The field of the present application generally pertains to medical devices. More particularly, the field of the invention generally pertains to an apparatus, system, and method for robotic assisted cataract surgery.
A “cataract” is a clouding of the lens in the eye that affects vision. Most people develop cataracts due to aging. The condition is not uncommon; it is estimated more than half of all Americans will either have a cataract or have had cataract surgery by age 80.
As shown in
The lens 105 within the eye 100 contains protein that is precisely arranged to keep the lens 105 clear and allow light to pass through it. As the eye 100 ages, the protein in the lens 105 may clump together to form a “cataract”. Over time, the cataract may grow larger and obscure a larger portion of the lens 105, making it harder for one to see.
Age-related cataracts affect vision in two ways. The clumps of protein forming the cataract may reduce the sharpness of the image reaching the retina 107. The clouding may become severe enough to cause blurred vision. The lens 105 may also slowly change to a yellowish/brownish tint. As the lens 105 ages, objects that once appeared clear may gradually appear to have a brownish tint. While the amount of tinting may be small at first, increased tinting over time may make it more difficult to read and perform other routine activities.
Surgery is currently the only real treatment for cataracts. Each year, ophthalmologists in the United States perform over three million cataract surgeries. The vast majority of cataracts are removed using a procedure called extracapsular cataract extraction (ECCE). ECCE traditionally comprises of several steps. Incisions must first be made to the cornea 101 in order to introduce surgical instruments into the anterior chamber 102. Through the incisions in the cornea 101 and the space of the anterior chamber 102, the surgeon may remove the anterior face of the lens capsule 109 in order to access the lens underneath 105. This phase of the surgery, known as capsulorhexis, is often the most difficult procedure in ECCE. Having gained access to the lens through capsulorhexis, a small amount of fluid may be injected into the exposed lens capsule 104 to improve access and maneuverability of the lens 105. This phase of the surgery is known as hydrodissection to the skilled artisan.
After loosening the lens, it must be extracted. Traditionally, this phase of the procedure involved manual extraction of the lens through a large (usually 10-12 mm) incision made in the cornea 101 or sclera 108. Modern ECCE is usually performed using a microsurgical technique called phacoemulsification, whereby the cataract is emulsified with an ultrasonic hand piece and then suctioned out of the eye through incisions in the cornea 101.
A phacoemulsification tool may be an ultrasonic hand piece with a titanium or steel needle. The tip of the needle may vibrate at an ultrasonic frequency to sculpt and emulsify the cataract while a pump aspirates particles through the tip. In some circumstances, a second fine steel instrument called a “chopper” may be used to access the cataract from a side port to help with “chopping” the nucleus 111 into smaller pieces. Once broken into numerous pieces, each piece of the cataract is emulsified and aspirated out of the eye 100 with suction.
As the nucleus 111 often contains the hardest portion of the cataract, emulsification of the nucleus 111 makes it easier to aspirate the particles. In contrast, the softer outer material from the lens cortex 112 may be removed using only aspiration. After removing the lens material from the eye 100, an intraocular lens implant (IOL) may be placed into the remaining lens capsule 104 to complete the procedure.
One variation on phacoemulsification is sculpting and emulsifying the lens 105 using lasers rather than ultrasonic energy. In particular, femtosecond laser-based cataract surgery is rapidly emerging as a potential technology that allows for improved cornea incision formation and fragmentation of the cataract.
Phacoemulsification and laser-based emulsification, however, still have their shortcomings. Phacoemulsification requires the use of tools that propagate ultrasound energy along the length of the tool, from a proximal transducer to a distal tip. The propagation leads to the transmission of ultrasound energy along the tool to other tissues proximal to the eye 100. Ultrasound tools also generate more heat than would be desirable for a procedure in the eye 100. In addition, the mechanical requirements of propagating the ultrasound wave along the length of the tool often make it rigid and difficult to steer around corners or bends.
Laser-based tools have their own drawbacks. Presently, manually controlled lasers require careful, precise movement since they can easily generate unwanted heat in the eye 100. Laser fibers in the tool are also fragile, and thus easily damaged when attempting to navigate tight corners. Both limitations increase surgery time and raise safety concerns.
An alternative to conventional laser systems, femtosecond laser systems have their advantages and drawbacks as well. Femtosecond laser systems may be used to create entry sites through the cornea 101 and sclera 108 into the eye 100, as well as to remove the anterior face of the capsule 104. Femtosecond laser energy may be focused within the lens nucleus 111 itself, and used to “pre-chop” the lens nucleus 111 into a number of pieces that can then be easily removed with aspiration. Femtosecond lasers, however, can only fragment the central portion of the lens 105 because the iris 103 blocks the peripheral portion of the lens 105. Thus, use of another emulsification technology—ultrasound or conventional laser—is still necessary to fracture and remove the peripheral portion of the cataract in lens 105, extending total procedure time. Furthermore, femtosecond laser systems are also expensive and costly to operate and maintain.
Therefore, it would be beneficial to have a new method, apparatus, and system for performing all the phases of cataract surgery with improved precision control and reduced procedure time.
In general, the present invention provides medical methods, apparatus and systems. Exemplary embodiments provide a method, apparatus, and system for robotic assisted cataract surgery. In one aspect, the present invention provides for a system for robotic ophthalmologic surgical procedures comprising an instrument drive mechanism comprising an instrument interface coupled to a robotic tool, wherein the robotic tool comprises a robotic tool tip, and a vision system configured to detect a position of at least one of an anatomical structure of a patient such as an eye of a patient and the robotic tool tip, and generate a signal in response to changes to the position, wherein the instrument drive mechanism is configured to manipulate the robotic tool tip in response to the signal.
In related systems, the system may also comprise a robot master system configured to receive commands from a user and manipulate the robotic tip in response to a change in position of the anatomical structure. In some embodiments, the instrument drive mechanism is a robotic arm. The robotic tool tip will often comprise one or more of a laser device, an ultrasonic device, an irrigation device, and an aspiration device. The instrument interface may be configured to couple to a plurality of different robotic tools such as at least one of a laser device, an ultrasonic device, an irrigation device and an aspiration device. A laser fiber of the laser device may be configured to extend beyond the length of the robotic tool tip. In embodiments with an irrigation device and an aspiration device in the robotic tool tip, the irrigation device and the aspiration device may be jointly configured to maintain a material volume inside an enclosed operative space of the anatomic structure. This may include maintaining a volumetric pressure within the eye of the patient. The vision system may comprises one or more of a white light imaging device, a structured light imaging device, or an optical coherence topographical device. The robotic tool tip may comprise a reflective marker that is configured to be detected by the vision system, or the robotic tool tip may be configured to deploy an umbrella-like structure.
In another aspect, the present invention provides for a method of laser emulsification during cataract surgery comprising detecting a position of at least one of an anatomical structure of a patient such as an eye of a patient and a robotic tool tip using a vision system, generating a signal in response to the position, and manipulating the robotic tool tip using a robotic instrument drive mechanism in response to the signal which may be a change in the position, wherein the robotic tool tip is coupled to a robotic tool that is coupled to an instrument interface of the robotic instrument drive mechanism. The robotic tool may comprise at least one of a laser device, an ultrasound device, an irrigation device, and an aspiration device. A laser fiber of the laser device may be configured to extend beyond the length of the robotic tool tip. The irrigation device and the aspiration device may be jointly configured to maintain a material volume inside an enclosed operative space of the eye of the patient. In related systems, robotically manipulating the robotic tool tip includes robotically maneuvering the robotic tool tip relative to the eye of the patient, robotically changing the pulse repetition rate of the laser device of the robotic tool tip, and robotically changing the pulse energy of the laser device of the robotic tool tip. The instrument drive mechanism may be configured to manipulate the robotic tool in response to a change in the position. The instrument drive mechanism may be configured to manipulate the robotic tool in response to commands from a user.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The invention will be described, by way of example, and with reference to the accompanying diagrammatic drawings, in which:
Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components. Accordingly, the methods and systems of the present invention are not limited to cataract surgery and other ophthalmologic applications.
Bimanual Approach
The present invention relates to a robotic device to assist surgical procedures in ophthalmology, particularly cataract surgery. In some embodiments, a plurality of robotic devices may be used. In embodiments with two robots, each robot may hold its own laser tool in a dual-tool or “bimanual approach.” This approach allows for greater flexibility, as tools may be interchanged, positions may be adjusted, and approaches may be altered to allow for improved access to the operating area. For example, in some embodiments, the robotic arms may move in different patterns to speed up the removal of the cataract. In some embodiments, the robotic arms could move synchronously to treat the same area. Alternatively, both tools could be pointed towards the same general location, while a first tool could be angled from the top down and the other tool angled to undercut the portions of the lens cut by the first tool.
In one embodiment, tool 201 includes a laser and a device with flush and aspiration capabilities. In one embodiment, tool 201 may be able to break up the cataract with the laser in small precise regions due to the strong absorption of the laser light by the cataract material, or water, mesh, or any thermal or mechanical effect. In some embodiments, the laser light in tool 201 may be altered to “undercut” the larger pieces of cataract material, i.e., use small cuts to remove large pieces.
In some embodiments, a laser in tool 201 may be coupled to the cataract though an optical fiber to a tool in the cataract. In other embodiments, a laser may be coupled through free space optics. In some embodiments, a laser may be emitted at the tip of tool 201. In some embodiments, the pulse energy, repetition rate, and pulse duration of the laser in tool 201 may be controlled in real-time. In controlling these parameters, a user of tool 201 may alter the extent and speed of cataract material removal.
Techniques that incorporate use of a computer-controlled robotic arm with preprogrammed patterns allow for precise control and motion of tool 201 and tool 202. Precise control and constant motion of the tools may allow a user of the tools to optimize the volumetric rate of removal of the cataract material using tool 201 and tool 202.
Laser Tools
Embodiments of the present invention may incorporate lasers with a wavelength near the water absorption peak at 2 μm, 3 μm, 4.5 μm, 6 μm, or 10 μm. Alternatively, a laser near the protein absorption peak at 280 nm may also be used to remove cataract material.
In some embodiments, tools may also contain more than one laser fiber. This could be used to increase the area that is treated or create lesions that are particular shapes (for example, three fibers in a row could produce a longer more knife-like cut).
During the operation of the laser, the tip of the laser tool may be located some distance away from the anterior portion of the capsule or in contact with the capsule. In the case of the laser tool being in contact with the capsule, the tip of the tool could be shaped to provide maximum cutting effect. Depending on the embodiment, the shapes of the laser tool tip can be flat, round, tapered to a point, or a combination of the flat, round and tapered shapes.
During the emulsification and aspiration of the lens cataract material, the posterior portion of the capsule is at risk of being damaged from the laser radiation and the aspiration force. For example, if portions of the lens capsule membrane are sucked into the aspiration tube, the posterior portion may be stressed and torn. This increases the risk of intrusion of the vitreous fluid into the anterior portion of the eye, which can cause infections and other eye diseases. To minimize that possibility, in some embodiments, the laser fiber can be extended beyond the end of the suction tube to act as a probe when the laser energy is turned off. The use of the laser fiber as a probe prevents the suction tube from approaching the capsular membrane and damaging it. The shape of the laser fiber can be optimized to minimize damage to the membrane. Examples of the shaped tips include rounded or circular tips.
In some embodiments of the present invention, robotic control over preprogrammed patterns of lasing paths may be used to emulsify and aspirate the cataract from the lens capsule. In some embodiments, preprogrammed patterns may control the motion of a tool as well as the laser, flush, and aspiration parameters in order to optimize the removal of lens material. Compared to a manual technique, use of a computer-controlled robotic arm with preprogrammed patterns allows more precise control over the tool tip, generating more accurate patterns and more consistent motion that optimize the volumetric rate of removal during emulsification.
In some embodiments, the spacing between the arms of the spiral may be varied depending on the size of debris to be removed by aspiration. For example, if larger pieces can be removed, the arms of the gaps between neighboring paths of the spiral may become wider. As less cutting is required to break up the cataract, expanding the distance between the arms of the spirals helps reduce the cutting time. This protocol likely necessitates robotic control because due to precise spacing within the lens capsule makes the protocol very difficult to accomplish with a purely manual technique.
In some embodiments, raster patterns may remove material in a systematic x-y-z, grid-like motion. In other embodiments, a radial pattern reminiscent of a typical quadrant chop-and-divide technique may be employed.
In some embodiments, an emulsification patterns may remove lens material from the anterior portion of the cortex, remove by lens material from the center of the nucleus, before removing the remainder of the lens material in other portions of the cortex.
Flush and Aspiration Tools
In yet another embodiment, the robotic system includes real-time control of a flush and aspiration device to remove debris from the chamber. Robotically-controlled fluidic flush and aspiration tool may improve the precision and accuracy of the procedure to maintain the material volume in an enclosed operative space like the interior of an eye. In some embodiments, a tool with a laser device may also have flush and aspiration capabilities. In the alternative, a second tool may include a dedicated aspiration and flush tool.
In addition to aspiration means, the tool may also comprise a laser fiber 1207 that may be extended or retracted using various mechanical means, such with axial motion from a gear 1208. In this particular embodiment, all aspirated cataract material passes near the laser fiber in the aspiration tube as it is being evacuated from the eye.
The size of the flush and aspiration channels also directly influence the size of the pieces of cataract that can be extracted from the lens capsule. Hence, the size of the channels could influence the emulsification patterns of the robotic procedure.
Thus, the tool flow rate meter 1306 and aspiration flow rate meter 1318 may be monitored to track the irrigation and aspiration flows in order to maintain an appropriate volume in an enclosed operative space like the interior of an eye of a patient. In this configuration, irrigation and aspiration flow may be moderated or interrupted in real-time using pump 1302, throttle valve 1312, and/or aspiration pump 1316. This may be done in the event that the aspiration path is unable to match the desired flow rate due to blockage, pinched tube, or other mechanical failure.
In some embodiments, the pressure signal 1309 may send a signal indicating fixed pressure to pump 1302. In those embodiments, irrigation (flush) flow may be maintained using flow (flush) control signal 1313 to control throttle valve 1312.
Sensor & Imaging Tools
In one embodiment, a locational sensor or imaging technique may also be used to localize different portions of the cataract and the size of the cataract. Such locational sensors or imaging techniques may include 3D imaging, OCT, MRI, CT, Ultrasound, Intra-operative (OCT) or video systems with processing. In some embodiments, the tool itself may have an OCT device. In some embodiments, the tool may have multiple degree of freedom (dof) sensors, such as electromagnetic or fiber sensors.
In
Imaging techniques and sensors may also be used to optimize laser, flush, and aspiration parameters. For example, if it is detected that the tool tip 1503 is too close to anatomical structures, the laser power could be reduced to reduce the chance of injury. Similarly, flush and aspiration pressure may be manipulated to facilitate removal of the cataract material.
In some embodiments, the imaging system can be traditional white light imaging and structured light imaging. In some embodiments, robotic controls sensitive to localization sensors and imaging may improve the safety of the tool and its ability to bound and calculate a preprogrammed lasing pattern to fit a particular patient profile.
Tool Articulation
In some embodiments, the tool tip may sit in a robotically controlled articulating region. The articulation region may allow movement of the tip of the tool while avoiding motion in the rest of the tool. In some embodiments, the articulation region may include pre-bent tubes, pre-bent tubes recessed within straight or bent tubes, flexures with control wires, flexures fabricated with semiconductor fabrication technologies, and flexures with micro-motors and micro-gears. Use of a robotically controlled articulating tip minimizes the size of the incision in the lens capsule necessary to extract the cataract material. Hence, this is an important technology for capsulorhexis as will be discussed below.
An example of an articulating tool is an optical fiber encased in a pre-bent tube, where the pre-bent tube has a rigid, straight exterior tube. In some embodiments, the pre-bent tube can be retracted into the straight tube, creating a tool that can change from a bent to a straight configuration. The amount of retraction can be controlled robotically, allowing the bend on the tool to be synchronized with the tool pattern and or laser parameters. Use of a pre-bent tube does not limit the articulation means that can be used with the tool tip, other means include a flexure with one or more control wires.
In some embodiments, the present invention may include a robot for positioning the tip of the tool in space and optionally providing for angular degrees of freedom for adjusting the direction of the laser tool.
Applications for Capsulorhexis
FIGS. 22B1-22B3 illustrate top-sectional view of a robotically controlled capsulorhexis procedure using an embodiment of the present invention where shaped tubes, axially translatable to vary articulation angle, enable complex distal tip motion so that the tool tip may access different portions of the surface of a lens capsule.
As shown in scenario 2210, tool 2215 may be directed orthogonally towards the surface of lens capsule 2214 through an incision 2213 in the cornea 2212 in eye 2211. Having penetrated cornea 2212, tool tip 2216 may be extended from tool 2215 to target a diametrically opposed region 2217 on the surface of the lens capsule 2214. In scenario 2218, tube 2219 and tool tip 2216 may be manipulated to maneuver tool tip 2216 to target a right-side region 2220 of the surface of lens capsule 2214. Similarly, in scenario 2221, tube 2219 and tool tip 2216 may be manipulated to maneuver tool tip 2216 to target a left-side region 2222 of the surface of lens capsule 2214.
In some embodiments, a laser device may be coupled to the end of the tool tip 2216 in scenarios 2210, 2218, and 2221. In some embodiments, tube 2219 is constructed from pre-bent tubes from nitinol. In some embodiments, tube 2219 may be articulated using either pull wires, tendons, or cables. In some embodiments, the construction of tool 2215, tube 2219, and tool tip 2216 allows for roll motion, irrigation, and aspiration in both tube 2219 and tool tip 2216.
Instrument Drive Mechanisms
In several embodiments of the present invention, the previously described tools—catheters, laser, OCT, flush and aspirations tools—may be controlled and coupled to the instrument drive mechanisms discussed in
The present invention is not limited to embodiments using the aforementioned systems and the associated instrument drive mechanisms. One skilled in the art would appreciate modifications to facilitate coupling to different robotic arm configurations.
For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
Elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. While the invention is susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. The invention is not limited, however, to the particular forms or methods disclosed, but to the contrary, covers all modifications, equivalents and alternatives thereof.
This application is a continuation of U.S. application Ser. No. 14,301,871, filed Jun. 11, 2014, which claims benefit of U.S. Provisional Application No. 61/833,835, filed Jun. 11, 2013, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3763860 | Clarke | Oct 1973 | A |
4040413 | Ohshiro | Aug 1977 | A |
4198960 | Utsugi | Apr 1980 | A |
4470407 | Hussein | Sep 1984 | A |
4532935 | Wang et al. | Aug 1985 | A |
4597388 | Koziol et al. | Jul 1986 | A |
4685458 | Leckrone | Aug 1987 | A |
4747405 | Leckrone | May 1988 | A |
4854301 | Nakajima | Aug 1989 | A |
4898574 | Uchiyama et al. | Feb 1990 | A |
4905673 | Pimiskern | Mar 1990 | A |
4983165 | Loiterman | Jan 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5085659 | Rydell | Feb 1992 | A |
5196023 | Martin | Mar 1993 | A |
5217465 | Steppe | Jun 1993 | A |
5308323 | Sogawa et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5325848 | Adams et al. | Jul 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5411016 | Kume | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5441485 | Peters | Aug 1995 | A |
5449356 | Walbrink | Sep 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5472406 | De La Torre et al. | Dec 1995 | A |
5472426 | Bonati et al. | Dec 1995 | A |
5496267 | Drasler | Mar 1996 | A |
5501667 | Verduin, Jr. | Mar 1996 | A |
5520684 | Imran | May 1996 | A |
5545170 | Hart | Aug 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562648 | Peterson | Oct 1996 | A |
5562678 | Booker | Oct 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5613973 | Jackson et al. | Mar 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658311 | Baden | Aug 1997 | A |
5662590 | De La Torre et al. | Sep 1997 | A |
5695461 | Schaible | Dec 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5697949 | Giurtino et al. | Dec 1997 | A |
5710870 | Ohm | Jan 1998 | A |
5716325 | Bonutti | Feb 1998 | A |
5788667 | Stoller | Aug 1998 | A |
5792165 | Klieman | Aug 1998 | A |
5797900 | Madhani | Aug 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5893869 | Barnhart | Apr 1999 | A |
5897491 | Kastenbauer et al. | Apr 1999 | A |
5924175 | Lippitt | Jul 1999 | A |
5989230 | Frassica | Nov 1999 | A |
6033371 | Torre et al. | Mar 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6093157 | Chandrasekaran | Jul 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6120498 | Jani et al. | Sep 2000 | A |
6156030 | Neev | Dec 2000 | A |
6174318 | Bates et al. | Jan 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6183435 | Bumbalough et al. | Jun 2001 | B1 |
6322557 | Nikolaevich | Nov 2001 | B1 |
6326616 | Andrien et al. | Dec 2001 | B1 |
6375635 | Moutafis | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6405078 | Moaddeb et al. | Jun 2002 | B1 |
6406486 | De La Torre et al. | Jun 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6508823 | Gonon | Jan 2003 | B1 |
6522906 | Salisbury et al. | Feb 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6577891 | Jaross et al. | Jun 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676668 | Mercereau et al. | Jan 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6736784 | Menne et al. | May 2004 | B1 |
6763259 | Hauger et al. | Jul 2004 | B1 |
7087061 | Chernenko et al. | Aug 2006 | B2 |
7282055 | Tsuruta | Oct 2007 | B2 |
7344528 | Tu et al. | Mar 2008 | B1 |
7351193 | Forman et al. | Apr 2008 | B2 |
7559934 | Teague et al. | Jul 2009 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7736356 | Cooper et al. | Jun 2010 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7963911 | Turliuc | Jun 2011 | B2 |
7967799 | Boukhny | Jun 2011 | B2 |
7987046 | Peterman | Jul 2011 | B1 |
8002713 | Heske | Aug 2011 | B2 |
8038598 | Khachi | Oct 2011 | B2 |
8049873 | Hauger et al. | Nov 2011 | B2 |
8092397 | Wallace et al. | Jan 2012 | B2 |
8187173 | Miyoshi | May 2012 | B2 |
8224484 | Swarup et al. | Jul 2012 | B2 |
8257303 | Moll et al. | Sep 2012 | B2 |
8414564 | Goldshleger et al. | Apr 2013 | B2 |
8480595 | Speeg | Jul 2013 | B2 |
8518024 | Williams et al. | Aug 2013 | B2 |
8523762 | Miyamoto et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8652030 | Matsuura et al. | Feb 2014 | B2 |
8820603 | Shelton et al. | Sep 2014 | B2 |
8827948 | Romo et al. | Sep 2014 | B2 |
8882660 | Phee et al. | Nov 2014 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8956280 | Eversull et al. | Feb 2015 | B2 |
9014851 | Wong et al. | Apr 2015 | B2 |
9057600 | Walker et al. | Jun 2015 | B2 |
9138166 | Wong et al. | Sep 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9254123 | Alvarez et al. | Feb 2016 | B2 |
9289578 | Walker et al. | Mar 2016 | B2 |
9345456 | Tsonton et al. | May 2016 | B2 |
9460536 | Hasegawa et al. | Oct 2016 | B2 |
9498291 | Balaji et al. | Nov 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9532840 | Wong et al. | Jan 2017 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9566414 | Wong et al. | Feb 2017 | B2 |
9592042 | Titus | Mar 2017 | B2 |
9597152 | Schaeffer | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9710921 | Wong et al. | Jul 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9730757 | Brudniok | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9818681 | Machida et al. | Nov 2017 | B2 |
9827061 | Balaji et al. | Nov 2017 | B2 |
9844353 | Walker et al. | Dec 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10080576 | Romo et al. | Sep 2018 | B2 |
10123755 | Walker et al. | Nov 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni et al. | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10350390 | Moll et al. | Jul 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405939 | Romo et al. | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer | Oct 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10539478 | Lin | Jan 2020 | B2 |
10543048 | Noonan et al. | Jan 2020 | B2 |
10555778 | Ummalaneni et al. | Feb 2020 | B2 |
10631949 | Schuh et al. | Apr 2020 | B2 |
10639108 | Romo et al. | May 2020 | B2 |
10639109 | Bovay et al. | May 2020 | B2 |
10639114 | Schuh | May 2020 | B2 |
10667871 | Romo et al. | Jun 2020 | B2 |
10667875 | DeFonzo | Jun 2020 | B2 |
10682189 | Schuh et al. | Jun 2020 | B2 |
10702348 | Moll et al. | Jul 2020 | B2 |
10716461 | Jenkins | Jul 2020 | B2 |
10743751 | Landey et al. | Aug 2020 | B2 |
10744035 | Alvarez | Aug 2020 | B2 |
10751140 | Wallace et al. | Aug 2020 | B2 |
10765303 | Graetzel et al. | Sep 2020 | B2 |
10765487 | Ho | Sep 2020 | B2 |
20020019644 | Hastings | Feb 2002 | A1 |
20020111608 | Baerveldt | Aug 2002 | A1 |
20020111621 | Wallace et al. | Aug 2002 | A1 |
20030004455 | Kadziauskas | Jan 2003 | A1 |
20030040681 | Ng et al. | Feb 2003 | A1 |
20030065358 | Frecker | Apr 2003 | A1 |
20030109877 | Morley | Jun 2003 | A1 |
20030109889 | Mercereau | Jun 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030208189 | Payman | Nov 2003 | A1 |
20040030349 | Boukhny | Feb 2004 | A1 |
20040143253 | Vanney | Jul 2004 | A1 |
20040153093 | Donovan | Aug 2004 | A1 |
20040158261 | Vu | Aug 2004 | A1 |
20040186349 | Ewers | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040210116 | Nakao | Oct 2004 | A1 |
20040253079 | Sanchez | Dec 2004 | A1 |
20050033270 | Ramans et al. | Feb 2005 | A1 |
20050054900 | Mawn | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050159645 | Bertolero | Jul 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050261705 | Gist | Nov 2005 | A1 |
20060015133 | Grayzel | Jan 2006 | A1 |
20060058813 | Teague | Mar 2006 | A1 |
20060116693 | Weisenburgh | Jun 2006 | A1 |
20060135963 | Kick | Jun 2006 | A1 |
20060156875 | McRury et al. | Jul 2006 | A1 |
20060189891 | Waxman et al. | Aug 2006 | A1 |
20060229598 | Shadduck | Oct 2006 | A1 |
20070016164 | Dudney et al. | Jan 2007 | A1 |
20070027443 | Rose | Feb 2007 | A1 |
20070027534 | Bergheim | Feb 2007 | A1 |
20070032906 | Sutherland et al. | Feb 2007 | A1 |
20070106304 | Hammack | May 2007 | A1 |
20070135733 | Soukup et al. | Jun 2007 | A1 |
20070135763 | Musbach et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070208375 | Nishizawa | Sep 2007 | A1 |
20070213668 | Spitz | Sep 2007 | A1 |
20070239178 | Weitzner et al. | Oct 2007 | A1 |
20070250111 | Lu | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080021440 | Solomon | Jan 2008 | A1 |
20080033467 | Miyamoto et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080065109 | Larkin | Mar 2008 | A1 |
20080065111 | Blumenkranz | Mar 2008 | A1 |
20080097293 | Chin et al. | Apr 2008 | A1 |
20080114341 | Thyzel | May 2008 | A1 |
20080125698 | Greg et al. | May 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080187101 | Gertner | Aug 2008 | A1 |
20080196533 | Bergamasco | Aug 2008 | A1 |
20080228104 | Uber et al. | Sep 2008 | A1 |
20090012507 | Culbertson et al. | Jan 2009 | A1 |
20090030446 | Measamer | Jan 2009 | A1 |
20090036900 | Moll | Feb 2009 | A1 |
20090043305 | Brodbeck | Feb 2009 | A1 |
20090062602 | Rosenberg et al. | Mar 2009 | A1 |
20090082634 | Kathrani et al. | Mar 2009 | A1 |
20090088774 | Swarup et al. | Apr 2009 | A1 |
20090105723 | Dillinger | Apr 2009 | A1 |
20090131885 | Akahoshi | May 2009 | A1 |
20090161827 | Gertner et al. | Jun 2009 | A1 |
20090171271 | Webster et al. | Jul 2009 | A1 |
20090227998 | Aljuri | Sep 2009 | A1 |
20090248041 | Williams et al. | Oct 2009 | A1 |
20090248043 | Tierney et al. | Oct 2009 | A1 |
20090264878 | Carmel et al. | Oct 2009 | A1 |
20090268015 | Scott et al. | Oct 2009 | A1 |
20090270760 | Leimbach et al. | Oct 2009 | A1 |
20090287188 | Golden et al. | Nov 2009 | A1 |
20090299352 | Zerfas | Dec 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20090312773 | Cabrera et al. | Dec 2009 | A1 |
20090326322 | Diolaiti | Dec 2009 | A1 |
20100004642 | Lumpkin | Jan 2010 | A1 |
20100010504 | Simaan et al. | Jan 2010 | A1 |
20100011900 | Burbank | Jan 2010 | A1 |
20100011901 | Burbank | Jan 2010 | A1 |
20100016852 | Manzo et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100082017 | Zickler | Apr 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100204605 | Blakley | Aug 2010 | A1 |
20100204646 | Plicchi et al. | Aug 2010 | A1 |
20100217235 | Thorstenson | Aug 2010 | A1 |
20100225209 | Goldberg | Sep 2010 | A1 |
20100228191 | Alvarez et al. | Sep 2010 | A1 |
20100228249 | Mohr | Sep 2010 | A1 |
20100268211 | Manwaring et al. | Oct 2010 | A1 |
20100280320 | Alvarez et al. | Nov 2010 | A1 |
20100280525 | Alvarez et al. | Nov 2010 | A1 |
20100312141 | Keast et al. | Dec 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110009779 | Romano et al. | Jan 2011 | A1 |
20110015483 | Barbagli | Jan 2011 | A1 |
20110015648 | Alvarez et al. | Jan 2011 | A1 |
20110028887 | Fischer et al. | Feb 2011 | A1 |
20110040404 | Diolaiti et al. | Feb 2011 | A1 |
20110046441 | Wiltshire et al. | Feb 2011 | A1 |
20110071541 | Prisco et al. | Mar 2011 | A1 |
20110071543 | Prisco et al. | Mar 2011 | A1 |
20110106102 | Balicki et al. | May 2011 | A1 |
20110106146 | Jeong | May 2011 | A1 |
20110125165 | Simaan et al. | May 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110160713 | Neuberger | Jun 2011 | A1 |
20110167611 | Williams | Jul 2011 | A1 |
20110213362 | Cunningham | Sep 2011 | A1 |
20110224660 | Neuberger et al. | Sep 2011 | A1 |
20110238064 | Williams et al. | Sep 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110276085 | Krzyzanowski | Nov 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20110313343 | Milutinovic et al. | Dec 2011 | A1 |
20120069167 | Liu et al. | Mar 2012 | A1 |
20120253277 | Tah et al. | Apr 2012 | A1 |
20120138586 | Webster et al. | Jun 2012 | A1 |
20120138660 | Shelton, IV et al. | Jun 2012 | A1 |
20120172786 | Mackool | Jul 2012 | A1 |
20120209315 | Amat | Aug 2012 | A1 |
20120232342 | Reydel | Sep 2012 | A1 |
20120253332 | Moll | Oct 2012 | A1 |
20120259320 | Loesel et al. | Oct 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120296318 | Wellhofer et al. | Nov 2012 | A1 |
20130006144 | Clancy | Jan 2013 | A1 |
20130030363 | Wong et al. | Jan 2013 | A1 |
20130035537 | Wallace et al. | Feb 2013 | A1 |
20130053877 | BenMaamer | Feb 2013 | A1 |
20130066136 | Palese et al. | Mar 2013 | A1 |
20130085442 | Shtul et al. | Apr 2013 | A1 |
20130085486 | Boutoussov et al. | Apr 2013 | A1 |
20130096422 | Boctor | Apr 2013 | A1 |
20130096574 | Kang et al. | Apr 2013 | A1 |
20130110042 | Humphreys | May 2013 | A1 |
20130110107 | Smith et al. | May 2013 | A1 |
20130116714 | Adams et al. | May 2013 | A1 |
20130116716 | Bahls et al. | May 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130144274 | Stefanchik et al. | Jun 2013 | A1 |
20130144395 | Stefanchik | Jun 2013 | A1 |
20130190796 | Tilson et al. | Jul 2013 | A1 |
20130225997 | Dillard et al. | Aug 2013 | A1 |
20130226161 | Hickenbotham | Aug 2013 | A1 |
20130233908 | Knodel | Sep 2013 | A1 |
20130253267 | Collins | Sep 2013 | A1 |
20130303876 | Gelfand et al. | Nov 2013 | A1 |
20130310819 | Neuberger et al. | Nov 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20130345686 | Brown | Dec 2013 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140012276 | Alvarez | Jan 2014 | A1 |
20140039681 | Bowling | Feb 2014 | A1 |
20140046308 | Bischoff | Feb 2014 | A1 |
20140051985 | Fan et al. | Feb 2014 | A1 |
20140058365 | Bille | Feb 2014 | A1 |
20140058404 | Hammack | Feb 2014 | A1 |
20140058428 | Christopher | Feb 2014 | A1 |
20140100445 | Stenzel | Apr 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140163318 | Swanstrom | Jun 2014 | A1 |
20140194859 | Ianchulev | Jul 2014 | A1 |
20140194905 | Kappel | Jul 2014 | A1 |
20140243849 | Saglam et al. | Aug 2014 | A1 |
20140246473 | Auld | Sep 2014 | A1 |
20140257334 | Wong et al. | Sep 2014 | A1 |
20140264081 | Walker et al. | Sep 2014 | A1 |
20140275956 | Fan | Sep 2014 | A1 |
20140276392 | Wong et al. | Sep 2014 | A1 |
20140276394 | Wong et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276646 | Wong et al. | Sep 2014 | A1 |
20140276723 | Parihar | Sep 2014 | A1 |
20140276933 | Hart et al. | Sep 2014 | A1 |
20140276934 | Balaji et al. | Sep 2014 | A1 |
20140276937 | Wong et al. | Sep 2014 | A1 |
20140276956 | Crainich | Sep 2014 | A1 |
20140309649 | Alvarez et al. | Oct 2014 | A1 |
20140309655 | Gal et al. | Oct 2014 | A1 |
20140316203 | Carroux et al. | Oct 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20140379000 | Romo et al. | Dec 2014 | A1 |
20150025539 | Alvarez et al. | Jan 2015 | A1 |
20150051592 | Kintz | Feb 2015 | A1 |
20150080879 | Trees | Mar 2015 | A1 |
20150101442 | Romo | Apr 2015 | A1 |
20150119637 | Alvarez et al. | Apr 2015 | A1 |
20150119638 | Yu et al. | Apr 2015 | A1 |
20150127045 | Prestel | May 2015 | A1 |
20150133960 | Lohmeier | May 2015 | A1 |
20150164522 | Budiman | Jun 2015 | A1 |
20150164594 | Romo et al. | Jun 2015 | A1 |
20150164595 | Bogusky et al. | Jun 2015 | A1 |
20150164596 | Romo et al. | Jun 2015 | A1 |
20150201917 | Snow | Jul 2015 | A1 |
20150202085 | Lemonis | Jul 2015 | A1 |
20150314110 | Park | Nov 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160007881 | Wong et al. | Jan 2016 | A1 |
20160022289 | Wan | Jan 2016 | A1 |
20160022466 | Pedtke | Jan 2016 | A1 |
20160030014 | McWeeney et al. | Feb 2016 | A1 |
20160030073 | Lsakov | Feb 2016 | A1 |
20160045208 | Ciulla | Feb 2016 | A1 |
20160051318 | Manzo et al. | Feb 2016 | A1 |
20160066935 | Nguyen et al. | Mar 2016 | A1 |
20160151122 | Alvarez et al. | Jun 2016 | A1 |
20160158490 | Leeflang | Jun 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160199984 | Lohmeier et al. | Jul 2016 | A1 |
20160202053 | Walker et al. | Jul 2016 | A1 |
20160235495 | Wallace et al. | Aug 2016 | A1 |
20160249932 | Rogers et al. | Sep 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160279394 | Moll et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160296294 | Moll et al. | Oct 2016 | A1 |
20160303743 | Rockrohr | Oct 2016 | A1 |
20160310146 | Levy et al. | Oct 2016 | A1 |
20160331358 | Gordon | Nov 2016 | A1 |
20160367324 | Sato et al. | Dec 2016 | A1 |
20160374541 | Agrawal et al. | Dec 2016 | A1 |
20160374590 | Wong et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170049471 | Gaffney et al. | Feb 2017 | A1 |
20170055995 | Weier | Mar 2017 | A1 |
20170065227 | Marrs | Mar 2017 | A1 |
20170065356 | Balaji et al. | Mar 2017 | A1 |
20170065364 | Schuh et al. | Mar 2017 | A1 |
20170065365 | Schuh | Mar 2017 | A1 |
20170095234 | Prisco et al. | Apr 2017 | A1 |
20170095295 | Overmyer | Apr 2017 | A1 |
20170100084 | Walker et al. | Apr 2017 | A1 |
20170100199 | Yu et al. | Apr 2017 | A1 |
20170105803 | Wong et al. | Apr 2017 | A1 |
20170113019 | Wong et al. | Apr 2017 | A1 |
20170119411 | Shah | May 2017 | A1 |
20170119412 | Noonan et al. | May 2017 | A1 |
20170119413 | Romo | May 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170135706 | Frey | May 2017 | A1 |
20170151027 | Walker et al. | Jun 2017 | A1 |
20170151416 | Kutikov | Jun 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170172553 | Chaplin | Jun 2017 | A1 |
20170172673 | Yu et al. | Jun 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170252096 | Felder | Sep 2017 | A1 |
20170265923 | Privitera | Sep 2017 | A1 |
20170265954 | Burbank | Sep 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170319289 | Neff et al. | Nov 2017 | A1 |
20170333679 | Jiang | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170360418 | Wong et al. | Dec 2017 | A1 |
20170365055 | Mintz et al. | Dec 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180000563 | Shanjani et al. | Jan 2018 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180049824 | Harris | Feb 2018 | A1 |
20180055583 | Schuh et al. | Mar 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180177556 | Noonan | Jun 2018 | A1 |
20180193049 | Heck et al. | Jul 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289243 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180296285 | Simi et al. | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000566 | Graetzel et al. | Jan 2019 | A1 |
20190000568 | Connolly et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190099231 | Bruehwiler | Apr 2019 | A1 |
20190105776 | Ho et al. | Apr 2019 | A1 |
20190105785 | Meyer et al. | Apr 2019 | A1 |
20190107454 | Lin et al. | Apr 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190110843 | Ummalaneni | Apr 2019 | A1 |
20190151148 | Alvarez et al. | Apr 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175287 | Hill et al. | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190239890 | Stokes | Aug 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190314616 | Moll et al. | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo et al. | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
20200163726 | Tanner | May 2020 | A1 |
20200188043 | Yu | Jun 2020 | A1 |
20200197112 | Chin | Jun 2020 | A1 |
20200206472 | Ma | Jul 2020 | A1 |
20200217733 | Lin | Jul 2020 | A1 |
20200222134 | Schuh | Jul 2020 | A1 |
20200237458 | DeFonzo | Jul 2020 | A1 |
20200261172 | Romo | Aug 2020 | A1 |
20200268459 | Noonan et al. | Aug 2020 | A1 |
20200268460 | Tse | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
101443069 | May 2009 | CN |
100515347 | Jul 2009 | CN |
103298414 | Sep 2013 | CN |
205729413 | Nov 2016 | CN |
1 321 106 | Jun 2003 | EP |
1 849 423 | Oct 2007 | EP |
09-224951 | Sep 1997 | JP |
H109224951 | Sep 1997 | JP |
2005-270464 | Oct 2005 | JP |
WO 9214411 | Sep 1992 | WO |
WO 03096871 | Nov 2003 | WO |
2004105849 | Dec 2004 | WO |
2007136984 | Nov 2007 | WO |
WO 11161218 | Dec 2011 | WO |
2012040233 | Mar 2012 | WO |
WO 13107468 | Jul 2013 | WO |
WO 13130895 | Sep 2013 | WO |
WO 17114855 | Jul 2017 | WO |
WO 18069679 | Apr 2018 | WO |
WO 18189722 | Oct 2018 | WO |
Entry |
---|
Advisory Action for U.S. Appl. No. 14/301,871, dated Jun. 17, 2019, 3 pages. |
Final Rejection for U.S. Appl. No. 14/301,871, dated Jan. 19, 2018, 11 pages. |
Final Rejection for U.S. Appl. No. 14/301,871, dated Mar. 25, 2019, 13 pages. |
Final Rejection for U.S. Appl. No. 14/301,871, dated Oct. 27, 2016, 16 pages. |
Non-Final Rejection for U.S. Appl. No. 14/301,871, dated Jun. 12, 2017, 14 pages. |
Non-Final Rejection for U.S. Appl. No. 14/301,871, dated May 5, 2016, 13 pages. |
Non-Final Rejection for U.S. Appl. No. 14/301,871, dated Nov. 13, 2019, 14 pages. |
Non-Final Rejection for U.S. Appl. No. 14/301,871, dated Nov. 20, 2018, 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/301,871, dated Mar. 27, 2020, 12 pages. |
Balicki, et al. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. Medical Image Computing and Computer-Assisted Intervention. MICCAI 2009. Springer Berlin Heidelberg, 2009. 108-115. |
Ehlers, et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology and Visual Science 52.6. 2011; 3153-3159. |
HUBSCHMAN. Robotic Eye Surgery: Past, Present, and Future. Journal of Computer Science and Systems Biology. 2012. |
Stoyanov, Oct. 20, 2011, Surgical Vision, Annals of Biomedical Engineering 40(2):332-345. |
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 μm Er,Cr;YSGG and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12. |
European search report and search opinion dated Jul. 2, 2015 for EP Application No. 12856685.8. |
International search report and written opinion dated Nov. 7, 2014 for PCT Application No. PCT/US2014/041990. |
International search report and written opinion dated Mar. 29, 2013 for PCT/US2012/069540. |
International search report and written opinion dated Jan. 27, 2015 for PCT Application No. PCT/US2014/062284. |
International Search Report dated Nov. 7, 2014 in PCT/US2014/041990. |
International search report dated Jun. 16, 2014 for PCT/US2014/022424. |
Office action dated Jun. 11, 2015 for U.S. Appl. No. 14/158,548. |
Office action dated Jun. 19, 2014 for U.S. Appl. No. 13/868,769. |
Office action dated May 21, 2015 for U.S. Appl. No. 13/711,440. |
Office action dated Oct. 7, 2014 for U.S. Appl. No. 13/711,440. |
Number | Date | Country | |
---|---|---|---|
20200360183 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
61833835 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14301871 | Jun 2014 | US |
Child | 16986064 | US |