If the sensor 20 is to be used in a current perpendicular to plane (CPP) configuration, the insulator 14 is used. Thus, current is driven in a direction substantially perpendicular to the plane of the layers 22, 24, 26, and 28. Conversely, in a current parallel to plane (CIP) configuration, then conductive leads (not shown) would be provided on the hard bias structures 16.
The hard bias structures 16 are used to magnetically bias the sensor layer 28. In an ideal case, the hard bias structures 16 match the thickness, moment, and location of the sensor layer 28. The hard bias structures 16 typically include hard magnetic materials having a low permeability. The hard bias structures generally have a magnetization fixed in the working ranges of the transducer. The hard bias structures 16 typically magnetically bias the magnetization of the sensor layer 28 in the track width direction.
Although the conventional transducer 10 functions, there are drawbacks. The conventional transducer 10 has a shield-to-shield spacing of SS and a physical width of the sensor layer 28 of w. In general, the shield-to-shield spacing is desired to be reduced as higher density memories are to be read. Similarly, the track width is generally decreased as reading of higher density memories and thus higher cross-track resolution are desired. The cross-track resolution of the sensor layer 28 is primarily determined by the physical width, w, of the sensor layer 28. However, magnetic flux entering from the sides of the sensor layer 28 can adversely impact cross-track resolution. Stated differently, magnetic flux entering from the sides of the sensor layer 28 may influence the ability of the sensor layer 28 to accurately read data. The shields 12 and 18 may prevent some flux from reaching the sides of the sensor layer 28. However, as technologies scale to higher recording densities, the shield-to-shield spacing does not decrease sufficiently to address this issue. In addition, other recording mechanisms, such as shingle recording, may require improved cross-track resolution.
A conventional method for improving the cross-track resolution of the conventional transducer 10 is to introduce an in-stack hard bias layer in connection with side shields. An in-stack hard bias layer is one which resides between (on a line parallel to the down track direction) the sensor layer 28 and the shield 12 or directly between the sensor layer 28 and the shield 18. Generally, the in-stack hard bias would reside directly above (in the down track direction/toward shield 18) the sensor layer 28. The in-stack hard bias layer is desired to maintain the magnetic biasing of the sensor layer 28 in the track direction. Thus, the in-stack hard bias layer may replace the hard bias structures 16. However, such an in-stack hard bias layer would increase the shield-to-shield spacing, SS, of the transducer 10. Such an increase is undesirable.
Accordingly, what is needed is a system and method for improving the cross-track resolution of a magnetic recording read transducer.
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The magnetic transducer includes a first shield, a read sensor, at least one soft magnetic bias structure and at least one hard bias structure. The read sensor includes a sensor layer that has at least one edge in the track width direction along the ABS. The soft magnetic bias structure(s) are adjacent to the edge(s) of the sensor layer. The soft magnetic bias structure has a first permeability. The soft bias structure(s) are between the read sensor and the hard bias structure(s). The hard bias structure(s) are adjacent to a portion of the soft bias structure(s) and have a second permeability. The first permeability is at least ten multiplied by the second permeability.
The transducer 100 includes shields 102 and 104, insulator 106, a read sensor 110, soft magnetic bias structures 122 and 124, and hard bias structures 130 and 132. The sensor 110 shown is a GMR or TMR sensor. Thus, the sensor 110 includes a pinning layer 112, a pinned layer 114, a nonmagnetic spacer layer 116, a free layer 118, and a capping layer 120. The sensor 110 may also include seed layer(s) (not shown). Although an AFM layer 112 used to pin the magnetic moment of the pinned layer 116 is shown, in other embodiments, the pinning layer may be omitted or may use a different pinning mechanism. The pinned layer 114 and free layer 118 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The nonmagnetic spacer layer 116 may be a conductive layer, a tunneling barrier layer, or other analogous layer. Although depicted as a GMR or TMR sensor, in other embodiments, other structures and other sensing mechanisms may be used for the sensor 110.
The soft magnetic bias structures 122 and 124 are separated from the sensor 110 by insulating layer 106. Thus, the soft magnetic bias structures 122 and 124 are adjacent to the sides of the sensor 110. In the embodiment shown in
The soft magnetic bias structures 122 and 124 are made using soft magnetic material(s). Thus, the soft magnetic bias structures 122 and/or 124 include magnetic material(s) that have a permeability of at least ten multiplied by the permeability of hard bias structures 130 and 132. For example, the soft magnetic bias structures 122 and/or 124 may include NiFe, such as Permalloy. Because the soft magnetic bias structures 122 and/or 124 have a high permeability, the soft magnetic side shield 102 and/or 104 magnetically biases the sensor 110. As can be seen in
In some embodiments, the soft magnetic bias structures 122 and/or 124 are composed of a single high full film permeability material, such as Permalloy. In other embodiments, the soft magnetic bias structures 122 and/or 124 include multiple materials, which may not all have a high permeability. For example, the magnetic bias structures 122 and/or 124 may be a multilayer. For example, the multilayer may include a first magnetic layer, a second magnetic layer, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. In some embodiments, the first and second magnetic layers may be antiferromagnetically aligned. In other embodiments, the first and second magnetic layer may be ferromagnetically aligned. Further, more than two ferromagnetic layers interleaved with nonmagnetic layers may be used. In other embodiments, all of the layers in the multilayer may be ferromagnetic.
In addition, the read transducer 100 includes hard bias structures 130 and 132. In the embodiment shown, the hard bias structures 130 and 132 share an interface with the soft magnetic bias structures 122 and 124, respectively. Thus, the hard bias structures 130 and 132 adjoin the soft magnetic bias structures 122 and 124, respectively. However, in other embodiments, a nonmagnetic layer may be provided between the hard bias structures 132 and 134 and the soft magnetic bias structures 122 and 124, respectively. Further, nonmagnetic layers 106 and 126 are depicted as being between the hard bias structures 130 and 132 and the shields 102 and 104, respectively. Thus, the hard bias structures 130 and 132 may be magnetically decoupled from the shields 102 and 104. However, in other embodiments, the portions of the layer 126 between the hard bias structures 130 and 132 and the shield 104 may be omitted. Thus, the hard bias structures 130 and/or 132 may be magnetically coupled with the shield 104.
Hard bias structures 130 and 132 are used to stabilize the soft magnetic bias structures 122 and 124, rather than to directly bias the free layer 118. Without hard bias structures 130 and/or 132, the soft magnetic bias structures 122 and/or 124, respectively, may be subject to reversals during fabrication or use, which is undesirable. The hard bias structure 130 and 132 are used to magnetically bias the soft bias structures 122 and 124, respectively. Stated differently, the hard bias structures 130 and/or 132 may be seen as pinning the soft bias structures 122 and/or 124, respectively.
The hard bias structures 130 and/or 132 have a permeability that is significantly lower than the soft bias structures 122 and/or 124. The hard bias structures 130 and 132 also generally have a significantly higher anisotropy field than the soft bias structures 122 and 124. For example, the anisotropy field of the hard bias structures may be on the order of a few thousand Oe in some embodiments. The coercivity of the hard bias structures 130 and 132 is also generally significantly higher than that of the soft bias structures 122 and 124. For example, in some embodiments, the coercivity of the hard bias structures 132 and 134 may be on the order of hundreds or thousands of Oe. Thus, the hard bias structures 130 and 132 are generally not susceptible to reversals during fabrication or operation. For example, may include CoPt, CoCrPt and/or FePt. Although shown as a single layer, the hard bias structures 130 and/or 132 may include multiple layers. In some embodiments, all of the layers in the multilayer are ferromagnetic. However, in other embodiments, some of the layers may be ferromagnetic, while other layers are nonmagnetic.
The transducer 100 thus enjoys the benefits of soft bias structures 122 and 124. In particular, the sensor 110 may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. Because of the presence of hard bias structures 130 and 132, the soft bias structures 122 and 124 may have improved magnetic uniformity and a significantly reduced chance of reversal. Thus, the reliability and performance of the transducer 100 may be improved. The magnetization direction of the hard bias structures 130 and 132 may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 110 may be avoided. The hard bias structures 130 and/or 132 may also optionally be used to bias the shield 102 and/or 104. Thus, performance of the transducer 100 may be further improved. Fabrication of hard bias structures 130 and 132 may also be relatively simple. Thus, the benefits of the hard bias structures 130 and 132 may be attained without significantly complicating processing.
As can be seen in the plan view of
The transducer 100′ may share the benefits of the transducer 100. The sensor 110′ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 130′ and 132′ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 122′ and 124′. Thus, the reliability and performance of the transducer 100′ may be improved. The magnetization direction of the hard bias structures 130′ and 132′ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 110′ may be avoided. The hard bias structures 130′ and/or 132′ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 100′ may be further improved. Fabrication of hard bias structures 130′ and 132′ may also be relatively simple. Thus, the benefits of the hard bias structures 130′ and 132′ may be attained without significantly complicating processing.
As can be seen in the plan view of
The transducer 100″ may share the benefits of the transducer 100. The sensor 110″ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 130″ and 132″ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 122″ and 124″. Thus, the reliability and performance of the transducer 100″ may be improved. The magnetization direction of the hard bias structures 130″ and 132″ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 110″ may be avoided. The hard bias structures 130″ and/or 132″ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 100″ may be further improved. Fabrication of hard bias structures 130″ and 132″ may also be relatively simple. Thus, the benefits of the hard bias structures 130″ and 132″ may be attained without significantly complicating processing.
As can be seen in the plan view of
The transducer 100′″ may share the benefits of the transducer 100. The sensor 110′″ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 130′″ and 132′″ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 122′″ and 124′″. Thus, the reliability and performance of the transducer 100′″ may be improved. The magnetization direction of the hard bias structures 130′″ and 132′″ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 110′″ may be avoided. The hard bias structures 130′″ and/or 132′″ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 100′″ may be further improved. Fabrication of hard bias structures 130′″ and 132′″ may also be relatively simple. Thus, the benefits of the hard bias structures 130′″ and 132′″ may be attained without significantly complicating processing.
In the embodiment shown in
The transducer 150 may share the benefits of the transducer 100, 100′, 100″, and/or 100′″. The sensor 160 may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 170 and 180 may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 152 and 154. Thus, the reliability and performance of the transducer 150 may be improved. The magnetization direction of the hard bias structures 170 and 180 may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 160 may be avoided. The hard bias structures 170 and/or 180 may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 150 may be further improved. Fabrication of hard bias structures 170 and 180 may also be relatively simple and may be further eased by use of the nonmagnetic layers 162 and 164. Thus, the benefits of the hard bias structures 170 and 180 may be attained without significantly complicating processing.
The transducer 150′ may share the benefits of the transducers 150, 100, 100′, 100″, and/or 100′″. The sensor 160′ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 170′ and 180′ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 152′ and 154′. Thus, the reliability and performance of the transducer 150′ may be improved. The magnetization direction of the hard bias structures 170′ and 180′ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 160′ may be avoided. The hard bias structures 170′ and/or 180′ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 150′ may be further improved.
In the embodiment shown in
The transducer 150″ may share the benefits of the transducers 150′, 150, 100, 100′, 100″, and/or 100′″. The sensor 160″ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 170″ and 180″ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 152″ and 154″. Thus, the reliability and performance of the transducer 150″ may be improved. The magnetization direction of the hard bias structures 170″ and 180″ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 160″ may be avoided. The hard bias structures 170″ and/or 180″ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 150″ may be further improved. Fabrication of hard bias structures 170″ and 180″ may also be relatively simple. Thus, the benefits of the hard bias structures 170″ and 180″ may be attained without significantly complicating processing.
In the embodiment shown in
The transducer 150′″ may share the benefits of the transducers 150″, 150′, 150, 100, 100′, 100″, and/or 100′″. The sensor 160′″ may be magnetically biased and enjoy the benefits of side shields such as reduced interference from adjacent tracks. The hard bias structures 170′″ and 180′″ may improve the magnetic uniformity of and reduce the chance of reversal for the soft bias structures 152′″ and 154′″. Thus, the reliability and performance of the transducer 150′″ may be improved. The magnetization direction of the hard bias structures 170′″ and 180′″ may be set by applying a magnetic field and without additional annealing. Thus, damage to the sensor 160′″ may be avoided. The hard bias structures 170′″ and/or 180′″ may also optionally be used to bias the shield(s) (not shown). Thus, performance of the transducer 150′″ may be further improved. Fabrication of hard bias structures 170′″ and 180′″ may also be relatively simple. Thus, the benefits of the hard bias structures 170″ and 180′″ may be attained without significantly complicating processing.
The first shield 102 is provided, via step 202. Step 202 typically includes depositing a large high permeability layer. The sensor 110 is provided, via step 204. Step 204 typically includes depositing the layers for the sensor 110, then defining the sensor 110 in at least the track width direction using an ion mill. In some embodiments, the sensor 110 is also defined in the stripe height direction. In some embodiments, the layers for the sensor are not completely milled through to provide an extended pinned layer. The insulator 106 may then be provided, via step 206.
The soft magnetic bias structures 122 and 124 are provided, via step 208. Step 208 may include depositing the high permeability and any other material(s) for the soft magnetic bias structures 122 and 124 and defining the soft magnetic bias structures 122 and 124 in the track width and stripe height direction. Step 208 may also include depositing multiple layers for the soft magnetic bias structures 122 and/or 124. Further, in some embodiments, the soft magnetic bias structures 122 and 124 are provided such that they may be magnetically coupled to the shield 102 and/or 104. A nonmagnetic layer, such as the layer 162 and/or 164 may optionally be provided via step 210. However, in other embodiments, step 210 may be omitted.
The hard bias structures 130 and 132 are provided, via step 212. In some embodiments, step 212 is performed after step 208. Thus, the hard bias structures 130 and 132 are provided after the soft magnetic bias structures 22 and 124. Thus, the soft magnetic bias structures 122 and 124 would be defined in at least the track width direction prior to deposition of the hard bias structures 130 and 132. Any excess material for the hard bias structures 130 and 132 may then be removed. In other embodiments, the hard bias structures 130 and 132 might be provided first. Portions of the hard bias structures 130 and 132 closer to the sensor 110 may then be removed and the soft magnetic bias structures 122 and 124 deposited.
The shield 104 may then be deposited, via step 214. In some embodiments, the shield 104 may be magnetically coupled to the soft magnetic bias structures 122 and 124 and/or the hard bias structures 130 and/or 132. Formation of the transducer 100 may then be completed.
Using the method 200, the transducers 100, 100′, 100″, 150, 150′, and/or 150″ may be fabricated. Thus, the benefits of one or more of the transducers 100, 100′, 100″, 150, 150′, and/or 150″ may be achieved.
This application is a divisional of co-pending application Ser. No. 13/332,313 filed on Dec. 20, 2011, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6016290 | Chen et al. | Jan 2000 | A |
6018441 | Wu et al. | Jan 2000 | A |
6025978 | Hoshi et al. | Feb 2000 | A |
6025988 | Yan | Feb 2000 | A |
6032353 | Hiner et al. | Mar 2000 | A |
6033532 | Minami | Mar 2000 | A |
6034851 | Zarouri et al. | Mar 2000 | A |
6043959 | Crue et al. | Mar 2000 | A |
6046885 | Aimonetti et al. | Apr 2000 | A |
6049650 | Jerman et al. | Apr 2000 | A |
6055138 | Shi | Apr 2000 | A |
6058094 | Davis et al. | May 2000 | A |
6073338 | Liu et al. | Jun 2000 | A |
6078479 | Nepela et al. | Jun 2000 | A |
6081499 | Berger et al. | Jun 2000 | A |
6094803 | Carlson et al. | Aug 2000 | A |
6099362 | Viches et al. | Aug 2000 | A |
6103073 | Thayamballi | Aug 2000 | A |
6108166 | Lederman | Aug 2000 | A |
6118629 | Huai et al. | Sep 2000 | A |
6118638 | Knapp et al. | Sep 2000 | A |
6125018 | Takagishi et al. | Sep 2000 | A |
6130779 | Carlson et al. | Oct 2000 | A |
6134089 | Barr et al. | Oct 2000 | A |
6136166 | Shen et al. | Oct 2000 | A |
6137661 | Shi et al. | Oct 2000 | A |
6137662 | Huai et al. | Oct 2000 | A |
6160684 | Heist et al. | Dec 2000 | A |
6163426 | Nepela et al. | Dec 2000 | A |
6166891 | Lederman et al. | Dec 2000 | A |
6173486 | Hsiao et al. | Jan 2001 | B1 |
6175476 | Huai et al. | Jan 2001 | B1 |
6178066 | Barr | Jan 2001 | B1 |
6178070 | Hong et al. | Jan 2001 | B1 |
6178150 | Davis | Jan 2001 | B1 |
6181485 | He | Jan 2001 | B1 |
6181525 | Carlson | Jan 2001 | B1 |
6185051 | Chen et al. | Feb 2001 | B1 |
6185077 | Tong et al. | Feb 2001 | B1 |
6185081 | Simion et al. | Feb 2001 | B1 |
6188549 | Wiitala | Feb 2001 | B1 |
6190764 | Shi et al. | Feb 2001 | B1 |
6193584 | Rudy et al. | Feb 2001 | B1 |
6195229 | Shen et al. | Feb 2001 | B1 |
6198608 | Hong et al. | Mar 2001 | B1 |
6198609 | Barr et al. | Mar 2001 | B1 |
6201673 | Rottmayer et al. | Mar 2001 | B1 |
6204998 | Katz | Mar 2001 | B1 |
6204999 | Crue et al. | Mar 2001 | B1 |
6212153 | Chen et al. | Apr 2001 | B1 |
6215625 | Carlson | Apr 2001 | B1 |
6219205 | Yuan et al. | Apr 2001 | B1 |
6221218 | Shi et al. | Apr 2001 | B1 |
6222707 | Huai et al. | Apr 2001 | B1 |
6229782 | Wang et al. | May 2001 | B1 |
6230959 | Heist et al. | May 2001 | B1 |
6233116 | Chen et al. | May 2001 | B1 |
6233125 | Knapp et al. | May 2001 | B1 |
6237215 | Hunsaker et al. | May 2001 | B1 |
6252743 | Bozorgi | Jun 2001 | B1 |
6255721 | Roberts | Jul 2001 | B1 |
6258468 | Mahvan et al. | Jul 2001 | B1 |
6266216 | Hikami et al. | Jul 2001 | B1 |
6271604 | Frank, Jr. et al. | Aug 2001 | B1 |
6275354 | Huai et al. | Aug 2001 | B1 |
6277505 | Shi et al. | Aug 2001 | B1 |
6282056 | Feng et al. | Aug 2001 | B1 |
6296955 | Hossain et al. | Oct 2001 | B1 |
6297955 | Frank, Jr. et al. | Oct 2001 | B1 |
6304414 | Crue, Jr. et al. | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6310746 | Hawwa et al. | Oct 2001 | B1 |
6310750 | Hawwa et al. | Oct 2001 | B1 |
6317290 | Wang et al. | Nov 2001 | B1 |
6317297 | Tong et al. | Nov 2001 | B1 |
6322911 | Fukagawa et al. | Nov 2001 | B1 |
6330136 | Wang et al. | Dec 2001 | B1 |
6330137 | Knapp et al. | Dec 2001 | B1 |
6333830 | Rose et al. | Dec 2001 | B2 |
6340533 | Ueno et al. | Jan 2002 | B1 |
6349014 | Crue, Jr. et al. | Feb 2002 | B1 |
6351355 | Min et al. | Feb 2002 | B1 |
6353318 | Sin et al. | Mar 2002 | B1 |
6353511 | Shi et al. | Mar 2002 | B1 |
6356412 | Levi et al. | Mar 2002 | B1 |
6359779 | Frank, Jr. et al. | Mar 2002 | B1 |
6369983 | Hong | Apr 2002 | B1 |
6376964 | Young et al. | Apr 2002 | B1 |
6377535 | Chen et al. | Apr 2002 | B1 |
6381095 | Sin et al. | Apr 2002 | B1 |
6381105 | Huai et al. | Apr 2002 | B1 |
6389499 | Frank, Jr. et al. | May 2002 | B1 |
6392850 | Tong et al. | May 2002 | B1 |
6396660 | Jensen et al. | May 2002 | B1 |
6399179 | Hanrahan et al. | Jun 2002 | B1 |
6400526 | Crue, Jr. et al. | Jun 2002 | B2 |
6404600 | Hawwa et al. | Jun 2002 | B1 |
6404601 | Rottmayer et al. | Jun 2002 | B1 |
6404706 | Stovall et al. | Jun 2002 | B1 |
6410170 | Chen et al. | Jun 2002 | B1 |
6411522 | Frank, Jr. et al. | Jun 2002 | B1 |
6417998 | Crue, Jr. et al. | Jul 2002 | B1 |
6417999 | Knapp et al. | Jul 2002 | B1 |
6418000 | Gibbons et al. | Jul 2002 | B1 |
6418048 | Sin et al. | Jul 2002 | B1 |
6421211 | Hawwa et al. | Jul 2002 | B1 |
6421212 | Gibbons et al. | Jul 2002 | B1 |
6424505 | Lam et al. | Jul 2002 | B1 |
6424507 | Lederman et al. | Jul 2002 | B1 |
6430009 | Komaki et al. | Aug 2002 | B1 |
6430806 | Chen et al. | Aug 2002 | B1 |
6433965 | Gopinathan et al. | Aug 2002 | B1 |
6433968 | Shi et al. | Aug 2002 | B1 |
6433970 | Knapp et al. | Aug 2002 | B1 |
6437945 | Hawwa et al. | Aug 2002 | B1 |
6445536 | Rudy et al. | Sep 2002 | B1 |
6445542 | Levi et al. | Sep 2002 | B1 |
6445553 | Barr et al. | Sep 2002 | B2 |
6445554 | Dong et al. | Sep 2002 | B1 |
6447935 | Zhang et al. | Sep 2002 | B1 |
6448765 | Chen et al. | Sep 2002 | B1 |
6451514 | Iitsuka | Sep 2002 | B1 |
6452742 | Crue et al. | Sep 2002 | B1 |
6452765 | Mahvan et al. | Sep 2002 | B1 |
6456465 | Louis et al. | Sep 2002 | B1 |
6459552 | Liu et al. | Oct 2002 | B1 |
6462920 | Karimi | Oct 2002 | B1 |
6466401 | Hong et al. | Oct 2002 | B1 |
6466402 | Crue, Jr. et al. | Oct 2002 | B1 |
6466404 | Crue, Jr. et al. | Oct 2002 | B1 |
6468436 | Shi et al. | Oct 2002 | B1 |
6469877 | Knapp et al. | Oct 2002 | B1 |
6477019 | Matono et al. | Nov 2002 | B2 |
6479096 | Shi et al. | Nov 2002 | B1 |
6483662 | Thomas et al. | Nov 2002 | B1 |
6487040 | Hsiao et al. | Nov 2002 | B1 |
6487056 | Gibbons et al. | Nov 2002 | B1 |
6490125 | Barr | Dec 2002 | B1 |
6496330 | Crue, Jr. et al. | Dec 2002 | B1 |
6496334 | Pang et al. | Dec 2002 | B1 |
6504676 | Hiner et al. | Jan 2003 | B1 |
6512657 | Heist et al. | Jan 2003 | B2 |
6512659 | Hawwa et al. | Jan 2003 | B1 |
6512661 | Louis | Jan 2003 | B1 |
6512690 | Qi et al. | Jan 2003 | B1 |
6515573 | Dong et al. | Feb 2003 | B1 |
6515791 | Hawwa et al. | Feb 2003 | B1 |
6532823 | Knapp et al. | Mar 2003 | B1 |
6535363 | Hosomi et al. | Mar 2003 | B1 |
6552874 | Chen et al. | Apr 2003 | B1 |
6552928 | Qi et al. | Apr 2003 | B1 |
6577470 | Rumpler | Jun 2003 | B1 |
6583961 | Levi et al. | Jun 2003 | B2 |
6583968 | Scura et al. | Jun 2003 | B1 |
6597548 | Yamanaka et al. | Jul 2003 | B1 |
6611398 | Rumpler et al. | Aug 2003 | B1 |
6618223 | Chen et al. | Sep 2003 | B1 |
6629357 | Akoh | Oct 2003 | B1 |
6633464 | Lai et al. | Oct 2003 | B2 |
6636394 | Fukagawa et al. | Oct 2003 | B1 |
6639291 | Sin et al. | Oct 2003 | B1 |
6650503 | Chen et al. | Nov 2003 | B1 |
6650506 | Risse | Nov 2003 | B1 |
6654195 | Frank, Jr. et al. | Nov 2003 | B1 |
6657816 | Barr et al. | Dec 2003 | B1 |
6661621 | Iitsuka | Dec 2003 | B1 |
6661625 | Sin et al. | Dec 2003 | B1 |
6674610 | Thomas et al. | Jan 2004 | B1 |
6680863 | Shi et al. | Jan 2004 | B1 |
6683763 | Hiner et al. | Jan 2004 | B1 |
6687098 | Huai | Feb 2004 | B1 |
6687178 | Qi et al. | Feb 2004 | B1 |
6687977 | Knapp et al. | Feb 2004 | B2 |
6691226 | Frank, Jr. et al. | Feb 2004 | B1 |
6697294 | Qi et al. | Feb 2004 | B1 |
6700738 | Sin et al. | Mar 2004 | B1 |
6700759 | Knapp et al. | Mar 2004 | B1 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6707083 | Hiner et al. | Mar 2004 | B1 |
6713801 | Sin et al. | Mar 2004 | B1 |
6721138 | Chen et al. | Apr 2004 | B1 |
6721149 | Shi et al. | Apr 2004 | B1 |
6721203 | Qi et al. | Apr 2004 | B1 |
6724569 | Chen et al. | Apr 2004 | B1 |
6724572 | Stoev et al. | Apr 2004 | B1 |
6729015 | Matono et al. | May 2004 | B2 |
6735850 | Gibbons et al. | May 2004 | B1 |
6737281 | Dang et al. | May 2004 | B1 |
6744608 | Sin et al. | Jun 2004 | B1 |
6747301 | Hiner et al. | Jun 2004 | B1 |
6751055 | Alfoqaha et al. | Jun 2004 | B1 |
6754049 | Seagle et al. | Jun 2004 | B1 |
6756071 | Shi et al. | Jun 2004 | B1 |
6757140 | Hawwa | Jun 2004 | B1 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762910 | Knapp et al. | Jul 2004 | B1 |
6765756 | Hong et al. | Jul 2004 | B1 |
6775902 | Huai et al. | Aug 2004 | B1 |
6778358 | Jiang et al. | Aug 2004 | B1 |
6781927 | Heanuc et al. | Aug 2004 | B1 |
6785955 | Chen et al. | Sep 2004 | B1 |
6791793 | Chen et al. | Sep 2004 | B1 |
6791807 | Hikami et al. | Sep 2004 | B1 |
6798616 | Seagle et al. | Sep 2004 | B1 |
6798625 | Ueno et al. | Sep 2004 | B1 |
6801408 | Chen et al. | Oct 2004 | B1 |
6801411 | Lederman et al. | Oct 2004 | B1 |
6803615 | Sin et al. | Oct 2004 | B1 |
6806035 | Atireklapvarodom et al. | Oct 2004 | B1 |
6807030 | Hawwa et al. | Oct 2004 | B1 |
6807332 | Hawwa | Oct 2004 | B1 |
6809899 | Chen et al. | Oct 2004 | B1 |
6816345 | Knapp et al. | Nov 2004 | B1 |
6828897 | Nepela | Dec 2004 | B1 |
6829160 | Qi et al. | Dec 2004 | B1 |
6829819 | Crue, Jr. et al. | Dec 2004 | B1 |
6833979 | Knapp et al. | Dec 2004 | B1 |
6834010 | Qi et al. | Dec 2004 | B1 |
6859343 | Alfoqaha et al. | Feb 2005 | B1 |
6859997 | Tong et al. | Mar 2005 | B1 |
6861937 | Feng et al. | Mar 2005 | B1 |
6870712 | Chen et al. | Mar 2005 | B2 |
6873494 | Chen et al. | Mar 2005 | B2 |
6873547 | Shi et al. | Mar 2005 | B1 |
6879464 | Sun et al. | Apr 2005 | B2 |
6888184 | Shi et al. | May 2005 | B1 |
6888704 | Diao et al. | May 2005 | B1 |
6891702 | Tang | May 2005 | B1 |
6894871 | Alfoqaha et al. | May 2005 | B2 |
6894877 | Crue, Jr. et al. | May 2005 | B1 |
6906894 | Chen et al. | Jun 2005 | B2 |
6909578 | Missell et al. | Jun 2005 | B1 |
6912106 | Chen et al. | Jun 2005 | B1 |
6934113 | Chen | Aug 2005 | B1 |
6934129 | Zhang et al. | Aug 2005 | B1 |
6940688 | Jiang et al. | Sep 2005 | B2 |
6942824 | Li | Sep 2005 | B1 |
6943993 | Chang et al. | Sep 2005 | B2 |
6944938 | Crue, Jr. et al. | Sep 2005 | B1 |
6944939 | Guo et al. | Sep 2005 | B2 |
6947258 | Li | Sep 2005 | B1 |
6950266 | McCaslin et al. | Sep 2005 | B1 |
6954332 | Hong et al. | Oct 2005 | B1 |
6958885 | Chen et al. | Oct 2005 | B1 |
6961221 | Niu et al. | Nov 2005 | B1 |
6969989 | Mei | Nov 2005 | B1 |
6975486 | Chen et al. | Dec 2005 | B2 |
6987643 | Seagle | Jan 2006 | B1 |
6989962 | Dong et al. | Jan 2006 | B1 |
6989972 | Stoev et al. | Jan 2006 | B1 |
7006327 | Krounbi et al. | Feb 2006 | B2 |
7007372 | Chen et al. | Mar 2006 | B1 |
7012832 | Sin et al. | Mar 2006 | B1 |
7023658 | Knapp et al. | Apr 2006 | B1 |
7026063 | Ueno et al. | Apr 2006 | B2 |
7027268 | Zhu et al. | Apr 2006 | B1 |
7027274 | Sin et al. | Apr 2006 | B1 |
7035046 | Young et al. | Apr 2006 | B1 |
7041985 | Wang et al. | May 2006 | B1 |
7046490 | Ueno et al. | May 2006 | B1 |
7054113 | Seagle et al. | May 2006 | B1 |
7057857 | Niu et al. | Jun 2006 | B1 |
7059868 | Yan | Jun 2006 | B1 |
7092195 | Liu et al. | Aug 2006 | B1 |
7110289 | Sin et al. | Sep 2006 | B1 |
7111382 | Knapp et al. | Sep 2006 | B1 |
7113366 | Wang et al. | Sep 2006 | B1 |
7114241 | Kubota et al. | Oct 2006 | B2 |
7116517 | He et al. | Oct 2006 | B1 |
7124654 | Davies et al. | Oct 2006 | B1 |
7126788 | Liu et al. | Oct 2006 | B1 |
7126790 | Liu et al. | Oct 2006 | B1 |
7130165 | Macken et al. | Oct 2006 | B2 |
7131346 | Buttar et al. | Nov 2006 | B1 |
7133253 | Seagle et al. | Nov 2006 | B1 |
7134185 | Knapp et al. | Nov 2006 | B1 |
7154715 | Yamanaka et al. | Dec 2006 | B2 |
7170725 | Zhou et al. | Jan 2007 | B1 |
7177117 | Jiang et al. | Feb 2007 | B1 |
7193815 | Stoev et al. | Mar 2007 | B1 |
7196880 | Anderson et al. | Mar 2007 | B1 |
7199974 | Alfoqaha | Apr 2007 | B1 |
7199975 | Pan | Apr 2007 | B1 |
7211339 | Seagle et al. | May 2007 | B1 |
7212384 | Stoev et al. | May 2007 | B1 |
7229706 | Hasegawa et al. | Jun 2007 | B2 |
7238292 | He et al. | Jul 2007 | B1 |
7239478 | Sin et al. | Jul 2007 | B1 |
7248431 | Liu et al. | Jul 2007 | B1 |
7248433 | Stoev et al. | Jul 2007 | B1 |
7248449 | Seagle | Jul 2007 | B1 |
7280325 | Pan | Oct 2007 | B1 |
7283327 | Liu et al. | Oct 2007 | B1 |
7284316 | Huai et al. | Oct 2007 | B1 |
7286329 | Chen et al. | Oct 2007 | B1 |
7289303 | Sin et al. | Oct 2007 | B1 |
7292409 | Stoev et al. | Nov 2007 | B1 |
7296339 | Yang et al. | Nov 2007 | B1 |
7301734 | Guo et al. | Nov 2007 | B2 |
7307814 | Seagle et al. | Dec 2007 | B1 |
7307818 | Park et al. | Dec 2007 | B1 |
7310204 | Stoev et al. | Dec 2007 | B1 |
7318947 | Park et al. | Jan 2008 | B1 |
7333295 | Medina et al. | Feb 2008 | B1 |
7337530 | Stoev et al. | Mar 2008 | B1 |
7342752 | Zhang et al. | Mar 2008 | B1 |
7349170 | Rudman et al. | Mar 2008 | B1 |
7349179 | He et al. | Mar 2008 | B1 |
7354664 | Jiang et al. | Apr 2008 | B1 |
7363697 | Dunn et al. | Apr 2008 | B1 |
7371152 | Newman | May 2008 | B1 |
7372665 | Stoev et al. | May 2008 | B1 |
7375926 | Stoev et al. | May 2008 | B1 |
7379269 | Krounbi et al. | May 2008 | B1 |
7386933 | Krounbi et al. | Jun 2008 | B1 |
7389577 | Shang et al. | Jun 2008 | B1 |
7417832 | Erickson et al. | Aug 2008 | B1 |
7419891 | Chen et al. | Sep 2008 | B1 |
7428124 | Song et al. | Sep 2008 | B1 |
7430098 | Song et al. | Sep 2008 | B1 |
7436620 | Kang et al. | Oct 2008 | B1 |
7436638 | Pan | Oct 2008 | B1 |
7440220 | Kang et al. | Oct 2008 | B1 |
7443632 | Stoev et al. | Oct 2008 | B1 |
7444740 | Chung et al. | Nov 2008 | B1 |
7468870 | Arasawa et al. | Dec 2008 | B2 |
7493688 | Wang et al. | Feb 2009 | B1 |
7508627 | Zhang et al. | Mar 2009 | B1 |
7522377 | Jiang et al. | Apr 2009 | B1 |
7522379 | Krounbi et al. | Apr 2009 | B1 |
7522382 | Pan | Apr 2009 | B1 |
7542246 | Song et al. | Jun 2009 | B1 |
7551406 | Thomas et al. | Jun 2009 | B1 |
7552523 | He et al. | Jun 2009 | B1 |
7554767 | Hu et al. | Jun 2009 | B1 |
7580230 | Freitag et al. | Aug 2009 | B2 |
7583466 | Kermiche et al. | Sep 2009 | B2 |
7595967 | Moon et al. | Sep 2009 | B1 |
7599151 | Hatatani et al. | Oct 2009 | B2 |
7599158 | Wang et al. | Oct 2009 | B2 |
7639457 | Chen et al. | Dec 2009 | B1 |
7660080 | Liu et al. | Feb 2010 | B1 |
7672080 | Tang et al. | Mar 2010 | B1 |
7672086 | Jiang | Mar 2010 | B1 |
7675718 | Chang et al. | Mar 2010 | B2 |
7684160 | Erickson et al. | Mar 2010 | B1 |
7688546 | Bai et al. | Mar 2010 | B1 |
7691434 | Zhang et al. | Apr 2010 | B1 |
7695761 | Shen et al. | Apr 2010 | B1 |
7719795 | Hu et al. | May 2010 | B2 |
7726009 | Liu et al. | Jun 2010 | B1 |
7729086 | Song et al. | Jun 2010 | B1 |
7729087 | Stoev et al. | Jun 2010 | B1 |
7736823 | Wang et al. | Jun 2010 | B1 |
7785666 | Sun et al. | Aug 2010 | B1 |
7796356 | Fowler et al. | Sep 2010 | B1 |
7800858 | Bajikar et al. | Sep 2010 | B1 |
7804668 | Zhou et al. | Sep 2010 | B2 |
7819979 | Chen et al. | Oct 2010 | B1 |
7829264 | Wang et al. | Nov 2010 | B1 |
7846643 | Sun et al. | Dec 2010 | B1 |
7848065 | Freitag et al. | Dec 2010 | B2 |
7855854 | Hu et al. | Dec 2010 | B2 |
7869160 | Pan et al. | Jan 2011 | B1 |
7872824 | Macchioni et al. | Jan 2011 | B1 |
7872833 | Hu et al. | Jan 2011 | B2 |
7898776 | Nakabayashi et al. | Mar 2011 | B2 |
7910267 | Zeng et al. | Mar 2011 | B1 |
7911735 | Sin et al. | Mar 2011 | B1 |
7911737 | Jiang et al. | Mar 2011 | B1 |
7916426 | Hu et al. | Mar 2011 | B2 |
7918013 | Dunn et al. | Apr 2011 | B1 |
7968219 | Jiang et al. | Jun 2011 | B1 |
7982989 | Shi et al. | Jul 2011 | B1 |
8008912 | Shang | Aug 2011 | B1 |
8011084 | Le et al. | Sep 2011 | B2 |
8012804 | Wang et al. | Sep 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018677 | Chung et al. | Sep 2011 | B1 |
8018678 | Zhang et al. | Sep 2011 | B1 |
8024748 | Moravec et al. | Sep 2011 | B1 |
8072705 | Wang et al. | Dec 2011 | B1 |
8074345 | Anguelouch et al. | Dec 2011 | B1 |
8077418 | Hu et al. | Dec 2011 | B1 |
8077434 | Shen et al. | Dec 2011 | B1 |
8077435 | Liu et al. | Dec 2011 | B1 |
8077557 | Hu et al. | Dec 2011 | B1 |
8079135 | Shen et al. | Dec 2011 | B1 |
8081403 | Chen et al. | Dec 2011 | B1 |
8091210 | Sasaki et al. | Jan 2012 | B1 |
8097846 | Anguelouch et al. | Jan 2012 | B1 |
8104166 | Zhang et al. | Jan 2012 | B1 |
8116043 | Leng et al. | Feb 2012 | B2 |
8116171 | Lee | Feb 2012 | B1 |
8125856 | Li et al. | Feb 2012 | B1 |
8134794 | Wang | Mar 2012 | B1 |
8136224 | Sun et al. | Mar 2012 | B1 |
8136225 | Zhang et al. | Mar 2012 | B1 |
8136805 | Lee | Mar 2012 | B1 |
8141235 | Zhang | Mar 2012 | B1 |
8146236 | Luo et al. | Apr 2012 | B1 |
8149536 | Yang et al. | Apr 2012 | B1 |
8151441 | Rudy et al. | Apr 2012 | B1 |
8163185 | Sun et al. | Apr 2012 | B1 |
8164760 | Willis | Apr 2012 | B2 |
8164855 | Gibbons et al. | Apr 2012 | B1 |
8164864 | Kaiser et al. | Apr 2012 | B2 |
8165709 | Rudy | Apr 2012 | B1 |
8166631 | Tran et al. | May 2012 | B1 |
8166632 | Zhang et al. | May 2012 | B1 |
8169473 | Yu et al. | May 2012 | B1 |
8171618 | Wang et al. | May 2012 | B1 |
8179636 | Bai et al. | May 2012 | B1 |
8191237 | Luo et al. | Jun 2012 | B1 |
8194365 | Leng et al. | Jun 2012 | B1 |
8194366 | Li et al. | Jun 2012 | B1 |
8196285 | Zhang et al. | Jun 2012 | B1 |
8200054 | Li et al. | Jun 2012 | B1 |
8203800 | Li et al. | Jun 2012 | B2 |
8208350 | Hu et al. | Jun 2012 | B1 |
8220140 | Wang et al. | Jul 2012 | B1 |
8222599 | Chien | Jul 2012 | B1 |
8225488 | Zhang et al. | Jul 2012 | B1 |
8227023 | Liu et al. | Jul 2012 | B1 |
8228633 | Tran et al. | Jul 2012 | B1 |
8231796 | Li et al. | Jul 2012 | B1 |
8233248 | Li et al. | Jul 2012 | B1 |
8248896 | Yuan et al. | Aug 2012 | B1 |
8254060 | Shi et al. | Aug 2012 | B1 |
8257597 | Guan et al. | Sep 2012 | B1 |
8259410 | Bai et al. | Sep 2012 | B1 |
8259539 | Hu et al. | Sep 2012 | B1 |
8262918 | Li et al. | Sep 2012 | B1 |
8262919 | Luo et al. | Sep 2012 | B1 |
8264797 | Emley | Sep 2012 | B2 |
8264798 | Guan et al. | Sep 2012 | B1 |
8270126 | Roy et al. | Sep 2012 | B1 |
8276258 | Tran et al. | Oct 2012 | B1 |
8277669 | Chen et al. | Oct 2012 | B1 |
8279719 | Hu et al. | Oct 2012 | B1 |
8284517 | Sun et al. | Oct 2012 | B1 |
8288204 | Wang et al. | Oct 2012 | B1 |
8289821 | Huber | Oct 2012 | B1 |
8291743 | Shi et al. | Oct 2012 | B1 |
8307539 | Rudy et al. | Nov 2012 | B1 |
8307540 | Tran et al. | Nov 2012 | B1 |
8308921 | Hiner et al. | Nov 2012 | B1 |
8310785 | Zhang et al. | Nov 2012 | B1 |
8310901 | Batra et al. | Nov 2012 | B1 |
8315019 | Mao et al. | Nov 2012 | B1 |
8316527 | Hong et al. | Nov 2012 | B2 |
8320076 | Shen et al. | Nov 2012 | B1 |
8320077 | Tang et al. | Nov 2012 | B1 |
8320219 | Wolf et al. | Nov 2012 | B1 |
8320220 | Yuan et al. | Nov 2012 | B1 |
8320722 | Yuan et al. | Nov 2012 | B1 |
8322022 | Yi et al. | Dec 2012 | B1 |
8322023 | Zeng et al. | Dec 2012 | B1 |
8325569 | Shi et al. | Dec 2012 | B1 |
8333008 | Sin et al. | Dec 2012 | B1 |
8334093 | Zhang et al. | Dec 2012 | B2 |
8336194 | Yuan et al. | Dec 2012 | B2 |
8339738 | Tran et al. | Dec 2012 | B1 |
8341826 | Jiang et al. | Jan 2013 | B1 |
8343319 | Li et al. | Jan 2013 | B1 |
8343364 | Gao et al. | Jan 2013 | B1 |
8349195 | Si et al. | Jan 2013 | B1 |
8351307 | Wolf et al. | Jan 2013 | B1 |
8357244 | Zhao et al. | Jan 2013 | B1 |
8373945 | Luo et al. | Feb 2013 | B1 |
8375564 | Luo et al. | Feb 2013 | B1 |
8375565 | Hu et al. | Feb 2013 | B2 |
8381391 | Park et al. | Feb 2013 | B2 |
8385157 | Champion et al. | Feb 2013 | B1 |
8385158 | Hu et al. | Feb 2013 | B1 |
8394280 | Wan et al. | Mar 2013 | B1 |
8400731 | Li et al. | Mar 2013 | B1 |
8404128 | Zhang et al. | Mar 2013 | B1 |
8404129 | Luo et al. | Mar 2013 | B1 |
8405930 | Li et al. | Mar 2013 | B1 |
8409453 | Jiang et al. | Apr 2013 | B1 |
8413317 | Wan et al. | Apr 2013 | B1 |
8416540 | Li et al. | Apr 2013 | B1 |
8419953 | Su et al. | Apr 2013 | B1 |
8419954 | Chen et al. | Apr 2013 | B1 |
8422176 | Leng et al. | Apr 2013 | B1 |
8422342 | Lee | Apr 2013 | B1 |
8422841 | Shi et al. | Apr 2013 | B1 |
8424192 | Yang et al. | Apr 2013 | B1 |
8441756 | Sun et al. | May 2013 | B1 |
8443510 | Shi et al. | May 2013 | B1 |
8444866 | Guan et al. | May 2013 | B1 |
8449948 | Medina et al. | May 2013 | B2 |
8451556 | Wang et al. | May 2013 | B1 |
8451563 | Zhang et al. | May 2013 | B1 |
8454846 | Zhou et al. | Jun 2013 | B1 |
8455119 | Jiang et al. | Jun 2013 | B1 |
8456961 | Wang et al. | Jun 2013 | B1 |
8456963 | Hu et al. | Jun 2013 | B1 |
8456964 | Yuan et al. | Jun 2013 | B1 |
8456966 | Shi et al. | Jun 2013 | B1 |
8456967 | Mallary | Jun 2013 | B1 |
8458892 | Si et al. | Jun 2013 | B2 |
8462592 | Wolf et al. | Jun 2013 | B1 |
8468682 | Zhang | Jun 2013 | B1 |
8472288 | Wolf et al. | Jun 2013 | B1 |
8480911 | Osugi et al. | Jul 2013 | B1 |
8486285 | Zhou et al. | Jul 2013 | B2 |
8486286 | Gao et al. | Jul 2013 | B1 |
8488272 | Tran et al. | Jul 2013 | B1 |
8491801 | Tanner et al. | Jul 2013 | B1 |
8491802 | Gao et al. | Jul 2013 | B1 |
8493693 | Zheng et al. | Jul 2013 | B1 |
8493695 | Kaiser et al. | Jul 2013 | B1 |
8495813 | Hu et al. | Jul 2013 | B1 |
8498084 | Leng et al. | Jul 2013 | B1 |
8506828 | Osugi et al. | Aug 2013 | B1 |
8514517 | Batra et al. | Aug 2013 | B1 |
8518279 | Wang et al. | Aug 2013 | B1 |
8518832 | Yang et al. | Aug 2013 | B1 |
8520336 | Liu et al. | Aug 2013 | B1 |
8520337 | Liu et al. | Aug 2013 | B1 |
8524068 | Medina et al. | Sep 2013 | B2 |
8526275 | Yuan et al. | Sep 2013 | B1 |
8531801 | Xiao et al. | Sep 2013 | B1 |
8532450 | Wang et al. | Sep 2013 | B1 |
8533937 | Wang et al. | Sep 2013 | B1 |
8537494 | Pan et al. | Sep 2013 | B1 |
8537495 | Luo et al. | Sep 2013 | B1 |
8537502 | Park et al. | Sep 2013 | B1 |
8545999 | Leng et al. | Oct 2013 | B1 |
8547659 | Bai et al. | Oct 2013 | B1 |
8547667 | Roy et al. | Oct 2013 | B1 |
8547730 | Shen et al. | Oct 2013 | B1 |
8555486 | Medina et al. | Oct 2013 | B1 |
8559141 | Pakala et al. | Oct 2013 | B1 |
8563146 | Zhang et al. | Oct 2013 | B1 |
8565049 | Tanner et al. | Oct 2013 | B1 |
8576517 | Tran et al. | Nov 2013 | B1 |
8578594 | Jiang et al. | Nov 2013 | B2 |
8582238 | Liu et al. | Nov 2013 | B1 |
8582241 | Yu et al. | Nov 2013 | B1 |
8582253 | Zheng et al. | Nov 2013 | B1 |
8588039 | Shi et al. | Nov 2013 | B1 |
8593914 | Wang et al. | Nov 2013 | B2 |
8597528 | Roy et al. | Dec 2013 | B1 |
8599520 | Liu et al. | Dec 2013 | B1 |
8599657 | Lee | Dec 2013 | B1 |
8603593 | Roy et al. | Dec 2013 | B1 |
8607438 | Gao et al. | Dec 2013 | B1 |
8607439 | Wang et al. | Dec 2013 | B1 |
8611035 | Bajikar et al. | Dec 2013 | B1 |
8611054 | Shang et al. | Dec 2013 | B1 |
8611055 | Pakala et al. | Dec 2013 | B1 |
8614864 | Hong et al. | Dec 2013 | B1 |
8619512 | Yuan et al. | Dec 2013 | B1 |
8625233 | Ji et al. | Jan 2014 | B1 |
8625941 | Shi et al. | Jan 2014 | B1 |
8628672 | Si et al. | Jan 2014 | B1 |
8630068 | Mauri et al. | Jan 2014 | B1 |
8634280 | Wang et al. | Jan 2014 | B1 |
8638529 | Leng et al. | Jan 2014 | B1 |
8643980 | Fowler et al. | Feb 2014 | B1 |
8649123 | Zhang et al. | Feb 2014 | B1 |
8665561 | Knutson et al. | Mar 2014 | B1 |
8670211 | Sun et al. | Mar 2014 | B1 |
8670213 | Zeng et al. | Mar 2014 | B1 |
8670214 | Knutson et al. | Mar 2014 | B1 |
8670294 | Shi et al. | Mar 2014 | B1 |
8670295 | Hu et al. | Mar 2014 | B1 |
8675318 | Ho et al. | Mar 2014 | B1 |
8675455 | Krichevsky et al. | Mar 2014 | B1 |
8681594 | Shi et al. | Mar 2014 | B1 |
8689430 | Chen et al. | Apr 2014 | B1 |
8693141 | Elliott et al. | Apr 2014 | B1 |
8703397 | Zeng et al. | Apr 2014 | B1 |
8705205 | Li et al. | Apr 2014 | B1 |
8711518 | Zeng et al. | Apr 2014 | B1 |
8711526 | Colak et al. | Apr 2014 | B2 |
8711528 | Xiao et al. | Apr 2014 | B1 |
8717709 | Shi et al. | May 2014 | B1 |
8720044 | Tran et al. | May 2014 | B1 |
8721902 | Wang et al. | May 2014 | B1 |
8724259 | Liu et al. | May 2014 | B1 |
8749790 | Tanner et al. | Jun 2014 | B1 |
8749920 | Knutson et al. | Jun 2014 | B1 |
8753903 | Tanner et al. | Jun 2014 | B1 |
8760807 | Zhang et al. | Jun 2014 | B1 |
8760818 | Diao et al. | Jun 2014 | B1 |
8760819 | Liu et al. | Jun 2014 | B1 |
8760822 | Li et al. | Jun 2014 | B1 |
8760823 | Chen et al. | Jun 2014 | B1 |
8763235 | Wang et al. | Jul 2014 | B1 |
8780498 | Jiang et al. | Jul 2014 | B1 |
8780505 | Xiao | Jul 2014 | B1 |
8780506 | Maat et al. | Jul 2014 | B1 |
8786983 | Liu et al. | Jul 2014 | B1 |
8790524 | Luo et al. | Jul 2014 | B1 |
8790527 | Luo et al. | Jul 2014 | B1 |
8792208 | Liu et al. | Jul 2014 | B1 |
8792312 | Wang et al. | Jul 2014 | B1 |
8793866 | Zhang et al. | Aug 2014 | B1 |
8797680 | Luo et al. | Aug 2014 | B1 |
8797684 | Tran et al. | Aug 2014 | B1 |
8797686 | Bai et al. | Aug 2014 | B1 |
8797692 | Guo et al. | Aug 2014 | B1 |
8813324 | Emley et al. | Aug 2014 | B2 |
20050157431 | Hatatani et al. | Jul 2005 | A1 |
20090180217 | Chou et al. | Jul 2009 | A1 |
20100290157 | Zhang et al. | Nov 2010 | A1 |
20110086240 | Xiang et al. | Apr 2011 | A1 |
20110215800 | Zhou et al. | Sep 2011 | A1 |
20110273802 | Zhou et al. | Nov 2011 | A1 |
20120111826 | Chen et al. | May 2012 | A1 |
20120216378 | Emley et al. | Aug 2012 | A1 |
20120237878 | Zeng et al. | Sep 2012 | A1 |
20120275062 | Gao | Nov 2012 | A1 |
20120281320 | Singleton et al. | Nov 2012 | A1 |
20120298621 | Gao | Nov 2012 | A1 |
20130216702 | Kaiser et al. | Aug 2013 | A1 |
20130216863 | Li et al. | Aug 2013 | A1 |
20130257421 | Shang et al. | Oct 2013 | A1 |
20140154529 | Yang et al. | Jun 2014 | A1 |
20140175050 | Zhang et al. | Jun 2014 | A1 |
Entry |
---|
Notice of Allowance dated Feb. 12, 2014 from U.S. Appl. No. 13/332,313, 5 pages. |
Office Action dated Oct. 24, 2013 from U.S. Appl. No. 13/332,313, 8 pages. |
Advisory Action dated Sep. 26, 2013 from U.S. Appl. No. 13/332,313, 3 pages. |
Final Office Action dated Jul. 26, 2013 from U.S. Appl. No. 13/332,313, 8 pages. |
Office Action dated Mar. 12, 2013 from U.S. Appl. No. 13/332,313, 14 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 13332313 | Dec 2011 | US |
Child | 14290932 | US |