Side shields, particularly in combination with leading or trailing shields, may be desired in conventional magnetic recording transducers, particular perpendicular magnetic recording (PMR) transducers. Side shields in combination with trailing shields that surround the sides and trailing edge of the main PMR pole are termed wraparound shields. Some conventional wraparound shields may be formed on poles that are dry etched. In such conventional PMR transducers, the ferromagnetic material for the PMR pole may be blanket deposited. A portion of the ferromagnetic material is then removed, typically through a dry etch process. The PMR pole is thus formed. Side and top gaps are deposited, followed by the conventional side and trailing edge shields. Although a wraparound shield for such a conventional PMR transducer may be formed, the on-track field and field gradient may be compromised. Further, the performance of such a conventional PMR pole may be more sensitive to dimensional variations in fabrication. Consequently, the magnetic trackwidth and performance may be subject to undesirable variations.
Other conventional methods allow for formation of side shields without requiring the main pole to be trimmed.
Although the conventional method 10 allows the conventional transducer 50 to be fabricated, there are several drawbacks. The NiFe RIE performed in step 14 may be difficult to control. In particular, forming a trench having the desired reverse angle and other features may be problematic. Performance of the resulting conventional PMR transducer may, therefore, suffer. The conventional side shield 52 also surrounds the conventional main pole 56. As a result, it may be difficult to separately control the geometry of the conventional side shield 52 and the geometry of the conventional main pole 56. In addition, because of the location of the coils 62, the conventional side shield 52 may be at least partially driven by the current through the coils 62. As a result, performance of the conventional side shield 52 may suffer.
Accordingly, what is needed is a system and method for improving the fabrication of a magnetic recording head having side shields.
A method and system provide a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method and system include providing a trench in the nonmagnetic layer. The trench has a plurality of sides. The method and system also include providing a separation layer in the trench. A portion of the separation layer resides on the plurality of sides of the trench. The method and system include providing the main pole. At least part of the main pole resides in the trench on the portion of the separation layer and has a plurality of pole sides. The method and system further include removing at least a portion of the second nonmagnetic layer, thereby exposing the portion of the separation layer on the sides of the trench. The method and system also include providing a side shield. The separation layer magnetically separates the plurality of pole sides from the side shield.
A trench is provided in the nonmagnetic layer(s), via step 102. The sidewalls of the trench may correspond to the inner edges of side shield(s) being provided. The profile of the trench also may correspond to the main pole to be formed. The trench formed also may have a reverse angle, with the top of the trench being wider than its bottom. In one embodiment, step 102 includes providing a mask having an aperture corresponding to the location of the trench. Portions of the nonmagnetic layer(s) exposed by the aperture may then be removed. The removal may use a RIE appropriate to the nonmagnetic material in which the trench is being formed and employ an RIE hard mask. In such an embodiment, the underlayer may form the bottom of the trench and may be a RIE stop layer. However, in another embodiment, the stop layer may be omitted. The mask used to form the trench may then be removed.
At least one separation layer is provided in the trench on the nonmagnetic layer, via step 104. In one embodiment, step 104 may include using atomic layer deposition (ALD) to provide the separation layer. However, in other embodiments, other techniques might be used. Thus, a portion of the separation layer(s) resides on the sides of the trench. In one embodiment, the separation layer(s) include one or more layers of aluminum oxide and/or Ru. However, another nonmagnetic material that is resistant to the process used in step 108, described below, may be used.
The main pole is provided, via step 106. At least a portion of the main pole resides in the trench on the portion of the separation layer(s). In one embodiment, step 106 may include depositing seed layer(s), depositing layer(s) of high magnetic moment material(s) for the main pole, and planarizing the high magnetic moment material(s). Deposition of layer(s) could include the use of techniques such as physical vapor deposition (PVD), ion beam deposition, plating, and/or chemical vapor deposition (CVD). Step 106 may also include forming leading and/or trailing edge bevels.
At least a portion of the nonmagnetic layer(s) around the separation layer(s) is removed, via step 108. Thus, the portion of the separation layer(s) on the sides of the trench is exposed. The technique(s) used to remove the portion of the nonmagnetic layer(s) may vary and may depend upon the nonmagnetic layer used. Similarly, the separation layer(s) provided in step 104 may depend upon the technique(s) used to remove the nonmagnetic layer(s) in step 108 and, therefore, the nonmagnetic layer(s) used. Step 108 may thus include using one or more of a wet etch, an RIE, and a plasma etch. For example, a wet etch might be used for an aluminum oxide nonmagnetic layer, a plasma etch or RIE may be used for aluminum oxide, silicon oxide, silicon nitride, or cured photoresist. In some embodiments, a fluorine chemistry might be used for silicon oxide, while a chlorine chemistry might be used for aluminum oxide, and an oxygen chemistry might be used for cured photoresist. Alternatively, a combination of techniques, for example a combination of a wet etch and an RIE and/or plasma etch might be used in step 108.
At least one side shield is provided, via step 110. Step 110 may include plating shield materials and/or depositing the materials using some other technique. The side shield(s) surround at least the sides of the main pole formed in step 106. Because of the presence of the separation layer(s) provided in step 104, the side shield(s) are magnetically separated from the sides of the main pole. In addition to side shields, a trailing shield may also be provided. Thus, side shields only or a wraparound shield may be provided. Using the method 100, therefore, a PMR transducer having side shields or a wraparound shield may be fabricated.
Using the method 100, the transducer 120 may be formed. As a result, side shields 130 may be formed. The depth of the trench (not shown) and, therefore, the height of the main pole 126 may be controlled by the deposition process used to provide the nonmagnetic layer(s). As a result, better control over the height of the main pole 126 may be achieved. In addition, because of the presence of the side shields and the extension of the side shields 130 below the bottom of the main pole 126, the ability of the side shields 130 to reduce adjacent track writing by the main pole 126, particularly at a skew angle, may be improved. Further, because the main pole 126 is formed in a trench in the nonmagnetic materials (not shown), fabrication of the transducer 100 is more robust. In one embodiment, the side shields 130, as well as the trailing shield 132, may extend from the ABS to not past the coil front location. Coils (not shown) used to drive the main pole 126 may be decoupled from the side shields 130. Consequently, performance of the transducer 120 may be improved.
As discussed above, the formation of the mail pole in step 106 may include formation of leading or trailing edge bevels.
A trench having a varying width is provided in the nonmagnetic layer, via step 142. Step 142 corresponds to step 102 of the method 100. For example, in the nose region of the pole, in proximity to where the ABS is to be formed, the trench may be thinner than in a yoke region. The technique used in step 142 may be analogous to that used in step 102. For example a RIE may be used.
The separation layer is provided, via step 144. Step 144 corresponds to step 104 of the method 100. The separation partially fills the trench in the ABS region. The trench formed in step 142 is sufficiently thin and the separation layer sufficiently thick that deposition of the separation layer in step 144 completely fills the bottom of the trench in the thin region. Thus, the trench is filled in the nose region proximate to the ABS, but not in a region distal from the ABS. The high moment, main pole material(s) are provided, via step 146. In one embodiment, step 146 includes plating the high moment material(s). In one such embodiment, step 146 may include depositing a seed layer. Further, the magnetic transducer may optionally be planarized, via step 148. Steps 146 and 148 may thus correspond to at least a portion of the step 106 of the method 100. Fabrication of the transducer may then be completed.
In addition to the underlayer 122′, separation layer(s) 124′, main pole 126′, gap 128′, side shields 130′, and trailing shield 132′, a leading edge bevel 134 is shown. The combination of the thickness of the separation layer(s) 124′ and the width of the trench in the ABS region ensures that the bottom of the trench is filled in the ABS region. However, as the trench widens, the separation layer(s) 124′ no longer fill the bottom of the trench. Consequently, leading edge bevel 134 is formed. Although the leading edge bevel 134 is shown with a linear profile, in another embodiment, the leading edge bevel 134 might have another shape. Further, in the embodiment shown, the leading edge of the main pole 126′ may terminate in a point at the ABS. Thus, the main pole 126′ is substantially triangular at the ABS. However, in another embodiment, the main pole 126′ may have another shape.
Using the method 140, the transducer 120′ may be formed. As a result, the benefits of the transducer 120 and the method 100 may be achieved. Furthermore, a leading edge bevel 134 may also be provided. The leading edge bevel 134 may improve concentration of the magnetic flux at the ABS, improving the writeability of the transducer 120′. Further, as can be seen in
The high moment material(s) for the main pole are provided on the separation layer, via step 152. For example, the materials may be plated or deposited using another technique. In addition, a seed layer may be deposited on the separation layer prior to the main pole material(s) being provided. Also in step 152, the main pole material(s) may be planarized.
A mask is provided distal from the location at which the ABS will be formed, via step 154. For example, Step 154 may include providing a photoresist mask on the main pole material(s). In another embodiment step 154 may include providing a hard mask in addition to the photoresist mask. The mask has an aperture over the ABS region, where the bevel is to be formed. A top portion of the pole material(s) proximate to the ABS location is removed, via step 156. In one embodiment, step 156 includes performing an ion mill and/or an RIE. The mask fabricated in step 154 is then removed, via step 158.
In addition to the underlayer 122″, separation layer(s) 124″, main pole 126″, gap 128″, side shields 130″, trailing shield 132″, and leading edge bevel 134′, a trailing edge bevel 136 is shown. Although the trailing edge bevel 136 is shown with a linear profile, in another embodiment, the trailing edge bevel 136 might have another shape. The shape of the trailing shield 132″ conforms to the trailing bevel 136.
Using the method 150, the transducer 120″ may be formed. As a result, the benefits of the transducers 120 and 120″, as well as the methods 100 and 140 may be achieved. Furthermore, a trailing edge bevel 136 may also be provided. The trailing edge bevel 136 may further improve concentration of the magnetic flux at the ABS. In addition, the field gradient may be improved by the trailing edge bevel 136, thereby improving the sharpness of the transition edge. Improvements in the sharpness of the transition edge may reduce jitter noise and transition noise. The writeability of and quality of transitions written by the transducer 120″ may thereby be improved.
A leading shield is optionally provided, via step 162. Step 162 may include providing a mask distal from the ABS. In particular, the mask may cover the portion of the transducer from the front of the coil(s) distal from the ABS. Thus, the mask may have an aperture that is at least from the ABS to some position no further from the AB than the front of coil(s). High moment material may then be deposited for the shield. An underlayer and nonmagnetic layer(s) may then be deposited, via step 164. In one embodiment, the underlayer deposited in step 164 is a RIE stop layer. The nonmagnetic layer(s) provided may include aluminum oxide, silicon oxide, silicon nitride, and/or cured photoresist.
A trench is provided in the nonmagnetic layer(s), via step 166. The sidewalls of the trench may correspond to the inner edges of side shield(s) being provided. The profile of the trench also may correspond to the main pole to be formed. The trench formed also may have a reverse angle, with the top of the trench being wider than its bottom. In one embodiment, step 166 includes providing a mask having an aperture corresponding to the location of the trench. Portions of the nonmagnetic layer(s) exposed by the aperture may then be removed. The removal may use a RIE appropriate to the nonmagnetic material in which the trench is being formed and employ an RIE hard mask.
Separation layer(s) are provided in the trench on the nonmagnetic layer, via step 168. In one embodiment, step 168 may include using atomic layer deposition (ALD) to provide the separation layer. However, in other embodiments, other techniques might be used. Thus, a portion of the separation layer(s) resides on the sides of the trench. In one embodiment, the separation layer(s) include one or more layers of aluminum oxide and/or Ru. For example, if the nonmagnetic layer includes aluminum oxide, then Ru may be provided for the separation layer(s) in step 168. If the nonmagnetic layer includes silicon oxide, silicon nitride, or cured photoresist, then aluminum oxide may be provided for the separation layer(s) in step 168. However, another nonmagnetic material that is resistant to the process used in step 178, described below, may be used. Additional nonmagnetic layer(s), such as seed layers, may be provided in step 170.
The high magnetic moment material(s) for the main pole are deposited, via step 172.
The transducer 200 may then be planarized, via step 174. In one embodiment, a chemical mechanical planarization (CMP) may be performed.
Bevel(s) may be optionally provided, via step 176. Step 176 may be performed using the method 140 and/or 150. Thus, a leading edge bevel may be formed in steps 166, 170, and 172. A trailing edge bevel may also be formed in step 176, for example using the method 150.
A remaining portion of the nonmagnetic layer 204 is removed, via step 178. The technique(s) used to remove the nonmagnetic layer(s) may vary and may depend upon the nonmagnetic layer 204 used. Step 178 may thus include using one or more of a wet etch, an RIE, and a plasma etch. For example, if the nonmagnetic layer(s) 204 include aluminum oxide, a wet etch and/or a plasma etch or RIE with a chlorine chemistry may be used. If the nonmagnetic layer(s) 204 include silicon oxide or silicon nitride, then an RIE or plasma etch having a fluorine chemistry may be used. If the nonmagnetic layer(s) 204 include cured photoresist, then a plasma etch and/or RIE with an oxygen chemistry might be used. Alternatively, a combination of techniques, for example a combination of a wet etch and an RIE and/or plasma etch might be used in step 178.
A write gap is provided, via step 180. Thus, a nonmagnetic material, such as Ru, is deposited in step 180. In one embodiment, the write gap is blanket deposited. In another embodiment, the write gap may be formed only on the main pole 214″.
Shield(s) may be provided, via step 182. In one embodiment, step 182 includes providing side shields only. However, in another embodiment, step 182 includes providing side and trailing shields. In addition, the side and trailing shields may not extend further from the ABS than the front of the coils (not shown) used to drive the main pole 214″.
Thus, the method 160 and 190, the transducers 200/200′ may be formed. As a result, side shields 218′/218″ that extend from the ABS to not past the coil front location are provided. Further, because the main pole 214′/214″ is formed in a trench in the nonmagnetic materials 204, fabrication of the transducers 200/200′ is more robust. In addition, because the side shields 218′/218″ may extend to or below the bottom of the main pole 214′/214″, the ability of the side shields 218′/218″ to reduce adjacent track writing may also be improved. Writeability of the transducers 200/200′ may also be improved by the bevels 222A/222A′ and 222B/222B′. Consequently, performance and fabrication of the transducer may be improved.
Number | Name | Date | Kind |
---|---|---|---|
6497825 | Kamijima | Dec 2002 | B1 |
6943993 | Chang et al. | Sep 2005 | B2 |
6949833 | O'Kane et al. | Sep 2005 | B2 |
6954340 | Shukh et al. | Oct 2005 | B2 |
6975486 | Chen et al. | Dec 2005 | B2 |
6980403 | Hasegawa | Dec 2005 | B2 |
7024756 | Le et al. | Apr 2006 | B2 |
7042682 | Hu et al. | May 2006 | B2 |
7067066 | Sasaki et al. | Jun 2006 | B2 |
7070698 | Le | Jul 2006 | B2 |
7075756 | Mallary et al. | Jul 2006 | B1 |
7124498 | Sato | Oct 2006 | B2 |
7193815 | Stoev et al. | Mar 2007 | B1 |
7239479 | Sasaki et al. | Jul 2007 | B2 |
7295401 | Jayasekara et al. | Nov 2007 | B2 |
7296339 | Yang et al. | Nov 2007 | B1 |
7322095 | Guan et al. | Jan 2008 | B2 |
7337530 | Stoev et al. | Mar 2008 | B1 |
7444740 | Chung et al. | Nov 2008 | B1 |
7508627 | Zhang et al. | Mar 2009 | B1 |
7587811 | Balamane et al. | Sep 2009 | B2 |
7804666 | Guan et al. | Sep 2010 | B2 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8166631 | Tran et al. | May 2012 | B1 |
20020071208 | Batra et al. | Jun 2002 | A1 |
20040032692 | Kobayashi | Feb 2004 | A1 |
20040156148 | Chang et al. | Aug 2004 | A1 |
20050057852 | Yazawa et al. | Mar 2005 | A1 |
20050068669 | Hsu et al. | Mar 2005 | A1 |
20060044681 | Le et al. | Mar 2006 | A1 |
20060044682 | Le et al. | Mar 2006 | A1 |
20060082924 | Etoh et al. | Apr 2006 | A1 |
20060098334 | Jayasekara et al. | May 2006 | A1 |
20060198049 | Sasaki et al. | Sep 2006 | A1 |
20070035878 | Guthrie et al. | Feb 2007 | A1 |
20070035885 | Im et al. | Feb 2007 | A1 |
20070115584 | Balamane et al. | May 2007 | A1 |
20070146929 | Maruyama et al. | Jun 2007 | A1 |
20070146931 | Baer et al. | Jun 2007 | A1 |
20070177301 | Han et al. | Aug 2007 | A1 |
20070186408 | Nix et al. | Aug 2007 | A1 |
20070211384 | Hsiao et al. | Sep 2007 | A1 |
20070217069 | Okada et al. | Sep 2007 | A1 |
20070245545 | Pentek et al. | Oct 2007 | A1 |
20070247749 | Bonhote et al. | Oct 2007 | A1 |
20070253107 | Mochizuki et al. | Nov 2007 | A1 |
20070258167 | Allen et al. | Nov 2007 | A1 |
20070263324 | Allen et al. | Nov 2007 | A1 |
20070268626 | Taguchi et al. | Nov 2007 | A1 |
20070268627 | Le et al. | Nov 2007 | A1 |
20080113090 | Lam et al. | May 2008 | A1 |
20080113514 | Baer et al. | May 2008 | A1 |
20080253035 | Han et al. | Oct 2008 | A1 |
20080297945 | Han et al. | Dec 2008 | A1 |
20090002885 | Sin | Jan 2009 | A1 |
20090109570 | Scholz et al. | Apr 2009 | A1 |
20090168236 | Jiang et al. | Jul 2009 | A1 |
20100061016 | Han et al. | Mar 2010 | A1 |