The invention relates to a method for positioning or centering optical transducer elements in the form of pulse raster disks or pulse raster rulers on drive shafts, tool carriages and/or sliding stages as well as on vertically or horizontally movable position transducers, wherein the optical transducer elements run edgewise through the sensor gap of a device for detecting a movement or position. The invention further relates to an optical transducer element of a suitable configuration so that it can be positioned in accordance with the inventive method.
An optical transducer element of this type has to meet stringent requirements in respect to the accuracy of the positioning and the quality of the resolution as well as the accuracy of functioning when there are fluctuations in temperature, pressure and humidity. Since large-scale production parts are involved, design concepts are required that are production-oriented, characterized by a minimal component count and by selecting components that are as simple and as fail-safe as possible. In other words: the design of the transducer element needs to be conducive to a quick and reliable adjustment process which delivers the required precision even under difficult assembly conditions. Moreover the transducer element has to be producible in an automated manufacturing process that provides a high level of assurance.
Pulse raster disks are generally fastened on a rotating shaft by means of a hub. Either transparent pulse raster disks or reflecting pulse raster disks are used. In the case of a transparent disk, the light beam emitted by a light source on one side of the raster disk is chopped into light pulses when the disk is rotated. The light pulses are received by a sensor element positioned on the opposite side of the pulse raster disk. In the case of the reflecting pulse raster disks, the light source and the light sensor are positioned on the same side of the pulse raster disk, usually parallel to the rotation axis, so that a scanning of the pulse raster disk and pulse raster ruler respectively can take place in the most confined space.
More details on this concept are described in the utility models DE 29504883 U1 and in DE 10016959.7 (Applicant: PWB Ruhlatec Industrieprodukte GmbH). In order to simplify their adjustment, optical transducer elements can be combined in an assembly unit as described for example in the utility model DE 20120932 U1 (Applicant: PWB Ruhlatec Industrieprodukte GmbH), where a sensor/emitter unit 9 (see
The precision of the optical transducer element depends essentially on the position accuracy of the pulse raster disk on the drive shaft and on the position of the sensor/emitter unit on the printed circuit board. A variety of soldered joints are to be made on the printed circuit board. The properties and position accuracy of the materials within the area reached by the soldering heat are negatively affected by the high temperature. Moreover the production can only be automated through a very expensive process in which the process assurance is put in question due to a large number of production steps.
The objects of the present invention is therefore:
The aim for the new method and the new optical transducer element is to provide a technically simple way of realizing an automated large-scale production in which the reject rate is minimal (i.e., virtually zero) and which can be used to produce parts of the smallest dimensions.
According to the invention, this foregoing task is solved through the features detailed in the patent claims. It is shown that in the design of the optical transducer elements according to the invention, the centering can be carried out with high precision in a two-step assembly method. The new method and the new transducer element ensures that the harmful influence from the heat produced by the soldering process can be safely avoided. The process a can be increased by the straight feed movements and for the first time an automation can be achieved with low construction costs.
The invention will be explained in more detail below through several examples that are illustrated in the drawings, wherein
In
The pulse raster disk that is used as an optical transducer element is positioned and centered on the shaft 3 relative to the sensor/emitter unit 4. The centering is to be done in such a way that absolutely constant measuring conditions exist in a sensor gap 8 of the sensor/emitter unit 4, in order that the code marks on the pulse raster disk will not produce any pulse fluctuations as they run through of the sensor gap 8.
The pulse raster disk by itself is shown in
The pulse raster disk in
The design examples shown in FIGS. 1 to 3 illustrate the simplicity of the inventive configuration. The feed movement of the pulse raster disk from the preliminary to the centered adjustment position runs in a straight line, so that an automatic production is simple to realize. The production processes for the illustrated embodiments of the invention can be easily optimized in a way that provides a high level of process assurance.
| Number | Date | Country | Kind |
|---|---|---|---|
| 03011738.6 | May 2003 | EP | regional |