Analyte monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured analyte levels and RF signals to transmit the collected data. One aspect of certain analyte monitoring systems includes a transcutaneous or subcutaneous analyte sensor configuration which is, for example, partially mounted on the skin of a subject whose analyte level is to be monitored. The sensor cell may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.
The analyte sensor may be configured so that a portion thereof is placed proximate the skin of the patient so as to detect the analyte levels of the patient and another portion or segment of the analyte sensor is in communication with the transmitter unit. The transmitter unit is configured to transmit the analyte levels detected by the sensor over a wireless communication link such as, for example, an RF (radio frequency) communication link to a receiver/monitor unit such as a remote controller, an infusion pump or a blood glucose meter. The receiver/monitor unit performs data analysis on the received analyte levels to generate information pertaining to the monitored analyte levels. The receiver/monitor unit may also display the data received analyte levels.
Applicants have recognized a need for a system and method that can be used to display analyte sensor data that are easy to understand with lower risk of confusion, especially when the user is in a clinical risk zone.
In view of the foregoing and in accordance with one aspect, there is provided a method of displaying analyte sensor data on a medical device such as an infusion pump or analyte meter. The medical device includes a display, an RF transmitter/receiver and a microprocessor to process the data received from the analyte sensor. The method of displaying data from an analyte sensor may be by determining with an analyte sensor that transforms signals of analyte concentrations in physiological fluid of the user over a period of time into determined analyte concentration data; and displaying a target zone of upper and lower analyte concentration thresholds, a first indicia representative of the determined analyte concentration data in the target zone, and a second indicia representative of the determined analyte concentration data outside of the target zone. In this method, the displaying further comprises displaying a third indicia for at least one analyte concentration of the determined analyte concentration data below the target zone and the target zone comprises a threshold value indicative of clinical risks arising from diabetes. The aforementioned method may include the following features: each of the first, second and third indices comprise respective symbols; each of the indices further comprises a color; each of the indices comprises an icon; and the analyte sensor comprises a continuous glucose sensor. In such method, the displaying comprises displaying a trend indicative symbol to represent a trend of determined analyte concentration data over a predetermined time frame.
In yet another embodiment, a system for diabetes management is provided that includes an analyte sensor, infusion pump and a display. The analyte sensor is configured to transform analyte measurements conducted by the analyte sensor into signals representative of the analyte measurements over time. The infusion pump includes a portable microprocessor device configured to receive data from the analyte sensor. The display exhibits a target zone of upper and lower analyte concentration thresholds, a first indicia representative of the determined analyte concentration data in the target zone, and a second indicia representative of the determined analyte concentration data outside of the target zone. The aforementioned system may include the following features: each of the indices comprises a color; each of the indices comprises a symbol; each of the indices comprises an icon; and the display comprises an OLED disposed in a housing of the infusion pump. In such system, the display comprises a display configured to exhibit a trend indicative symbol to represent a trend of the determined analyte concentration over a predetermined time frame.
In a further embodiment, a system for processing and displaying data from an analyte sensor is provided. The system includes an analyte sensor and handheld portable microprocessor device. The analyte sensor transforms analyte measurements conducted by the analyte sensor into signals representative of the analyte measurements. The handheld portable microprocessor device is configured to receive signals from the analyte sensor. The handheld portable device includes a screen that displays a target zone of upper and lower analyte concentration thresholds, a first indicia representative of the determined analyte concentration data in the target zone, and a second indicia representative of the determined analyte concentration data outside of the target zone. The aforementioned system may include the following features: each of the first and second indicia comprises a color; each of the first and second indicia comprises a symbol; each of the first and second indicia comprises an icon; and the analyte sensor comprises a continuous glucose sensor.
In yet a further embodiment, a method of monitoring analyte concentrations of a user over time is provided. The method can be achieved by: receiving data from a sensor that transforms signals representative of analyte concentrations in a physiological fluid of the user over a period of time; and displaying a target zone of upper and lower analyte concentration thresholds, a first indicia representative of the data representative of analyte concentrations in the target zone, and a second indicia representative of the received data representative of analyte concentrations outside of the target zone. The aforementioned method may include the following features: the displaying further comprises displaying a third indicia for at least one analyte concentration below the target zone; the target zone comprises a threshold value indicative of clinical risks arising from diabetes; each of the first, second and third indices comprises respective symbols; each of the indices further comprises a color; or each of the indices comprises an icon.
These and other embodiments, features and advantages will become apparent to those skilled in the art when taken with reference to the following more detailed description of the invention in conjunction with the accompanying drawings that are first briefly described.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements), of which:
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected exemplary embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. In addition, as used herein, the terms “patient”, “host”, “user”, and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.
Referring to
Referring to
In exemplary step 320, the medical device receives data from the analyte sensor 150 for a period of time. The received analyte signals are transformed into pixels on a display to represent a tangible quantity of the analyte (in this case, glucose) concentrations over time in the user's body.
In exemplary step 330, the medical device displays a target zone 400 and a graphical representation 402 of the data in which one or more portions of the graphical representation include a specific indicia of clinical risk. An exemplary display 110 for the collected analyte data is illustrated in
By virtue of the use of different indices to indicate different areas of clinical risk, the user is presented with information that are easy to understand with lower risk of confusion. For example, the use of the indicia 413 as the symbol ▴ above the threshold line 406 allows the user to quickly assess that in the last 6 hours, there have been 5 instances of potential hyperglycemia in the amber zone 412. Similarly, the use of the indicia 415 as the symbol ▾ allows the user to quickly assess that in the last 6 hours, there have been 5 instances of potential hypoglycemia in the red zone 414. An icon such as that representing an ambulance can be utilized in place of the symbol 415 to signify that these represents a potential emergency, and an icon representing a doctor can be utilize in place of the indicia 413 to signify that the user would need to discuss with a healthcare provider regarding these higher analyte values.
As illustrated in the embodiment in
In conclusion, the system and methods described and illustrated herein can be used to display data from an analyte sensor such that the graphical representation gives specific indicia of clinical risk. Although the specific embodiments have been described in relation to a continuous analyte sensor, other analyte sensors may also be utilized as long as data signals representative of analyte quantity in a user's body are provided to the handheld device.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.
This application claims the benefits of priority under 35 USC§119 and/or §120 from prior filed U.S. Provisional Application Ser. No. 61/319,736 filed on Mar. 31, 2010, which application is incorporated by reference in its entirety into this application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/29618 | 3/23/2011 | WO | 00 | 12/17/2012 |
Number | Date | Country | |
---|---|---|---|
61319736 | Mar 2010 | US |