Method and system for routable prefix queries in a content centric network

Information

  • Patent Grant
  • 10841212
  • Patent Number
    10,841,212
  • Date Filed
    Monday, June 18, 2018
    6 years ago
  • Date Issued
    Tuesday, November 17, 2020
    4 years ago
Abstract
One embodiment provides a system that facilitates routable prefix queries in a CCN. During operation, the system generates, by a client computing device, a query for one or more indices based on a name for an interest, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level. An index indicates a number of the contiguous name components beginning from the most general level that represent a routable prefix needed to route the interest to a content producing device that can satisfy the interest. In response to the query, the system receives the one or more indices, which allows the client computing device to determine a remaining number of name components of the interest name which can be encrypted, thereby facilitating protection of private communication in a content centric network.
Description
BACKGROUND
Field

This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a method and system for providing an extension to CCN routing protocols that enables a consumer to generate routable prefix queries and determine the minimum number of cleartext name components necessary for an interest to reach a producer in a content centric network.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level.


A CCN data packet (such as an interest or content object) is routed based on its name. Some name components may be used by an intermediate node to route a CCN interest, while other name components may be used by a content producer to satisfy a request based on private user information or application-specific data. In the latter case, the meaningfulness of the name components may reveal information regarding the requested content and may result in a breach of user privacy or security. A consumer may encrypt the interest name, but a sufficient number of name components must remain unencrypted for routing purposes. This “minimum routable prefix” is the maximal name length (e.g., maximum number of name components) needed to route an interest to a content producer who can satisfy the content request.


While a CCN brings many desired features to a network, some issues remain unsolved for a consumer in determining, via an existing CCN routing protocol, the minimum routable prefix for an interest name.


SUMMARY

One embodiment provides a system that facilitates routable prefix queries in a CCN. During operation, the system generates, by a client computing device, a query for one or more indices based on a name for an interest, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level. An index indicates a number of the contiguous name components beginning from the most general level that represent a routable prefix needed to route the interest to a content producing device that can satisfy the interest. In response to the query, the system receives the one or more indices, which allows the client computing device to determine a remaining number of name components of the interest name which can be encrypted, thereby facilitating protection of private communication in a content centric network.


In some embodiments, the system generates a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in cleartext. The system encrypts a remaining suffix which comprises name components of the name immediately following the first routable prefix.


In some embodiments, the system transmits the first interest to a first content producing device based on the first routable prefix, wherein the first interest is an initial interest in a key exchange protocol between the client computing device and the first content producing device.


In some embodiments, the query is generated by a first local application. The system transmits the query to a second local application that is a local routing service that shares a same forwarder as the first local application, and the local routing service configures a forwarding information base of the client computing device based on notification messages received from content producing devices.


In some embodiments, the local routing service communicates with other network entities via a portal instance associated with the second local application.


In some embodiments, the local routing service determines the one or more indices by communicating via the local forwarder with other network entities based on one or more of: a name based protocol; a route-based protocol; and an explicit negotiation protocol.


In some embodiments, the second local application provides an interface to the first local application, wherein the interface allows the first local application to transmit the query based on the interest name.


In some embodiments, a remote application on a first content producing device publishes a notification message indicating that the first content producing device can serve content for a routable prefix that corresponds to a received index.


In some embodiments, in response to receiving a notification message from a first content producing device indicating that the first content producing device can serve content for a routable prefix that corresponds to a received index, the system configures a forwarding information base of the client computing device based on the notification message.


Another embodiment facilitates routable prefix queries in a CCN. During operation, the system transmits, by a content producing device, a notification message indicating that the content producing device can serve content for a name prefix, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level. A name prefix indicates one or more contiguous name components beginning from the most general level. The notification message is transmitted by a local routing service via a forwarder of the content producing device, thereby facilitating protection of private communication in a content centric network.


In some embodiments, transmitting the notification message causes a client computing device or an intermediate node to, in response to receiving the notification message, configure a forwarding information base of the client computing device or the intermediate node based on the notification message.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary environment which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.



FIG. 1B illustrates an exemplary environment which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.



FIG. 2 illustrates an exemplary system which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.



FIG. 3 presents a flow chart illustrating a method by a content producing device for facilitating routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.



FIG. 4 presents a flow chart illustrating a method by a client computing device for facilitating routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary computer system that facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention solve the problem of enabling a consumer to determine the minimal number of cleartext name components needed to route interests from a consumer to an authoritative producer. A CCN data packet (e.g., an interest or a content object) is routed based on its name, which can include multiple name components. Some of the name components may be used for routing purposes, while other name components may contain sensitive user information or application-specific data. A consumer may encrypt the interest name, but a sufficient number of name components must remain unencrypted in order for the interest to be routed to a producer that can satisfy the interest or serve the requested content. Embodiments of the present system allow a consumer to determine this sufficient number of unencrypted name components, which is also known as the minimum routable prefix. The minimum routable prefix can correspond to an index “i” in the CCN name, where the index i indicates the position of a particular name component in the hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level.


A CCN node (e.g., a consumer, a forwarder, or a producer) with a local forwarder can have a dynamically managed FIB. In embodiments of the present invention, such a node can also use a local routing service to configure its FIB. Other local applications using the same local forwarder may also use the local routing service. The local routing service can provide an interface that enables a client or a consumer (e.g., a client computing device) to request the routable prefix for a given name. For example, a consumer can discover the index that corresponds to the minimum routable prefix for an interest name “/a/b/c/d.” The consumer can send a query via the interface to the local routing service. The query can return an index (also referred to as a “split index”) i, which indicates the minimum routable prefix needed to route the interest to a producer that can satisfy the interest and serve the requested content. If multiple qualified producers are available for the given interest name, the function can return a list of split indices in increasing order. For example, assume that a first producer application can serve content under the “/alb” prefix. A second producer application may subsequently create and begin serving content under the “/a/b/c” prefix. The second application subsumes the first application based on the longest prefix matching performed in the FIB. Thus, a query for the routable prefix of a name “/a/b/file1” returns i=1, whereas a query for the routable prefix of a name “a/b/c/object2” returns i=[1, 2].


The local routing service can determine the split index (or indices) based on a name-based negotiation protocol, a route-based negotiation protocol, or an explicit negotiation protocol, as described in U.S. patent application Ser. No. 15/056,904. Upon receiving the response to the query (i.e., the split index or indices), the requesting consumer can generate and transmit interests with names that include the routable prefix that corresponds to a respective index, and encrypt the remaining name components (e.g., the suffix) of the name. In addition, the consumer may transmit such an interest as an initial interest in a key exchange protocol, as described in U.S. patent application Ser. No. 14/927,034.


Thus, the system facilitates routable prefix queries in a CCN by allowing a consumer to use the existing CCN routing protocol to discover the minimum routable prefix (or prefixes) for an interest, which indicates a maximum number of name components needed to route the interest to a producer. A minimum routable prefix also indicates the index at which the consumer may begin encrypting the name.


In CCN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object (or “content object”): A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components pare, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document. The HSVLI can also include contiguous name components ordered from a most general level to a most specific level.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is herein incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest (or “interest”): A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is herein incorporated by reference.


Exemplary Network and Communication



FIG. 1A illustrates an exemplary environment 100 which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. A network 100 can include a consumer or content requesting device 116, producers or content producing devices 118 and 120, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A node can be a computer system, an end-point representing users, and/or a device that can generate interests or originate content. A node can also be an edge router (e.g., CCN nodes 102, 104, 112, and 114) or a core router (e.g., intermediate CCN routers 106, 108, and 110). Network 100 can be a content centric network.


For a name N with p name components, let N=[n1, n2, . . . np], where N can be represented as “/n1/n2/ . . . /np,” and where an index q corresponds to the name component at the qth position of the name, where q is from 1 top. In some embodiments, the index q is from zero to p−1. During operation, consumer or client computing device 116 can determine, for a name N of “/a/b/c/d/x/y/z,” an index “i” at which device 116 may begin encrypting the name N (get index function 122, described in detail below in relation to FIG. 2). This index may be referred to as the “split index.” A split index i with a value of “4” can indicate both the “minimum_routable_prefix” as well as the remainder of the name N as the “sensitive_name” that can be encrypted. In other words, the split index can indicate the name prefix of the name N through the name component whose position index is equal to “4” (e.g., “a/b/c/d”), and can also indicate the name components following the name component whose position index is equal to 4 that can be encrypted (e.g., “/x/y/z”). Device 116 can generate an interest 124 with a name 124.1 of “/minimum_routable_prefix/Eck(/sensitive_name),” where “Ck” is the public key of consumer or device 116. Interest 124 can also include an optional payload 124.2 with a value of “<data>.”


Interest 124 can travel through network 100 via nodes 102, 110, and 112, before reaching producer or content producing device 118. Device 118 can serve content or satisfy requests for content with the prefix of “/a/b/c/d” or “minimum_routable_prefix.” Assume that device 118 is in possession of or has a way to retrieve the public key of device 116. Device 118 can decrypt the encrypted portion of name 124.1 of interest 124 (function 126), and generate a content object 130 corresponding to the name “/minimum_routable_prefix/sensitive_data” (function 128). Device 118 can replace a name 130.1 in content object 130 with the original partially encrypted name (e.g., name 130.1 with a value of “/minimum_routable_prefix/Eck(/sensitive_name)”), and transmit content object 130 to device 118 on a reverse path (e.g., via nodes 112, 110, and 102).



FIG. 1B illustrates an exemplary environment 101 which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. The entities in FIG. 1B correspond to the entities in FIG. 1A. Computing environment 100 can include a computer network 132, such as a CCN. Environment 100 can also include a user 117 associated with local computing device 116, and remote computing device 118. Devices 116 and 118 can have internal transport stacks (e.g., associated with transport frameworks 149 and 159, respectively) that exchange network packets with each other over network 132.


In a traditional IP architecture, a forwarder is an IP-based forwarder that looks at the header of a packet to determine the source and the destination for the packet, and forwards the packet to the destination. The stack performs TCP/UDP, and an application interacts with the stack via a socket. In contrast, device 116 of the present invention does not use a conventional “stack.” Rather, device 116 via an application 140 can request a portal API instance corresponding to a portal 142 which corresponds to transport framework 149. Similarly, device 118 via an application 150 can request a portal API instance corresponding to a portal 152 which corresponds to transport framework 159. Applications 140 and 150 can generate requests to retrieve or create the portal API instances associated with portals 142 and 152, respectively. Alternatively, the portal API instances can be created by a root user associated with device 116 or device 118.


Device 116 can include any computing device coupled to network 132, such as a smartphone 116.1, a tablet computer 116.2, and/or a server or personal computer 116.m. Specifically, device 116 can include application 140 which communicates via portal 142 with transport framework 149, which includes transport stack 148. Note that while transport framework 149 is depicted as including only a single transport stack (i.e., transport stack 148), a transport framework can include multiple transport stacks. Transport stack 148 can include stack components 144.1-144.n. Device 116 can also include a local forwarder 146 (e.g., a network interface card, or a router in a local area network) which can transfer packets between a stack (and individual stack components) of transport framework 149 and network 132. Similarly, device 118 can include any computing device coupled to network 132, such as a server or an end host device. Device 118 can include application 150 which communicates via portal 152 with transport framework 159, which includes transport stack 158. Transport stack 158 can include stack components 154.1-154.p. Device 118 can also include a forwarder 156 which can transfer packets between a stack (and individual stack components) of transport framework 159 and network 132. Forwarders 146 and 156 can also facilitate the transfer of packets directly between individual stack components 144.1-144.n and 154.1-154.p, respectively.


A local forwarder on a single device can service multiple applications and corresponding transport stacks. For example, an end-host with a local forwarder can use a local routing service (e.g., a local application) to publish namespace prefixes to the rest of the network using the corresponding routing protocol. In addition, a consumer with a local forwarder can query its local routing service (e.g., a local application) for the split index or indices that indicate the corresponding routable prefixes for a given interest name.



FIG. 2 illustrates an exemplary system 200 which facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. System 200 can include two applications residing on a same computing device (e.g., device 116 or 118 as described in relation to FIG. 1A). A local client application 260 and a local routing service application 210 can each instantiate a CCN portal API for a corresponding transport stack, which uses a same local forwarder 240.


Local client application 260 can instantiate a portal API 270 for a transport stack 298 of a transport framework 299. Transport framework 299 can include one or more transport stacks which each include multiple stack components or communication modules. In FIG. 2, transport framework 299 depicts one transport stack (e.g., transport stack 298) which includes stack components 282, 284, and 286. An API adapter 282 can communicate between an API and a specific transport stack of transport framework 299. A flow controller 284 can shape and manage traffic, pipeline and transmit interests, and order content objects. A forwarder/adapter 286 can communicate with local forwarder 240. Other stack components (not shown) can include functionality related to security (e.g., encryption, decryption, authentication, data signing, signature verification, trust assessment, and filtering), data-processing (e.g., encoding, decoding, encapsulating, decapsulating, transcoding, compression, extraction, and decompression), and storage (e.g., data storage, data retrieval from storage, deduplication, segmentation, and versioning). Forwarder 240 can communicate with other forwarders over network 202. In addition, local client application 260 or transport framework 299 can access a FIB 290, a PIT 292, and a CS 294 for CCN-related purposes, as described in U.S. patent application Ser. Nos. 13/847,814 and 12/338,175.


Similarly, local routing service application 210 can instantiate a portal API 220 for a transport stack 248 of a transport framework 249. Transport framework 249 can include one or more transport stacks which each include multiple stack components or communication modules. In FIG. 2, transport framework 249 depicts one transport stack (e.g., transport stack 248) which includes the following stack components: an API adapter 232; a flow controller 234; and a forwarder/adapter 236. In addition, local routing service application 210 provides a query interface 212 to other local applications, e.g., to local client application 260. In some embodiments, applications 210 and 260 communicate based on an interprocess communication protocol (“IPC”). In addition, local routing service application 210, local client application 260, and transport frameworks 298 and 248 can access (e.g., perform lookups) and dynamically configure FIB 290 based on notification messages or other information received based on a routing protocol.


During operation, local client application 260 can generate a query 214 for one or more indices based on a given name (e.g., a name for an interest). In response to query 214, local routing service application 210 can determine the appropriate index or indices for the given name, and transmit a result 216 to local client application 260. As discussed above, local routing service application can determine the appropriate index or indices for a given name based on the protocols described in U.S. patent application Ser. No. 15/056,904. For example, client application 260 can generate query 214 based on the name N of “/a/b/c/d/x/y/z.” In response to query 214, local routing service application 210 can determine that the split indices for the name N are i=[1, 4]. This can be based on previously received notification messages which indicate that a first producer can serve content for name prefix “/a” and that a second producer can serve content for name prefix “/a/b/c/d.” The split index can indicate the routable name prefix of the name N, that is, the name components from the first name component through the name component whose position index is equal to “1” or “4” (e.g., respectively, “/a” or “/a/b/c/d”). The split index can also indicate the name components following the name component whose position index is equal to “1” or “4” that can be encrypted (e.g., respectively, “/b/c/d/x/y/z” or “/x/y/z”).


Thus, system 200 allows a local application to determine the minimum number of cleartext name components necessary to route an interest from the local client computing device to a producer that can satisfy the interest. System 200 also accounts for multiple authoritative producers by returning one or more split indices that correspond to the routable prefixes necessary to route an interest.


Content Producing Device Facilitates Routable Prefix Queries



FIG. 3 presents a flow chart 300 illustrating a method by a content producing device for facilitating routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. During operation, the system generates, by a content producing device, a notification message indicating that the content producing device can serve content for a name prefix, wherein a name is an HSVLI, and wherein a name prefix indicates one or more contiguous name components beginning from the most general level (operation 302). The system transmits or publishes, by a local routing service that is an application of the content producing device, the notification message via a local forwarder of the content producing device (operation 304). The notification message can be received by a client computing device or an intermediate node, router, or other forwarding device. In response to receiving the notification message, a client computing device or an intermediate node can configure a forwarding information base (FIB) of the client computing device or the intermediate node based on the notification message (operation 306). For example, a content producer can publish a notification message that indicates that it can serve content for the name prefix “/alb.” An intermediate node can receive the notification message and configures its local FIB by adding an entry for the name prefix “/alb” and a corresponding outgoing interface for that content producer (or a next-hop node that corresponds to that content producer).


Client Computing Device Facilitates Routable Prefix Queries



FIG. 4 presents a flow chart 400 illustrating a method by a client computing device for facilitating routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. During operation, the system generates, by a first local application of a client computing device, a query for one or more indices based on a name for an interest, wherein a name is an HSVLI, and wherein an index indicates a number of contiguous name components beginning from the most general level that represent a routable prefix needed to route the interest to a content producing device that can satisfy the interest (operation 402). The first local application transmits the query to a second local application that is a local routing service that shares a same forwarder as the first local application (operation 404).


The local routing service can configure a local FIB of the client computing device based on notification messages received from content producing devices. The local routing service can communicate with other network entities via a CCN portal API instance associated with second local application (e.g., the local routing service). The local routing service can determine the indices based on protocols as described in U.S. patent application Ser. No. 15/056,904. The local routing service can provide an interface to the first local application which allows the first local application to transmit the routable prefix query based on the interest name.


In response to the query, the client computing device receives the one or more indices (operation 406). The client computing device generates a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in clear text (operation 408). The client computing device encrypts a remaining suffix which comprises the name components of the name immediately following the first routable prefix (operation 410). Subsequently, the client computing device transmits the first interest to a first content producing device based on the first routable prefix (operation 412). In some embodiments, the first interest can be an initial interest in a key exchange protocol between the client computing device and the first content producing device, as described in U.S. patent application Ser. No. 14/927,034.


Exemplary Computer System



FIG. 5 illustrates an exemplary computer system 500 that facilitates routable prefix queries in a content centric network, in accordance with an embodiment of the present invention. Computer system 502 includes a processor 504, a memory 506, and a storage device 508. Memory 506 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 502 can be coupled to a display device 510, a keyboard 512, and a pointing device 514. Storage device 508 can store an operating system 516, a content-processing system 518, and data 530.


Content-processing system 518 can include instructions, which when executed by computer system 502, can cause computer system 502 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 518 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 520). A data packet can include a query. A data packet can also include an interest packet or a content object packet with a name which is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level.


Further, content-processing system 518 can include instructions for generating, by a client computing device, a query for one or more indices based on a name for an interest, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level (query-generating module 522). Content-processing system 518 can also include instructions for, in response to the query, receiving the one or more indices (communication module 520).


Content-processing system 518 can also include instructions for generating a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in cleartext, and for encrypting a remaining suffix which comprises name components of the name immediately following the first routable prefix (interest-generating module 524). Content-processing system 518 can include instructions for transmitting the first interest to a first content producing device based on the first routable prefix, wherein the first interest is an initial interest in a key exchange protocol between the client computing device and the first content producing device (communication module 520).


Content-processing system 518 can additionally include instructions for, when the query is generated by a first local application, transmitting the query to a second local application that is a local routing service that shares a same forwarder as the first local application (communication module 520). Content-processing system 518 can include instructions for configuring, by the local routing service, a forwarding information base of the client computing device based on notification messages received from content producing devices (FIB-configuring module 526). Content-processing system 518 can also include instructions for communicating, by the local routing service, with other network entities via a portal instance associated with the second local application (communication module 520). Content-processing system 518 can include instructions for determining, by the local routing service, the one or more indices by communicating via the local forwarder with other network entities based on one or more of: a name based protocol; a route-based protocol; and an explicit negotiation protocol (index-determining module 528).


Content-processing system 518 can also include instructions for providing, by the second local application, an interface to the first local application, wherein the interface allows the first local application to transmit the query based on the interest name (communication module 520). Content-processing system 518 can also include instructions for publishing, by a remote application on a first content producing device, a notification message indicating that the first content producing device can serve content for a routable prefix that corresponds to a received index (message-processing module 530). Content-processing system 518 can also include instructions for, in response to receiving a notification message from a first content producing device indicating that the first content producing device can serve content for a routable prefix that corresponds to a received index, configuring a forwarding information base of the client computing device based on the notification message (FIB-configuring module 526).


Content-processing system 518 can further include instructions for transmitting, by a content producing device, a notification message indicating that the content producing device can serve content for a name prefix (communication module 520). Content-processing system 518 can include instructions for, in response to the notification message, configuring, by a client computing device or an intermediate node, a forwarding information base of the client computing device or the intermediate node based on the notification message (FIB-configuring module 526).


Data 532 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 532 can store at least: a query; an interest; a content object; a name; a name that is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level; an index which indicates a number of the contiguous name components beginning from the most general level that represent a routable prefix needed to route the interest to a content producing device that can satisfy the interest; an index that corresponds to a position of a name component in the HSVLI; an index which is a split index that indicates a minimum routable prefix; a routable prefix or a name prefix that indicates one or more contiguous name components beginning from the most general level; one or more encrypted name components; an interest name with a routable prefix in cleartext followed by a suffix that is encrypted; an initial interest in a key exchange protocol; a first local application; a second local application that is a local routing service; a local forwarder; a notification message; a FIB; a PIT; a CS; and a portal instance.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer system comprising: a processor;a storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising: transmitting, by a content producing device, a notification message indicating that the content producing device can serve content for a name prefix, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level,wherein the name prefix indicates one or more contiguous name components beginning from the most general level,wherein the notification message is further transmitted by a local routing service via a forwarder of the content producing device, thereby facilitating protection of private communication in a content centric network; andreceiving, by the content producing device, a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in cleartext, and wherein a remaining suffix that comprises name components of the name immediately follows the first routable prefix.
  • 2. The computer system of claim 1, wherein transmitting the notification message causes a client computing device or an intermediate node to: in response to receiving the notification message, configure a forwarding information base of the client computing device or the intermediate node based on the notification message.
  • 3. The computer system of claim 2, wherein the first interest is received by the content producing device from the client computing device or the intermediate node.
  • 4. The computer system of claim 2, wherein the method further comprises: wherein the first interest is an initial interest in a key exchange protocol between the client computing device and the content producing device.
  • 5. The computer system of claim 1, wherein a query is generated by a first local application that is transmitted to a second local application that is the local routing service that shares a same forwarder as the first local application, wherein the local routing service configures a forwarding information base of a client computing device based on notification messages received from the content producing device.
  • 6. The computer system of claim 5, wherein the local routing service communicates with other network entities via a portal instance associated with the second local application.
  • 7. The computer system of claim 5, wherein the local routing service determines one or more indices by communicating via the forwarder with other network entities based on one or more of: a name based protocol;a route-based protocol; andan explicit negotiation protocol.
  • 8. The computer system of claim 5, wherein the second local application provides an interface to the first local application, wherein the interface allows the first local application to transmit the query based on the name.
  • 9. A method comprising: transmitting, by a content producing device, a notification message indicating that the content producing device can serve content for a name prefix, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level, wherein the name prefix indicates one or more contiguous name components beginning from the most general level,wherein the notification message is further transmitted by a local routing service via a forwarder of the content producing device, thereby facilitating protection of private communication in a content centric network; andreceiving, by the content producing device, a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in cleartext, and wherein a remaining suffix that comprises name components of the name immediately follows the first routable prefix.
  • 10. The method of claim 9, wherein transmitting the notification message causes a client computing device or an intermediate node to: in response to receiving the notification message, configure a forwarding information base of the client computing device or the intermediate node based on the notification message.
  • 11. The method of claim 10 wherein the first interest is received by the content producing device from the client computing device or the intermediate node.
  • 12. The method of claim 10, wherein the first interest is an initial interest in a key exchange protocol between the client computing device and the content producing device.
  • 13. The method of claim 9, wherein a query is generated by a first local application that is transmitted to a second local application that is the local routing service that shares a same forwarder as the first local application, wherein the local routing service configures a forwarding information base of a client computing device based on notification messages received from the content producing device.
  • 14. The method of claim 13, wherein the local routing service communicates with other network entities via a portal instance associated with the second local application.
  • 15. The method of claim 13, wherein the local routing service determines one or more indices by communicating via the forwarder with other network entities based on one or more of: a name based protocol;a route-based protocol; andan explicit negotiation protocol.
  • 16. The method of claim 15, wherein the second local application provides an interface to the first local application, wherein the interface allows the first local application to transmit the query based on the name.
  • 17. A non-transitory computer readable storage media storing instructions that, when executed by a processor of a content producing device, cause the processor to perform operations including: transmitting, by the content producing device, a notification message indicating that the content producing device can serve content for a name prefix, wherein a name is a hierarchically structured variable length identifier that includes contiguous name components ordered from a most general level to a most specific level, wherein the name prefix indicates one or more contiguous name components beginning from the most general level,wherein the notification message is further transmitted by a local routing service via a forwarder of the content producing device, thereby facilitating protection of private communication in a content centric network; andreceiving, by the content producing device, a first interest with a name that includes a first routable prefix that corresponds to a received index, wherein the first routable prefix is in cleartext, and wherein a remaining suffix that comprises name components of the name immediately follows the first routable prefix.
  • 18. The non-transitory computer readable storage media of claim 17, wherein transmitting the notification message causes a client computing device or an intermediate node to: in response to receiving the notification message, configure a forwarding information base of the client computing device or the intermediate node based on the notification message.
  • 19. The non-transitory computer readable storage media of claim 18, wherein the first interest is received by the content producing device the client computing device or the intermediate node.
  • 20. The non-transitory computer readable storage media of claim 18, wherein the first interest is an initial interest in a key exchange protocol between the client computing device and the content producing device.
RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 15/095,946, filed Apr. 11, 2016, now U.S. Pat. No. 10,027,578, the entirety of which are hereby incorporated by reference.

US Referenced Citations (512)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6173364 Zenchelsky Jan 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6332158 Risley Dec 2001 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7061877 Gummalla Jun 2006 B1
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8271578 Sheffi Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9280610 Gruber Mar 2016 B2
9456054 Jacobson et al. Sep 2016 B2
9794238 Wood et al. Oct 2017 B2
9912776 Wood Mar 2018 B2
9977809 Wood May 2018 B2
9978025 Solis May 2018 B2
9986034 Solis May 2018 B2
10027578 Wood Jul 2018 B2
10103989 Wood Oct 2018 B2
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040252683 Kennedy Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100322249 Thathapudi Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219427 Hito Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120106339 Mishra May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130132719 Kobayashi May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140237095 Bevilacqua-Linn Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150222424 Mosko Aug 2015 A1
20150279348 Cao Oct 2015 A1
20170126643 Wood et al. May 2017 A1
20170249468 Wood et al. Aug 2017 A1
Foreign Referenced Citations (18)
Number Date Country
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1384729 Jan 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2007113180 Oct 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
201312410 Aug 2013 WO
Non-Patent Literature Citations (158)
Entry
International Search Report and Written Opinion in counterpart International Application No. PCT/US2017/023881, dated Jun. 29, 2017, 11 pgs.
Wood, “What's in a Name?”, http://chris-wood.github.io/2016/03/04/Naming.html, Mar. 4, 2016, 6 pgs.
Ion, et al., Toward Content-Centric Privacy in ICN: Attribute-based Encryption and Routing. ICN'13, Aug. 12, 2013, Hong Kong, China.
Ion, et al., Design and Implementation of a Confidentiality and Access Control Solution for Publish/Subscribe Systems. Apr. 19, 2011.
Wood, et al., Flexible End-to-End Content Security in CCN. 978-1-4799-2355—Jul. 14, 2014 IEEE.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu, et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27, 31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Ao-Jan Su, David R. Chollnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions Networking (Feb. 2009).
“PBC Library—Pairing-Based Cryptography—About,” http://crypto.stanford.edu/pbc.downloaded Apr. 27, 2015.
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—Crypto 2001. vol. 2139, Springer Berling Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Science vol. 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AfricaCrypt 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berling Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvelio, Volker Hilt, Moritz Steiner, and Zhi Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia Dec. 10, 2011, http://en.wikipedia.org/w/index/php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/, downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/ downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman. M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, pp. 5, pp. 16-31, Dec. 1999.
Atanasyev, Alexander, et al. “Interest flooding attach and countermeasures in Named Data Networking.”IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzarloa, Antonio, Matthew J. Rutherford, and Alexander L. Wolf, ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Socieities. vol. 2 IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabimoghaddam. Ali, Maziar Mirzazef Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A JM. Van Gasteren. ‘Derivation of a termination detection algorithm for distributed computations.’ Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986, 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbahksh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. (Aug. 2013), Less pain, most of the gain: Incrementally deployable ICN in ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles. Y. El Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks.” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 (2012).
Herlict, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the internet: URL: http://www.cs.uni.sadorborn.de/liteadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
I. Psaras. R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwai, Chalermek, Ramesn Govindan, and Daborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks’ Proceedings of the 6th annual international conference on Mobile computing and networking ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,”, IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and progrnostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin, “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach,” Mobile Data Management (MDM). 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identify-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM. 2007.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah, “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy,” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E. Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-Centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASIER: Encryption-based access contorl in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Yourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.edu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration]. National Institute of Standards and Technology, 2005.
Shani, Guy, Joollo Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2006.
T. Koponen, M. Chawl, B. G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica. ‘A data oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for line-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons, “Probabilistic models for monitoring and fault diagnosis” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W. G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56 . . . .
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Lower Power Lookup Technique for Multi-Hashing Networking Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network,” IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berling Heidelberg (2002).
Zahariadis, Theodore, et al, “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010):386-395.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
http://code.google.com/p/ccnx-trace/.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
Lui et al. (A TLV Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827. International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Gamepudi Parimata et al “Proactive reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computations Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiangcheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”. International Journal of Information and Education Technology, Oct. 1, 2013.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Network 2012.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Related Publications (1)
Number Date Country
20180309665 A1 Oct 2018 US
Divisions (1)
Number Date Country
Parent 15095946 Apr 2016 US
Child 16010806 US