Field of the Invention
The present invention relates to systems and methods for recovering and displacing fluid from a pipe and more particularly, but not by way of limitation, to systems and methods for recovering and displacing fluid from pipe associated with an offshore petroleum well via an interference engagement with the pipe.
History of the Related Art
The discovery, development, and production of petroleum wells that lie underwater, known as offshore petroleum production, has become increasingly significant. Offshore petroleum production allows access to deposits of, for example, oil and gas that might otherwise be unreachable through conventional land-based petroleum production. Offshore petroleum production is considerably more challenging than land-based petroleum production due to harsh environmental conditions. For example, an ocean depth often increases a length of a fluid column associated with an offshore well by several hundred meters. The longer fluid column increases downhole pressures associated with the offshore well and substantially increases a magnitude of energy required to lift produced fluids from an ocean floor to a drilling platform.
During offshore petroleum production, sections of pipe are frequently lost on the ocean floor. Sections of lost pipe are frequently unrecoverable using conventional techniques and, thus, represent a significant loss to a company engaged in offshore exploration. In addition, pipelines and flowlines, for transporting petroleum products may become damaged due to, for example, dragging an anchor of an ocean vessel over the pipeline or flowline. In this situation, sections of damaged or otherwise abandoned pipeline or flowline will need to be recovered. During recovery of damaged or abandoned pipe, flooding of the pipe with water or petroleum products adds considerable weight to the pipe and significantly increases a magnitude of energy required to lift the pipe. Thus, effective displacement of fluid becomes crucial to the recovery of pipe and pipeline components.
The present invention relates to systems and methods for recovering and displacing fluid from a pipe and more particularly, but not by way of limitation, to systems and methods for recovering and displacing fluid from pipe associated with an offshore petroleum well via an interference engagement with the pipe. In one aspect, the present invention relates to a method for displacing fluid from a pipe. The method includes engaging a fluid-displacement system with the pipe. A displacement agent is pumped into the pipe via the fluid-displacement system. Fluid present within the pipe is displaced by the displacement agent. The pipe is manipulated in a desired manner.
In another aspect, the present invention relates to a system. The system includes a displacement-agent source containing a displacement agent. A friction-pin unit is operatively coupled, via a conduit, to the displacement-agent source to allow transmission of the displacement agent from the displacement-agent source to the friction-pin unit. The friction-pin unit includes a sleeve, a guide cone formed at a first end of the sleeve, a shaft disposed coaxially within the sleeve, and a plurality of friction pins extending radially outward from the shaft.
The foregoing has outlined some of the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
A more complete understanding of the method and system of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying drawings wherein:
Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. Like reference numerals are utilized to reference like components. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
A shaft 104 is disposed within the sleeve 102 in a coaxial fashion relative to the sleeve 102. A plurality of friction pins 112 extend from the shaft 104 in a radial configuration. A portion of the shaft 104 extends below the guide cone 106 and forms an insertion guide 103. The insertion guide 103 aids in centering the friction-pin unit 100 over a pipe 118. In a typical embodiment, the shaft 104 is approximately 8⅜ inches in diameter; however, any size of the shaft 104 may be utilized as dictated by design requirements. In a typical embodiment, the shaft 104 is constructed of a high-strength material such as, for example, 75KSI steel; however, any appropriate high-strength material may be utilized. In a typical embodiment, the pipe 118 is, for example, a damaged sub-sea riser pipe.
A valve 105 is disposed at a top end 122 of the sleeve 102. In a typical embodiment, the valve 105 is fluidly coupled to an interior region bounded by the interior surface of the sleeve 102. The valve 105 allows passage of fluid and relief of pressure from the interior region to an exterior environment. Relief of pressure reduces a downward force required to install the friction-pin unit 100 on the pipe 118. In a typical embodiment, the valve 105 is a full-bore ball valve; however, in various other embodiments, valve designs such as, for example, a gate valve, may be utilized.
The plurality of friction pins 112 are secured to, and extend outwardly from, the shaft 104 in a radial fashion. In a typical embodiment, the friction pins 112 are attached to the shaft 104 via a thermal or mechanical press-fit engagement. For example, in the case of a thermal press-fit engagement, the plurality of friction pins 112 are inserted into a plurality of thermally expanded holes (not shown) in the shaft 104. Upon cooling of the shaft 104, the plurality of holes contracts and forms an interference engagement with the plurality of friction pins 112. The plurality of friction pins 112 may be of any size or arrangement as dictated by design requirements. A length and a cross-sectional shape of the plurality of friction pins 112 varies with the diameter of the pipe 118 and with design requirements. For example, if the pipe 118 has a diameter of approximately 10 inches, the plurality of friction pins 112 may have a diameter of approximately ⅜″, a length of approximately 6″ and are disposed at an angle (a) of approximately 34.5 degrees from the vertical axis 119 of the friction-pin unit 100.
In an illustrative embodiment, the friction pins 112 are arranged in six columns of approximately 220 pins; however, any number of columns and any number of friction pins may be utilized. For example, friction pin units utilizing principles of the invention may include an integer number of the friction pins 112 between 1 and approximately 100,000. Likewise, friction pin units utilizing principles of the invention may be arranged in an integer number of columns of the friction pins 112 between 1 and approximately 100. In other embodiments, different arrangements of the friction pins 112 may be employed, such as, for example, a staggered arrangement, a spiral arrangement, or a concentric-circle arrangement. In a typical embodiment, the plurality of friction pins 112 are constructed of a high-strength material such as, for example, 75KSI steel; however, in other embodiments, other high-strength materials may be utilized. The stop ring 114 is circumferentially disposed about the interior surface of the sleeve 102. In a typical embodiment, the stop ring 114 engages a top aspect of the pipe 118 and prevents further downward movement of the friction-pin unit 100 along the vertical axis 119. The at least one ring seal 116 is circumferentially disposed about the interior surface of the sleeve 102. During operation, the at least one ring seal 116 circumferentially engages an outer surface of the pipe 118 and forms a seal between the pipe 118 and the sleeve 102 so as to impede leakage of fluids from the sleeve 102 into the exterior environment.
At step 410, the plurality of friction pins 112 engage the inner surface 120 of the pipe 118 and create an interference fit between the friction-pin unit 100 and the inner surface 120. At step 412, the stop ring 114 contacts a top of the pipe and prevents further downward movement of the friction-pin unit 100 relative to the pipe 118. At step 414, the at least one ring seal 116 circumferentially engages the outer surface of the pipe 118 and create a seal between the sleeve 102 and the pipe 118 that impedes leakage of fluids into the exterior environment. At step 415, the valve 105 is closed so as to impede leakage of fluids into the exterior environment. In a typical embodiment, the valve 105 is closed, for example, by a remote-operated vehicle. The process 400 ends at step 416. One skilled in the art will appreciate that, in various other embodiments, one or more of the above-listed steps may be performed simultaneously in whole or in part or in a different order from that described above.
At step 610, the plurality of friction pins 112 engage an inner surface 120 of the pipe 118 and create an interference fit between the friction-pin unit 500 and the inner surface 120. At step 612, the stop ring 114 contacts a top region of the pipe 118. The stop ring 114 prevents further downward movement of the friction-pin unit 500 relative to the pipe 118. At step 614, the at least one ring seal 116 circumferentially engages the outer surface of the pipe 118 and forms a seal between the sleeve 102 and the pipe 118 so as to impede leakage of fluids into the exterior environment. The process 600 ends at step 616. One skilled in the art will appreciate that, in various other embodiments, one or more of the above-listed steps may be performed simultaneously in whole or in part or in a different order from that described above.
In a typical embodiment, the shaft 504 is removed from the pipe via a tool such as, for example, a ram or press. The process 700 ends at step 714. One skilled in the art will appreciate that, in various other embodiments, one or more of the above-listed steps may be performed simultaneously in whole or in part or in a different order from that described above. While the process 700 has been described above with respect to the friction-pin unit 750, one skilled in the art will recognize that, in other embodiments, the process 700 may utilize other friction-pin units utilizing principles of the invention, such as, for example, the friction-pin unit 500 or the friction-pin unit 100.
During operation, the friction-pin unit 802 is lowered to an appropriate depth to engage a pipe 810. In a typical embodiment, the pipe 810 is a component of, for example, a sub-sea pipeline or flowline; however, in other embodiments, any kind of pipe could be utilized. As shown in
During operation, upon engagement of the friction-pin unit 802 with the pipe 810, the pig device 1002 is disposed within the pipe 810. Displacement agent is supplied by the displacement-agent source 804 to the friction-pin unit 802 via the fluid conduit 806. The displacement agent causes a head pressure to build behind the pig device 1002. As shown in
Although various embodiments of the method and system of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Specification, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit and scope of the invention as set forth herein. It is intended that the Specification and examples be considered as illustrative only.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/597,547, filed Aug. 29, 2012. This application claims priority to, and incorporates by reference, for any purpose, the entire disclosure of, U.S. Provisional Patent Application No. 61/694,529, filed Aug. 29, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2324886 | Sowders | Jul 1943 | A |
3543323 | Girard | Dec 1970 | A |
3685083 | Jones | Aug 1972 | A |
3751932 | Matthews, Jr. | Aug 1973 | A |
3788084 | Matthews, Jr. | Jan 1974 | A |
4004635 | Marquaire et al. | Jan 1977 | A |
4142739 | Billingsley | Mar 1979 | A |
4389461 | Scott | Jun 1983 | A |
4543131 | Purinton, Jr. | Sep 1985 | A |
4662785 | Gibb et al. | May 1987 | A |
5105888 | Pollock et al. | Apr 1992 | A |
5188483 | Kopp et al. | Feb 1993 | A |
5868203 | Cunningham | Feb 1999 | A |
6196757 | Bakke | Mar 2001 | B1 |
6371207 | Reynolds | Apr 2002 | B1 |
6527869 | Bourg | Mar 2003 | B1 |
20080245528 | Stokka et al. | Oct 2008 | A1 |
20090307857 | Hestenes | Dec 2009 | A1 |
20100012151 | Baugh et al. | Jan 2010 | A1 |
20100089126 | Sweeney | Apr 2010 | A1 |
20100170535 | Freeman et al. | Jul 2010 | A1 |
20130049385 | Austin et al. | Feb 2013 | A1 |
20130199651 | Bowie | Aug 2013 | A1 |
Entry |
---|
Copenheaver, Blaine R., “International Search Report” prepared for PCT/US2012/052778 as mailed Nov. 13, 2012, 2 pages. |
Thomas, Shane, “International Search Report” prepared for PCT/US2013/057004 as mailed Jan. 29, 2014, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140060678 A1 | Mar 2014 | US | |
20160177682 A9 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
61694529 | Aug 2012 | US | |
61528511 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13597547 | Aug 2012 | US |
Child | 13837481 | US |