3, the minimum principal stress of this perturbed stress tensor. For secondary fault planes, the same procedure may be applied using the Coulomb failure criteria, leading to two possible failure planes (as discussed above in equation (25), paragraph [0078], and
At block 1520, one or more of fracture prediction, perturbed stress field, and displacement field are presented for the selected point. Specifically, the fracture prediction, perturbed stress field, and/or displacement field may be displayed for the user in one or more embodiments. At this stage, the user may continue to interact with the stress domain diagram. Thus, the stress domain diagram provides a mechanism for a user to understand and interact with the simulation results.
In
As shown in the example
Moreover, in one or more embodiments, a user may view the error around the solution using the stress domain diagram 1602 as shown in the example. In the example, in
Conclusion
Although example systems and methods have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed systems, methods, and structures.
Further, while the above description includes a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the claims.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from presenting stress domain. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
The present application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/610,667, filed on Mar. 14, 2012, having the same inventors as the present application, and entitled, “METHOD AND SYSTEM FOR PRESENTING SIMULATION RESULTS.” U.S. Provisional Application No. 61/610,667 is incorporated herein by reference. The present application is a continuation-in-part application of U.S. patent application Ser. No. 13/052,327, filed Mar. 21, 2011, and entitled “STRESS AND FRACTURE MODELING USING THE PRINCIPLE OF SUPERVISION.” Thus, the present application claims benefit of U.S. patent application Ser. No. 13/052,327 under 35 U.S.C. §120. U.S. patent application Ser. No. 13/052,327 is hereby incorporated in its entirety. U.S. patent application Ser. No. 13/052,327 claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/317,412, filed Mar. 25, 2010, and entitled “APPLICATION OF THE PRINCIPLE OF SUPERPOSITION FOR STRESS AND FRACTURE MODELING,” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61610667 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13052327 | Mar 2011 | US |
Child | 13791939 | US |