The invention described herein relates to medical fluid delivery applications and, particularly, to a system for the delivery of one or more medical fluids to a patient using a fluid path set with a turbulent mixing chamber, backflow compensator, and/or air bubble trap.
In many medical diagnostic and therapeutic procedures, a medical practitioner, such as a physician, injects a patient with a fluid. In recent years, a number of injector-actuated syringes and powered injectors for pressurized injection of fluids, such as contrast solution (often referred to simply as “contrast”), have been developed for use in procedures such as angiography, computed tomography (CT), ultrasound, and NMR/MRI. In general, these powered injectors are designed to deliver a preset amount of contrast at a preset flow rate.
Angiography is used in the detection and treatment of abnormalities or restrictions in blood vessels. In an angiographic procedure, a radiographic image of a vascular structure is obtained through the use of a radiographic contrast fluid which is injected through a catheter. The vascular structures in fluid connection with the vein or artery in which the contrast is injected are filled with contrast. X-rays passing through the region of interest are absorbed by the contrast, causing a radiographic outline or image of vascular structures containing the contrast. The resulting images can be displayed on, for example, a monitor and recorded.
In a typical angiographic procedure, the medical practitioner places a cardiac catheter into a vein or artery. The catheter is connected to either a manual or to an automatic contrast injection mechanism. A typical manual contrast injection mechanism includes a syringe in fluid connection with a catheter connection. The fluid path also includes, for example, a source of contrast, a source of flushing fluid, typically saline, and a pressure transducer to measure patient blood pressure. In a typical system, the source of contrast is connected to the fluid path via a valve, for example, a three-way stopcock. The source of saline and the pressure transducer may also be connected to the fluid path via additional valves, again such as stopcocks. The operator of the manual contrast injection mechanism controls the syringe and each of the valves to draw saline or contrast into the syringe and to inject the contrast or saline into the patient through the catheter connection.
Automatic contrast injection mechanisms typically include a syringe connected to one or more powered injectors having, for example, a powered linear actuator. Typically, an operator enters settings into an electronic control system of the powered injector for a fixed volume of contrast and saline, and a fixed rate of injection for each. Automatic contrast injection mechanisms provide improved control over manual apparatus where successful use of such manual devices is dependent on the skill of the medical practitioner operating the device. As in a manual system, the fluid path from the automatic contrast injection mechanism to the patient includes, for example, a source of contrast, a source of flushing fluid, typically saline, and a pressure transducer to measure patient blood pressure. The source of contrast is connected to the fluid path via a valve, for example, a three-way stopcock. The source of saline and the pressure transducer may also be connected to the fluid path via additional valves, again such as stopcocks.
When the contrast and the flushing fluid are injected, it is desirable for the two fluids to be mixed well before injection into the patient. However, because the contrast and the flushing fluid typically have different specific gravity and viscosity, the two solutions may not be thoroughly mixed using a known mixing valve, such as a T- or Y-shaped joint, or a three-way stopcock. As a result, when the contrast and the flushing fluid are not mixed properly, the resulting image taken by a fluoroscopic imaging apparatus may be uneven, thereby making it difficult to image the blood vessel clearly. Within the prior art, International Application Publication No. WO 2011/125303 discloses a mixing device for mixing two kinds of fluids. The mixing device includes a first inflow opening and a second inflow opening that is tangential to the first inflow opening to generate a swirling flow as the first and second fluids come into contact. The mixing chamber has a conical shape that is continuously narrowed to an outlet opening. However, existing solutions are often not adequate in promoting thorough mixing of the fluids when small amounts of contrast and flushing solution are introduced and/or when the injection duration is short. Additionally, such existing mixing devices do not compensate for backflow of the contrast or the flushing fluid.
An additional problem with the known multi-fluid injectors is that fluid backflow occurs in injections where a viscous first fluid is injected at a higher ratio than a less viscous second fluid. In such a scenario, before a uniform fluid flow is established, the fluid pressure of the more viscous first fluid that is injected at a higher ratio acts against the fluid pressure of the less viscous second fluid that is injected at a lower ratio to force the second fluid to reverse the desired direction of flow. After injection, pressures equalize, and the fluid injection system achieves a steady state operation where first and second injection fluids are injected at a desired ratio. However, in small volume injections, steady state operation cannot be achieved prior to the completion of the injection process and the total volume of first and second fluids being delivered. Thus, even though a desired ratio of first and second fluids may be 80% first injection fluid to 20% second injection fluid, the actual ratio due to backflow of the first fluid may be higher. This problem is further compounded with an increase in injection pressure. Utilizing check valves downstream of the syringes containing the first and second injection fluids only prevents contamination of the syringes from the backflow and does not address the accuracy of the final mixture ratio.
While manual and automated injectors are known in the medical field, improved fluid delivery systems having a fluid path that promotes turbulent mixing of two or more fluids introduced into a mixing chamber continue to be in demand in the medical field. Additionally, improved fluid transfer sets having a fluid path with a mixing device adapted for thorough fluid mixing are also desired in the medical field. Moreover, the medical field continues to demand improved medical devices and systems used to supply fluids to patients during medical procedures such as angiography, computed tomography, ultrasound, and NMR/MRI.
While various embodiments of a flow mixing device are described in detail herein, one embodiment may include a housing having a proximal end opposite a distal end, a first fluid port provided at the proximal end of the housing for receiving a first injection fluid, and a second fluid port provided at the proximal end of the housing for receiving a second injection fluid. A mixing chamber may be disposed within the housing between the proximal and distal ends, the mixing chamber being in fluid communication with the first and second fluid ports for mixing the first and second injection fluids. A third fluid port may be provided at the distal end of the housing and in fluid communication with the mixing chamber for discharging a mixed solution of the first and second injection fluids. A turbulent flow inducing member may be disposed within the mixing chamber for promoting turbulent mixing of the first and second injection fluids. The flow mixing device may include a third fluid port for receiving a third injection fluid. The first fluid port and the second fluid port may be substantially parallel with a longitudinal axis of the housing. The first fluid port and the second fluid port may be radially offset from a longitudinal axis of the housing.
In accordance with another embodiment, the turbulent flow inducing member may include a flow dispersion device having at least one deflection member extending over at least a portion of one of the first and second fluid ports for deflecting the fluid flow of the first injection fluid or the second injection fluid from a substantially longitudinal direction to a direction having a radial component. The turbulent flow inducing member may include two deflection members, wherein the first deflection member extends over at least a portion of the first fluid port for deflecting the first injection fluid radially outward with respect to a longitudinal axis of the mixing chamber, and wherein the second deflection member extends over at least a portion of the second fluid port for deflecting the second injection fluid radially outward with respect to the longitudinal axis of the mixing chamber.
In accordance with another embodiment, the turbulent flow inducing member may include at least one turbine wheel having a plurality of rotating blades oriented substantially perpendicular to a direction of fluid flow through the mixing chamber, the at least one turbine wheel being rotatable with respect to a longitudinal axis of the mixing chamber for scattering the first and second injection fluids within the mixing chamber.
In accordance with another embodiment, the turbulent flow inducing member may include a plurality of mixing balls having a diameter larger than a diameter of a smallest of the first, second, and third fluid ports, and wherein the mixing balls are agitated within the mixing chamber by the first and second injection fluids.
In accordance with another embodiment, the turbulent flow inducing member may include a porous filter having a plurality of open cell elements disposed within at least a portion of the mixing chamber.
In accordance with another embodiment, the turbulent flow inducing member may include a disc disposed across a portion of the mixing chamber in a radial direction, the disc having a plurality of recesses extending radially inward from an outer circumference of the disc and at least one opening extending through a central portion of the disc.
In accordance with another embodiment, the turbulent flow inducing member may include a tubular insert fixed within the mixing chamber and at least one hydrofoil element extending across an interior of the tubular insert substantially parallel to a direction of fluid flow through the mixing chamber. The at least one hydrofoil element may have a leading edge oriented toward the proximate end, a trailing edge oriented toward the distal end, an upper chord extending between the leading edge and the trailing edge, and a lower chord extending between the leading edge and the trailing edge opposing the upper chord.
In accordance with another embodiment, the turbulent flow inducing member may include a plurality of tubular flow dispersion members fixed relative to the housing to define the mixing chamber, each of the plurality of flow dispersion members having a plurality of wings extending radially inward from an interior sidewall of the flow dispersion members. The plurality of wings may be spaced apart at equal intervals around the inner circumference of each flow dispersion member, and wherein adjacent flow dispersion members are radially aligned such that the plurality of wings of one flow dispersion member are angularly offset with regard to the plurality of wings of the other flow dispersion member.
In accordance with another embodiment, the turbulent flow inducing member may include two sinusoidal fluid paths extending through the mixing chamber, and wherein the two sinusoidal fluid paths intersect at a plurality of intersection points within the mixing chamber.
In another embodiment, the housing may have a first portion and a second portion joined together at a seam extending around an outer perimeter of the housing between the proximal and distal ends. The seam may include a projection provided on one of the first portion and the second portion and a corresponding groove on the other of the first portion and the second portion for receiving the projection within the groove. The mixing chamber may have a spiral sidewall.
In accordance with another embodiment, the turbulent flow inducing member may include a first arcuate tube in fluid communication with the first fluid port and a second arcuate tube in fluid communication with the second fluid port, wherein the first and second arcuate tubes are curved radially inward toward a central axis of the mixing chamber, and wherein fluid mixing at a juncture between the first and second arcuate tubes is influenced by a Coanda effect.
In a further embodiment, a fluid path set may have a first fluid line having a proximal end and a distal end, where the proximal end of the first fluid line is fluidly connectable to a source of a first injection fluid. The fluid path set may also include a second fluid line having a proximal end and a distal end, where the proximal end of the second fluid line is fluidly connectable to a source of a second injection fluid. A flow mixing device may be in fluid communication with the distal ends of the first and second fluid lines at a proximal end of the flow mixing device. The flow mixing device may include a housing having a proximal end opposite a distal end, a first fluid port provided at the proximal end of the housing for receiving a first injection fluid, and a second fluid port provided at the proximal end of the housing for receiving a second injection fluid. A mixing chamber may be disposed within the housing between the proximal and distal ends, the mixing chamber being in fluid communication with the first and second fluid ports for mixing the first and second injection fluids. A third fluid port may be provided at the distal end of the housing and in fluid communication with the mixing chamber for discharging a mixed solution of the first and second injection fluids. A turbulent flow inducing member may be disposed within the mixing chamber for promoting turbulent mixing of the first and second injection fluids. The flow mixing device may include a third fluid port for receiving a third injection fluid.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a flow dispersion device having at least one deflection member extending over at least a portion of one of the first and second fluid ports for deflecting the fluid flow of the first injection fluid or the second injection fluid from a substantially longitudinal direction to a direction having a radial component. The turbulent flow inducing member may include two deflection members, wherein the first deflection member extends over at least a portion of the first fluid port for deflecting the first injection fluid radially outward with respect to a longitudinal axis of the mixing chamber, and wherein the second deflection member extends over at least a portion of the second fluid port for deflecting the second injection fluid radially outward with respect to the longitudinal axis of the mixing chamber.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include at least one turbine wheel having a plurality of rotating blades oriented substantially perpendicular to a direction of fluid flow through the mixing chamber, the at least one turbine wheel being rotatable with respect to a longitudinal axis of the mixing chamber for scattering the first and second injection fluids within the mixing chamber.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a plurality of mixing balls having a diameter larger than a diameter of a smallest of the first, second, and third fluid ports, and wherein the mixing balls are agitated within the mixing chamber by the first and second injection fluids.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a porous filter having a plurality of open cell elements disposed within at least a portion of the mixing chamber.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a disc disposed across a portion of the mixing chamber in a radial direction, the disc having a plurality of recesses extending radially inward from an outer circumference of the disc and at least one opening extending through a central portion of the disc.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a tubular insert fixed within the mixing chamber and at least one hydrofoil element extending across an interior of the tubular insert substantially parallel to a direction of fluid flow through the mixing chamber. The at least one hydrofoil element may have a leading edge oriented toward the proximate end, a trailing edge oriented toward the distal end, an upper chord extending between the leading edge and the trailing edge, and a lower chord extending between the leading edge and the trailing edge opposing the upper chord.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a plurality of tubular flow dispersion members fixed relative to the housing to define the mixing chamber, each of the plurality of flow dispersion members having a plurality of wings extending radially inward from an interior sidewall of the flow dispersion members. The plurality of wings may be spaced apart at equal intervals around the inner circumference of each flow dispersion member, and wherein adjacent flow dispersion members are radially aligned such that the plurality of wings of one flow dispersion member are angularly offset with regard to the plurality of wings of the other flow dispersion member.
In accordance with another embodiment, the turbulent flow inducing member may include two sinusoidal fluid paths extending through the mixing chamber, and wherein the two sinusoidal fluid paths intersect at a plurality of intersection points within the mixing chamber.
In another embodiment of the fluid path set, the housing of the fluid mixing device may have a first portion and a second portion joined together at a seam extending around an outer perimeter of the housing between the proximal and distal ends. The seam may include a projection provided on one of the first portion and the second portion and a corresponding groove on the other of the first portion and the second portion for receiving the projection within the groove. The mixing chamber may have a spiral sidewall.
In accordance with another embodiment of the fluid path set, the turbulent flow inducing member may include a first arcuate tube in fluid communication with the first fluid port and a second arcuate tube in fluid communication with the second fluid port, wherein the first and second arcuate tubes are curved radially inward toward a central axis of the mixing chamber, and wherein fluid mixing at a juncture between the first and second arcuate tubes is influenced by a Coanda effect.
In a further embodiment, a method of mixing a drug solution may include the steps of delivering a first injection fluid to a flow mixing device, delivering a second injection fluid to the flow mixing device, mixing the first and second injection fluids inside a mixing chamber of the flow mixing device, and delivering a mixed solution of the first and second injection fluids from the flow mixing device. The mixing chamber of the flow mixing device may include a turbulent flow inducing member for promoting turbulent mixing of the first and second injection fluids.
In accordance with a further embodiment, a method for capacitance volume correction in a multi-fluid delivery system may include pressurizing a first expandable body having a first injection fluid by reducing the volume in the first expandable body with movement of a first pressurizing element and pressurizing a second expandable body having a second injection fluid by reducing the volume in the second expandable body with movement of a second pressurizing element. The method may further include controlling an acceleration of the first pressurizing element relative to the acceleration of the second pressurizing element as a function of relative velocities of the first and second pressurizing elements and a capacitance correction factor for correcting for volume expansion of the first and second expandable bodies. Movement of the first and second pressurizing elements may be controlled with an algorithm. The first expandable body may be pressurized to a first pressure, and the second expandable body may be pressurized to a second pressure. In one embodiment, the first pressure may be higher than the second pressure. The capacitance correction factor may be a function of the volume in the first and second expandable bodies, and a pressure inside the first and second expandable bodies. The velocity of the first pressurizing member may be higher than the velocity of the second pressurizing member.
In another embodiment, a method for capacitance volume correction in a multi-fluid delivery system may include the steps of pressurizing a first syringe having a first injection fluid to a first pressure by reducing the volume in the first syringe with movement of a first piston at a first acceleration and pressurizing a second syringe having a second injection fluid to the first pressure by reducing the volume in the second syringe with movement of a second piston at a second acceleration different from the first acceleration. The acceleration of the first piston relative to the acceleration of the second piston may be a function of a capacitance correction factor for correcting volume expansion of the first and second syringes. The capacitance correction factor may be a function of the volume in the first and second syringes, and the first pressure.
These and other features and characteristics of the fluid path set with a turbulent mixing chamber, as well as the methods of manufacture and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
For purposes of the description hereinafter, spatial orientation terms, as used, shall relate to the referenced embodiment as it is oriented in the accompanying drawing figures or otherwise described in the following detailed description. However, it is to be understood that the embodiments described hereinafter may assume many alternative variations and configurations. It is also to be understood that the specific components, devices, and features illustrated in the accompanying drawing figures and described herein are simply exemplary and should not be considered as limiting.
The fluid delivery system 100 generally includes a powered fluid injector 102 that is adapted to support and actuate a syringe 104 storing a first injection fluid for injection to a patient during a medical procedure, such as an angiographic procedure. The fluid delivery system 100 further includes a second injection fluid that may be mixed with the first injection fluid prior to being delivered to a patient. The injector 102 is generally used to supply the first and second injection fluids under pressure to the fluid path set 108 and, ultimately, the patient. The injector 102 may be controlled by a hand controller 114 to supply the first and second injection fluids at discrete and preselected flow rates based on the physical inputs to the hand controller 114.
The following operational discussion of the flow mixing device 200 will be with exemplary reference to an angiographic procedure involving the fluid delivery system 100 and how the flow mixing device 200 contributes to the homogeneous mixing of the first injection fluid and the second injection fluid from the fluid delivery system 100. In typical angiographic procedures, the first injection fluid is contrast solution and the second injection fluid or flushing agent is saline. The contrast solution typically has higher viscosity and specific gravity compared to saline. One of ordinary skill in the art will appreciate that, depending on the medical procedure, various other medical fluids can be used as the first injection fluid and the second injection fluid.
The injector 102 is operatively associated with a fluid control module 106. The fluid control module 106 may be adapted for controlling the operation of the fluid delivery system 100 by allowing the user to manually select the injection parameters, or select a pre-defined injection protocol. Alternatively, this functionality may reside with an external control unit or with the powered injector 102. In either case, the fluid control module 106 controls the injection pressure and the ratio of the first injection fluid relative to the second injection fluid. The fluid control module 106 is generally adapted to support a fluid path set 108 that is generally adapted to fluidly connect the syringe 104 to a source of first injection fluid (contrast solution) 112. The fluid path set 108 is further connected to a source of second injection fluid (saline) 110 which is supplied to the patient via the same catheter as the contrast solution. The flow mixing device 200 is disposed within the fluid path set 108 and is adapted for mixing the fluids from the syringe 104 and the source of saline 110. The flow of the contrast solution from the syringe 104 and the saline is regulated by the fluid control module 106 which controls the various valves and flow regulating structures in the fluid path set 108 to regulate the delivery of contrast solution and saline to the patient based on user selected injection parameters, such as total injection volume and ratio of contrast solution and saline. The fluid path set 108 further connects the syringe 104 to a catheter (not shown) which is associated with the patient for supplying the contrast solution and saline to the patient.
In another embodiment, a manually-controlled fluid delivery system (not shown) may be provided. Similar to power-operated fluid delivery systems described with reference to
With reference to
With reference to
The housing 202a of the flow mixing device 200a defines a mixing chamber 212a (shown in
With specific reference to
With reference to
As best shown in
With continuing reference to
With reference to
With specific reference to
With reference to
With reference to
The housing 202c of the flow mixing device 200c defines a mixing chamber 212c (shown in
With continuing reference to
As best shown in
The second portion 216c includes a fluid flow dispersion device 238c having a central hub 240c and a turbine wheel 241c rotatable around the central hub 240c, as shown more fully in
With reference to
With reference to
The mixing chamber 212d has a plurality of mixing balls 213d disposed within. Each mixing ball 213d is substantially spherical and has a diameter that is larger than the diameter of the smallest of the first, second, and third fluid orifices 226d, 228d, 230d, respectively, in order to eliminate blocking of the fluid ports. Desirably, each of the plurality of mixing balls 213d has a diameter sufficiently large to avoid complete occlusion of the first, second, and third fluid orifices 226d, 228d, 230d. As the first and second injection fluids enter the mixing chamber 212d, the mixing balls 213d are agitated by the fluid flow and move about the mixing chamber 212d. In an embodiment where the housing 202d is transparent, the mixing balls 213d provide a visual indication of injection and mixing. In a purge cycle, the position of the mixing balls 213d within the mixing chamber 212d is indicative of whether the purge is completed. In a further embodiment, the mixing balls 213d may provide an audible indication of injection as the mixing balls 213d bounce off of the walls of the mixing chamber 212d and produce noise.
With reference to
Whereas the flow mixing device 200d includes a plurality of mixing balls 213d disposed within the mixing chamber 212d, the flow mixing device 200e includes a porous filter material filing at least a portion of the mixing chamber 212e. In particular, an open-cell filter element 213e fills the mixing chamber 212e and creates a fluid path restriction which forces the first and second injection fluids to mix while passing through the pores. In one embodiment, the filter element 213e is provided only on one lateral side of the mixing chamber 212e in order to increase a pressure drop of one of the first or second injection fluids.
With reference to
The housing 202f of the flow mixing device 200f defines a mixing chamber 212f (shown in
With reference to
The mixing chamber 212f is defined within the interior of the first portion 214f. The mixing chamber 212f has a generally conical shape having a substantially circular cross-section. Alternatively, the cross-sectional shape of the mixing chamber 212f may be an ellipse or any other shape formed from a curved line.
As best shown in
With reference to
The housing 202g of the flow mixing device 200g defines a mixing chamber 212g (shown in
With specific reference to
The mixing chamber 212g is defined within the interior of the first portion 214g. The mixing chamber 212g has a generally cylindrical shape having a substantially circular cross-section. Alternatively, the cross-sectional shape of the mixing chamber 212g may be an ellipse or any other shape formed from a curved line. The mixing chamber 212g may have a first portion that narrows from the proximal end 218g to the distal end 220g to define a conical profile.
With continuing reference to
With reference to
With reference to
The housing 202i of the flow mixing device 200i defines a mixing chamber 212i (shown in
With specific reference to
With reference to
With continuing reference to
With reference to
With specific reference to
The housing 202j includes a first fluid port 206j for receiving a first injection fluid through a first fluid conduit (not shown) and a second fluid port 208j for receiving a second injection fluid through a second fluid conduit (not shown). First and second fluid ports 206j, 208j extend through the first and second portions 214j, 216j of the housing 202j and are in fluid communication with the mixing chamber 212j through first and second fluid orifices 226j, 228j, respectively. First and second fluid ports 206j, 208j are substantially parallel to each other. In other embodiments, first and second fluid ports 206j, 208j may be angled relative to a longitudinal axis of flow mixing device 200j such that fluid flow of the first and second injection fluids converges or diverges relative to the longitudinal axis. In one exemplary embodiment, a contrast medium may be supplied through the first fluid port 206j and saline may be injected through the second fluid port 208j. Fluid flowing through the first and second fluid ports 206j, 208j passes through the first and second fluid orifices 226j, 228j having a reduced cross-section relative to the first and second fluid ports 206j, 208j. First and second fluid orifices 226j, 228j have equal diameters. In another embodiment, the diameter of the first fluid orifice 226j may be larger or smaller relative to the diameter of the second fluid orifice 228j. First and second injection fluids mix within the mixing chamber 212j to form a mixed solution. The mixed solution is discharged from the mixing chamber 212j through a third fluid orifice 230j provided at a distal end of the first portion 214j of the housing 202j. The third fluid orifice 230j is in fluid communication with the third fluid port 210j that discharges the mixed fluid from the mixing device 200j through a fluid conduit (not shown).
With continued reference to
With reference to
The housing 202k of the flow mixing device 200k defines a mixing chamber 212k (shown in
With reference to
The housing 202k includes a first fluid port 206k for receiving a first injection fluid through a first fluid conduit (not shown) and a second fluid port 208k for receiving a second injection fluid through a second fluid conduit (not shown). First and second fluid ports 206k, 208k extend through the first and second portion 214k, 216k of the housing 202k and are in fluid communication with the mixing chamber 212k through first and second fluid orifices 226k, 228k, respectively. First and second fluid ports 206k, 208k are substantially parallel to each other. In other embodiments, first and second fluid ports 206k, 208k may be angled relative a longitudinal axis of flow mixing device 200k such that fluid flow of the first and second injection fluids converges or diverges relative to the longitudinal axis. In one exemplary embodiment, a contrast medium may be supplied through the first fluid port 206k and saline may be injected through the second fluid port 208k. Fluid flowing through the first and second fluid ports 206k, 208k passes through the first and second fluid orifice 226k, 228k having a reduced cross-section relative to the first and second fluid ports 206k, 208k. First and second fluid orifices 226k, 228k have equal diameters. In another embodiment, the diameter of the first fluid orifice 226k may be larger or smaller relative to the diameter of the second fluid orifice 228k. First and second injection fluids mix within the mixing chamber 212k to form a mixed solution. The mixed solution is discharged from the mixing chamber 212k through a third fluid orifice 230k provided at a distal end of the first portion 214k of the housing 202k. The third fluid orifice 230k is in fluid communication with a third fluid port 210k that discharges the mixed fluid from the mixing device 200k through a fluid conduit (not shown).
The mixing chamber 212k is defined within the interior of the first portion 214k. The mixing chamber 212k has a generally cylindrical shape having a substantially circular cross-section. Alternatively, the cross-sectional shape of the mixing chamber 212k may be an ellipse or any other shape formed from a curved line. The mixing chamber 212k may have a first portion that narrows from the proximal end 218k to the distal end 220k to define a conical profile.
With continued reference to
With reference to
The housing 202l of the flow mixing device 200l defines a mixing chamber 212l (shown in
The housing 202l of the flow mixing device 200l defines a mixing chamber 212l (shown in
As best shown in
With reference to
The housing 202m of the flow mixing device 200m defines a mixing chamber 212m (shown in
With reference to
While embodiments of a fluid path set with a flow mixing device and methods of operation thereof were provided in the foregoing description, those skilled in the art may make modifications and alterations to these embodiments without departing from the scope and spirit of the invention. For example, any of the embodiments of the fluid path set with a flow mixing device can be adapted to receive a third (or more) injection fluid that is introduced into the mixing chamber of the flow mixing device for mixing with one or both of first and second injection fluids. Accordingly, the foregoing description is intended to be illustrative rather than restrictive.
Having described the various embodiments of the flow mixing device, a method of backflow compensation will now be described. In a typical multi-fluid injection procedure, an injection fluid, such as a contrast solution, is delivered from a contrast solution source to the patient using a powered or manual injector. The injected contrast solution is delivered to a desired site in a patient's body through a catheter inserted into the patient's body, such as the patient's groin area. Once the contrast fluid is delivered to the desired site, that area is imaged using a conventional imaging technique, such as angiography imagining or scanning. The contrast solution becomes clearly visible against the background of the surrounding tissue. However, because the contrast solution often comprises toxic substances that may be harmful to the patient if delivered in a high dosage or a high concentration, it is desirable to reduce contrast dosing to the patient, while maintaining an effective contrast amount necessary for effective imaging. By supplementing the overall contrast solution delivery procedure with saline, additional hydration of the patient occurs automatically and allows the body to remove the toxicity of the contrast solution. In addition to improved patient comfort level and less toxicity, introduction of saline at clinically significant pressures and flow rates also allows higher flow rates to be achieved at lower pressure settings on the injector.
To enable effective simultaneous flow delivery of first and second injection fluids, such as contrast solution and saline, substantially equal pressure must be present in each delivery line. In a powered injection system described above, it is desirable to actuate the piston elements substantially simultaneously in simultaneous flow delivery applications to equalize the pressure in each line. If the injector is operated with differential pressure in each delivery line of the fluid path set, the fluid in the lower pressure line may be stopped or reversed until sufficient pressure is achieved in the lower pressure line to enable flow in a desired direction. This time delay could reduce the usefulness of the image quality. This phenomenon is particularly evident in situations where contrast is injected at a significantly higher ratio relative to saline, such as 80% contrast to 20% saline injection protocol. The flow reversal is exacerbated at high injection pressures. In small dosage injections at a high injection pressure, flow reversal effectively stops the delivery of saline such that 100% contrast solution is injected, rather than the desired 80% contrast to 20% saline ratio. Similar inaccuracies occur at various other injection protocols, including, but not limited to 20% contrast to 80% saline ratio.
The above-described situation of flow reversal during powered injections at high contrast-to-saline ratio occurs due to injection system capacitance. Total system capacitance represents the amount of suppressed fluid (i.e., backflow volume) that is captured in the swelling of the injector system components due to pressure. Total system capacitance is inherent to each fluid injection system and depends on a plurality of factors, including injector construction, mechanical properties of materials used to construct the syringe, piston, pressure jacket surrounding the syringe, fluid lines delivering the contrast and saline to a flow mixing device, etc. The amount of back or reverse flow increases when the relative speed difference between the two pistons is large, the simultaneous fluid flow is through a small restriction, the speed of the total fluid injection is large, and the viscosity of the fluid is high. The back or reverse flow can prevent different ratios of simultaneously delivered fluid from ever occurring in certain injections, which can be a detriment for all two-syringe type injector systems.
In general, capacitance is directly correlative to injection pressure and inversely correlative to volume of contrast and saline in the syringes. For example, in one embodiment, capacitance during an injection at 1200 psi with 150 ml of contrast and saline remaining in the syringes is around 10 ml. In another embodiment, the capacitance volume can be from about 5 ml to about 9 ml. With reference to the graph shown in
Capacitance is also a function of the ratio at which the first and second injection fluids, such as contrast solution and saline, are injected. With reference to
With reference to
A solution to the problem of eliminating backflow to compensate for system capacitance in a high contrast-to-saline ratio is to control the relative acceleration of the pistons in proportion to the capacitive swelling that is occurring. Thus, the ratio of simultaneous fluid delivery can be maintained. The difference in acceleration between the piston controlling the injection of the contrast solution and the piston controlling the injection of saline is determined by the predicted capacitance volume of the syringe with the correction factor dominated primarily by pressure and the axial position of the syringe plunger within the syringe barrel.
With reference to
With reference to
As shown in
While several embodiments were provided in the foregoing description, those skilled in the art may make modifications and alterations to these embodiments without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive. The invention described hereinabove is defined by the appended claims and all changes to the invention that fall within the meaning and the range of equivalency of the claims are to be embraced within their scope.
This application is a Continuation Application of U.S. Ser. No. 15/417,945, filed Jan. 27, 2017, which is a Divisional Application of U.S. Ser. No. 13/799,426, filed Mar. 13, 2013, now U.S. Pat. No. 9,555,379, the disclosures of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
383858 | Campbell | Jun 1888 | A |
508584 | Stevens | Nov 1893 | A |
945143 | Iacques | Jan 1910 | A |
2511291 | Mueller | Jun 1950 | A |
2583206 | Borck et al. | Jan 1952 | A |
3156236 | Williamson | Nov 1964 | A |
3159312 | Van Sciver, II | Dec 1964 | A |
3276472 | Jinkens et al. | Oct 1966 | A |
3349713 | Fassbender | Oct 1967 | A |
3520295 | Paul | Jul 1970 | A |
3523523 | Heinrich et al. | Aug 1970 | A |
3623474 | Heilman et al. | Nov 1971 | A |
3635444 | Potter | Jan 1972 | A |
3671208 | Wayne | Jun 1972 | A |
3701345 | Heilman | Oct 1972 | A |
3719207 | Takeda | Mar 1973 | A |
3755655 | Senecal | Aug 1973 | A |
3793600 | Grosbard | Feb 1974 | A |
3812843 | Wootten et al. | May 1974 | A |
3817843 | Barrett | Jun 1974 | A |
3839708 | Lyons et al. | Oct 1974 | A |
3868967 | Harding | Mar 1975 | A |
3888239 | Rubinstein | Jun 1975 | A |
3895220 | Nelson et al. | Jul 1975 | A |
3898983 | Elam | Aug 1975 | A |
3927955 | Spinosa et al. | Dec 1975 | A |
3941126 | Dietrich et al. | Mar 1976 | A |
3958103 | Oka et al. | May 1976 | A |
3968195 | Bishop | Jul 1976 | A |
3995381 | Manfred et al. | Dec 1976 | A |
4001549 | Corwin | Jan 1977 | A |
4006736 | Kranys et al. | Feb 1977 | A |
4038981 | Lefevre et al. | Aug 1977 | A |
4044757 | McWhorter et al. | Aug 1977 | A |
4090502 | Tajika | May 1978 | A |
4135247 | Gordon et al. | Jan 1979 | A |
4151845 | Clemens | May 1979 | A |
4187057 | Xanthopoulos | Feb 1980 | A |
4191183 | Mendelson | Mar 1980 | A |
4199000 | Edstrom | Apr 1980 | A |
4204775 | Speer | May 1980 | A |
4207871 | Jenkins | Jun 1980 | A |
4208136 | King | Jun 1980 | A |
4223675 | Williams | Sep 1980 | A |
4262824 | Hrynewycz | Apr 1981 | A |
4263916 | Brooks et al. | Apr 1981 | A |
4280494 | Cosgrove, Jr. et al. | Jul 1981 | A |
4284073 | Krause et al. | Aug 1981 | A |
4315247 | Germanton | Feb 1982 | A |
4319568 | Tregoning | Mar 1982 | A |
4329067 | Goudy, Jr. | May 1982 | A |
4340153 | Spivey | Jul 1982 | A |
4341153 | Bowser | Jul 1982 | A |
4392847 | Whitney et al. | Jul 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4396385 | Kelly et al. | Aug 1983 | A |
4402310 | Kimura | Sep 1983 | A |
4409966 | Lambrecht et al. | Oct 1983 | A |
4434820 | Glass | Mar 1984 | A |
4434822 | Bellamy et al. | Mar 1984 | A |
4441823 | Power et al. | Apr 1984 | A |
4444198 | Petre | Apr 1984 | A |
4447230 | Gula et al. | May 1984 | A |
4448200 | Brooks et al. | May 1984 | A |
4474476 | Thomsen | Oct 1984 | A |
4477923 | Baumann et al. | Oct 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4479761 | Bilstad et al. | Oct 1984 | A |
4479762 | Bilstad et al. | Oct 1984 | A |
4504908 | Riederer et al. | Mar 1985 | A |
4509526 | Barnes et al. | Apr 1985 | A |
4512764 | Wunsch | Apr 1985 | A |
4542459 | Riederer | Sep 1985 | A |
4544949 | Kurihara | Oct 1985 | A |
4551133 | Zegers et al. | Nov 1985 | A |
4552130 | Kinoshita | Nov 1985 | A |
4559036 | Wunsch | Dec 1985 | A |
4563175 | Lafond | Jan 1986 | A |
4578802 | Itoh | Mar 1986 | A |
4585009 | Barker et al. | Apr 1986 | A |
4585941 | Bergner | Apr 1986 | A |
4610670 | Spencer | Sep 1986 | A |
4610790 | Reti et al. | Sep 1986 | A |
4611340 | Okazaki | Sep 1986 | A |
4612572 | Komatsu et al. | Sep 1986 | A |
4625494 | Iwatschenko et al. | Dec 1986 | A |
4626144 | Berner | Dec 1986 | A |
4633307 | Honda | Dec 1986 | A |
4634426 | Kamen | Jan 1987 | A |
4636144 | Abe et al. | Jan 1987 | A |
4655197 | Atkinson | Apr 1987 | A |
4662906 | Matkovich et al. | May 1987 | A |
4672651 | Horiba et al. | Jun 1987 | A |
4676776 | Howson | Jun 1987 | A |
4682170 | Kubota et al. | Jul 1987 | A |
4689670 | Okazaki | Aug 1987 | A |
4710166 | Thompson et al. | Dec 1987 | A |
4723261 | Janssen et al. | Feb 1988 | A |
4750643 | Wortrich | Jun 1988 | A |
4754786 | Roberts | Jul 1988 | A |
4781687 | Wall | Nov 1988 | A |
4783273 | Knutsson et al. | Nov 1988 | A |
4789014 | Digianfilippo et al. | Dec 1988 | A |
4793357 | Lindstrom | Dec 1988 | A |
4795429 | Feldstein | Jan 1989 | A |
4798590 | O'Leary et al. | Jan 1989 | A |
4804454 | Asakura et al. | Feb 1989 | A |
4823833 | Hogan et al. | Apr 1989 | A |
4835521 | Andrejasich et al. | May 1989 | A |
4836187 | Iwakoshi et al. | Jun 1989 | A |
4838856 | Mulreany et al. | Jun 1989 | A |
4840620 | Kobayashi et al. | Jun 1989 | A |
4844052 | Iwakoshi et al. | Jul 1989 | A |
4853521 | Claeys et al. | Aug 1989 | A |
4854301 | Nakajima | Aug 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4857056 | Talonn | Aug 1989 | A |
4874359 | White et al. | Oct 1989 | A |
4879880 | Harrison | Nov 1989 | A |
4880014 | Zarowitz et al. | Nov 1989 | A |
4887208 | Schneider et al. | Dec 1989 | A |
4887554 | Whitford | Dec 1989 | A |
4901731 | Millar | Feb 1990 | A |
4903705 | Imamura et al. | Feb 1990 | A |
4913154 | Ermert et al. | Apr 1990 | A |
4922916 | Ermert et al. | May 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4929818 | Bradbury et al. | May 1990 | A |
4935005 | Haines | Jun 1990 | A |
4936832 | Vaillancourt | Jun 1990 | A |
4943279 | Samiotes et al. | Jul 1990 | A |
4943779 | Pedersen et al. | Jul 1990 | A |
4943987 | Asahina et al. | Jul 1990 | A |
4946256 | Woodruff | Aug 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4947412 | Mattson | Aug 1990 | A |
4950245 | Brown et al. | Aug 1990 | A |
4952068 | Flint | Aug 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4965726 | Heuscher et al. | Oct 1990 | A |
4966579 | Polaschegg | Oct 1990 | A |
4976687 | Martin | Dec 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
4981467 | Bobo, Jr. et al. | Jan 1991 | A |
4995064 | Wilson et al. | Feb 1991 | A |
5002055 | Merki et al. | Mar 1991 | A |
5004472 | Wallace et al. | Apr 1991 | A |
5009654 | Minshall et al. | Apr 1991 | A |
5010473 | Jacobs | Apr 1991 | A |
5013173 | Shiraishi | May 1991 | A |
5018173 | Komai et al. | May 1991 | A |
5032112 | Fairchild et al. | Jul 1991 | A |
5034987 | Fujimoto et al. | Jul 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5053002 | Barlow | Oct 1991 | A |
5054044 | Audon et al. | Oct 1991 | A |
5056568 | Digianfilippo et al. | Oct 1991 | A |
5059171 | Bridge et al. | Oct 1991 | A |
5059173 | Sacco | Oct 1991 | A |
5061243 | Winchell et al. | Oct 1991 | A |
5069662 | Bodden | Dec 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5088981 | Howson et al. | Feb 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5104374 | Bishko et al. | Apr 1992 | A |
5104387 | Pokorney et al. | Apr 1992 | A |
5108365 | Woods, Jr. | Apr 1992 | A |
5111492 | Klausz | May 1992 | A |
5113905 | Pruitt et al. | May 1992 | A |
5123056 | Wilson | Jun 1992 | A |
5123121 | Broersma | Jun 1992 | A |
5125018 | Asahina | Jun 1992 | A |
5128121 | Berg et al. | Jul 1992 | A |
5133336 | Savitt et al. | Jul 1992 | A |
5135000 | Akselrod et al. | Aug 1992 | A |
5150292 | Hoffmann et al. | Sep 1992 | A |
5166961 | Brunnett et al. | Nov 1992 | A |
5180895 | Briggs et al. | Jan 1993 | A |
5180896 | Gibby et al. | Jan 1993 | A |
5190744 | Rocklage et al. | Mar 1993 | A |
5191878 | Iida et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5199604 | Palmer et al. | Apr 1993 | A |
5207642 | Orkin et al. | May 1993 | A |
5215095 | Macvicar et al. | Jun 1993 | A |
5228070 | Mattson | Jul 1993 | A |
5230614 | Zanger et al. | Jul 1993 | A |
5242390 | Goldrath | Sep 1993 | A |
5249122 | Stritzke | Sep 1993 | A |
5249579 | Hobbs et al. | Oct 1993 | A |
5262946 | Heuscher | Nov 1993 | A |
5267174 | Kaufman et al. | Nov 1993 | A |
5269756 | Dryden | Dec 1993 | A |
5273537 | Haskvitz et al. | Dec 1993 | A |
5274218 | Urata et al. | Dec 1993 | A |
5276614 | Heuscher | Jan 1994 | A |
5286252 | Tuttle et al. | Feb 1994 | A |
5287273 | Kupfer et al. | Feb 1994 | A |
5300031 | Neer et al. | Apr 1994 | A |
5301656 | Negoro et al. | Apr 1994 | A |
5301672 | Kalender | Apr 1994 | A |
5304126 | Epstein et al. | Apr 1994 | A |
5310997 | Roach et al. | May 1994 | A |
5311568 | McKee, Jr. et al. | May 1994 | A |
5313992 | Grabenkort | May 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5328463 | Barton et al. | Jul 1994 | A |
5329459 | Kaufman et al. | Jul 1994 | A |
5334141 | Carr et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5349625 | Born et al. | Sep 1994 | A |
5349635 | Scott | Sep 1994 | A |
5352979 | Conturo | Oct 1994 | A |
5354273 | Hagen | Oct 1994 | A |
5361761 | Van Lysel et al. | Nov 1994 | A |
5362948 | Morimoto | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5368567 | Lee | Nov 1994 | A |
5368570 | Thompson et al. | Nov 1994 | A |
5373231 | Boll et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378231 | Johnson et al. | Jan 1995 | A |
5382232 | Hague et al. | Jan 1995 | A |
5383231 | Yamagishi | Jan 1995 | A |
5383858 | Reilly et al. | Jan 1995 | A |
5385540 | Abbott et al. | Jan 1995 | A |
5388139 | Beland | Feb 1995 | A |
5392849 | Matsunaga et al. | Feb 1995 | A |
5400792 | Hoebel et al. | Mar 1995 | A |
5417213 | Prince | May 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5433704 | Ross et al. | Jul 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5450847 | Kaempfe et al. | Sep 1995 | A |
5453639 | Cronin et al. | Sep 1995 | A |
5456255 | Abe et al. | Oct 1995 | A |
5458128 | Polanyi et al. | Oct 1995 | A |
5459769 | Brown | Oct 1995 | A |
5460609 | O'Donnell | Oct 1995 | A |
5464391 | DeVale | Nov 1995 | A |
5468240 | Gentelia et al. | Nov 1995 | A |
5469769 | Sawada et al. | Nov 1995 | A |
5469849 | Sasaki et al. | Nov 1995 | A |
5472403 | Cornacchia et al. | Dec 1995 | A |
5474683 | Bryant et al. | Dec 1995 | A |
5485831 | Holdsworth et al. | Jan 1996 | A |
5489265 | Montalvo et al. | Feb 1996 | A |
5494036 | Uber, III et al. | Feb 1996 | A |
5494822 | Sadri | Feb 1996 | A |
5496273 | Pastrone et al. | Mar 1996 | A |
5507412 | Ebert et al. | Apr 1996 | A |
5515851 | Goldstein | May 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5531679 | Schulman et al. | Jul 1996 | A |
5531697 | Olsen et al. | Jul 1996 | A |
5533978 | Teirstein | Jul 1996 | A |
5544215 | Shroy, Jr. et al. | Aug 1996 | A |
5547470 | Johnson et al. | Aug 1996 | A |
5552130 | Kraus et al. | Sep 1996 | A |
5553619 | Prince | Sep 1996 | A |
5560317 | Bunyan et al. | Oct 1996 | A |
5566092 | Wang et al. | Oct 1996 | A |
5569181 | Heilman et al. | Oct 1996 | A |
5569208 | Woelpper et al. | Oct 1996 | A |
5573515 | Wilson et al. | Nov 1996 | A |
5579767 | Prince | Dec 1996 | A |
5583902 | Bae | Dec 1996 | A |
5590654 | Prince | Jan 1997 | A |
5592940 | Kampfe et al. | Jan 1997 | A |
5601086 | Pretlow, III et al. | Feb 1997 | A |
5611344 | Bernstein et al. | Mar 1997 | A |
5616124 | Hague et al. | Apr 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5687208 | Bae et al. | Nov 1997 | A |
5687708 | Farnsworth et al. | Nov 1997 | A |
5713358 | Mistretta et al. | Feb 1998 | A |
5724976 | Mine et al. | Mar 1998 | A |
5725500 | Micheler | Mar 1998 | A |
5739508 | Uber, III | Apr 1998 | A |
5743266 | Levene et al. | Apr 1998 | A |
5768405 | Makram-Ebeid | Jun 1998 | A |
5796862 | Pawlicki et al. | Aug 1998 | A |
5799649 | Prince | Sep 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5806519 | Evans, III et al. | Sep 1998 | A |
5808203 | Nolan, Jr. et al. | Sep 1998 | A |
5827219 | Uber, III et al. | Oct 1998 | A |
5827504 | Yan et al. | Oct 1998 | A |
5840026 | Uber, III et al. | Nov 1998 | A |
5843037 | Uber, III | Dec 1998 | A |
5846517 | Unger | Dec 1998 | A |
5865744 | Lemelson | Feb 1999 | A |
5873861 | Hitchins et al. | Feb 1999 | A |
5881124 | Giger et al. | Mar 1999 | A |
5882343 | Wilson et al. | Mar 1999 | A |
5902054 | Coudray | May 1999 | A |
5903454 | Hoffberg et al. | May 1999 | A |
5916165 | Duchon et al. | Jun 1999 | A |
5920054 | Uber, III | Jul 1999 | A |
5947935 | Kazousky et al. | Sep 1999 | A |
5987347 | Khoury et al. | Nov 1999 | A |
5988587 | Duchon et al. | Nov 1999 | A |
6046225 | Maddock | Apr 2000 | A |
6055985 | Bae et al. | May 2000 | A |
6056902 | Hettinga | May 2000 | A |
6063052 | Uber, III et al. | May 2000 | A |
6073042 | Simonetti | Jun 2000 | A |
6099502 | Duchon et al. | Aug 2000 | A |
6132396 | Antanavich et al. | Oct 2000 | A |
6149627 | Uber, III | Nov 2000 | A |
6186146 | Glickman | Feb 2001 | B1 |
6201889 | Vannah | Mar 2001 | B1 |
6221045 | Duchon et al. | Apr 2001 | B1 |
6236706 | Hsieh | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6306117 | Uber, III | Oct 2001 | B1 |
6313131 | Lawyer | Nov 2001 | B1 |
6317623 | Griffiths et al. | Nov 2001 | B1 |
6322535 | Hitchins et al. | Nov 2001 | B1 |
6344030 | Duchon et al. | Feb 2002 | B1 |
6381486 | Mistretta et al. | Apr 2002 | B1 |
6387098 | Cole et al. | May 2002 | B1 |
6397093 | Aldrich | May 2002 | B1 |
6397097 | Requardt | May 2002 | B1 |
6402697 | Calkins et al. | Jun 2002 | B1 |
6423719 | Lawyer | Jul 2002 | B1 |
6442418 | Evans, III et al. | Aug 2002 | B1 |
6470889 | Bae et al. | Oct 2002 | B1 |
6471674 | Emig et al. | Oct 2002 | B1 |
6478735 | Pope et al. | Nov 2002 | B1 |
6503226 | Martinell et al. | Jan 2003 | B1 |
6520930 | Critchlow et al. | Feb 2003 | B2 |
6527718 | Connor et al. | Mar 2003 | B1 |
6554819 | Reich | Apr 2003 | B2 |
6556695 | Packer et al. | Apr 2003 | B1 |
6572851 | Muramatsu et al. | Jun 2003 | B2 |
6574496 | Golman et al. | Jun 2003 | B1 |
6575930 | Trombley, III et al. | Jun 2003 | B1 |
6597938 | Liu | Jul 2003 | B2 |
6626862 | Duchon et al. | Sep 2003 | B1 |
6635030 | Bae et al. | Oct 2003 | B1 |
6643537 | Zatezalo et al. | Nov 2003 | B1 |
6652489 | Trocki et al. | Nov 2003 | B2 |
6656157 | Duchon et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6685733 | Dae et al. | Feb 2004 | B1 |
6691047 | Fredericks | Feb 2004 | B1 |
6699219 | Emig et al. | Mar 2004 | B2 |
6731971 | Evans et al. | May 2004 | B2 |
6754521 | Prince | Jun 2004 | B2 |
6775764 | Batcher | Aug 2004 | B1 |
6776764 | Pinsky | Aug 2004 | B2 |
6866653 | Bae | Mar 2005 | B2 |
6876720 | Tsuyuki | Apr 2005 | B2 |
6879853 | Meaney et al. | Apr 2005 | B2 |
6983590 | Roelle et al. | Jan 2006 | B2 |
7094216 | Trombley, et al. | Aug 2006 | B2 |
7267666 | Duchon et al. | Sep 2007 | B1 |
7267667 | Houde et al. | Sep 2007 | B2 |
7292720 | Horger et al. | Nov 2007 | B2 |
7351221 | Trombley, III | Apr 2008 | B2 |
7427281 | Uber et al. | Sep 2008 | B2 |
7553295 | Susi | Jun 2009 | B2 |
7556619 | Spohn et al. | Jul 2009 | B2 |
7563249 | Schriver et al. | Jul 2009 | B2 |
7688057 | Foss et al. | Mar 2010 | B2 |
7766883 | Reilly et al. | Aug 2010 | B2 |
7861893 | Voegele et al. | Jan 2011 | B2 |
7925330 | Kalafut et al. | Apr 2011 | B2 |
8007487 | Patrick et al. | Aug 2011 | B2 |
8147464 | Spohn et al. | Apr 2012 | B2 |
8162903 | Reilly et al. | Apr 2012 | B2 |
8295914 | Kalafut et al. | Oct 2012 | B2 |
8337456 | Schriver et al. | Dec 2012 | B2 |
8377003 | Wagner | Feb 2013 | B2 |
8439863 | Fago et al. | May 2013 | B2 |
20010027265 | Prince | Oct 2001 | A1 |
20010056233 | Uber et al. | Dec 2001 | A1 |
20020007116 | Zatezalo et al. | Jan 2002 | A1 |
20020010551 | Wang et al. | Jan 2002 | A1 |
20020099254 | Movahed | Jul 2002 | A1 |
20020123702 | Cho | Sep 2002 | A1 |
20020151854 | Duchon et al. | Oct 2002 | A1 |
20030050556 | Uber et al. | Mar 2003 | A1 |
20030120171 | Diamantopoulos et al. | Jun 2003 | A1 |
20030195462 | Mann et al. | Oct 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030216683 | Shekalim | Nov 2003 | A1 |
20030226539 | Kim et al. | Dec 2003 | A1 |
20040011740 | Bernard et al. | Jan 2004 | A1 |
20040025452 | McLean | Feb 2004 | A1 |
20040044302 | Bernard et al. | Mar 2004 | A1 |
20040064041 | Lazzaro et al. | Apr 2004 | A1 |
20040092905 | Azzolini | May 2004 | A1 |
20040097806 | Hunter et al. | May 2004 | A1 |
20040154788 | Symonds | Aug 2004 | A1 |
20040162484 | Nemoto | Aug 2004 | A1 |
20040163655 | Gelfand et al. | Aug 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040215144 | Duchon et al. | Oct 2004 | A1 |
20050107697 | Berke et al. | May 2005 | A1 |
20050113754 | Cowan et al. | May 2005 | A1 |
20050171487 | Haury et al. | Aug 2005 | A1 |
20050234428 | Spohn et al. | Oct 2005 | A1 |
20060052794 | Mcgill et al. | Mar 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060079843 | Brooks et al. | Apr 2006 | A1 |
20070068964 | Tanaami et al. | Mar 2007 | A1 |
20070129705 | Trombley, III et al. | Jun 2007 | A1 |
20070161970 | Spohn et al. | Jul 2007 | A1 |
20070219496 | Kamen et al. | Sep 2007 | A1 |
20070276327 | Kalafut et al. | Nov 2007 | A1 |
20080045925 | Stepovich | Feb 2008 | A1 |
20080086087 | Spohn et al. | Apr 2008 | A1 |
20080167621 | Wagner et al. | Jul 2008 | A1 |
20080183131 | Duchon et al. | Jul 2008 | A1 |
20090216192 | Schriver et al. | Aug 2009 | A1 |
20090247961 | Carlyon | Oct 2009 | A1 |
20090312744 | Keeley et al. | Dec 2009 | A1 |
20100222768 | Spohn et al. | Sep 2010 | A1 |
20100262078 | Blomquist | Oct 2010 | A1 |
20100331779 | Nystrom et al. | Dec 2010 | A1 |
20110275988 | Davis et al. | Nov 2011 | A1 |
20120089114 | Hemond et al. | Apr 2012 | A1 |
20120101472 | Schroeder et al. | Apr 2012 | A1 |
20120123257 | Stokes, Jr. et al. | May 2012 | A1 |
20120178629 | Hudson et al. | Jul 2012 | A1 |
20120203177 | Lanier, Jr. et al. | Aug 2012 | A1 |
20120204997 | Winn et al. | Aug 2012 | A1 |
20120217231 | Moore | Aug 2012 | A1 |
20120245560 | Hochman | Sep 2012 | A1 |
20130245439 | Small et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2045070 | Feb 1992 | CA |
2077712 | Dec 1993 | CA |
2234050 | Apr 1997 | CA |
103347552 | Oct 2013 | CN |
3203594 | Aug 1983 | DE |
3726452 | Feb 1989 | DE |
4426387 | Aug 1995 | DE |
19702896 | Jul 1997 | DE |
19647701 | May 1998 | DE |
19919572 | Nov 2000 | DE |
0121216 | Oct 1984 | EP |
0129910 | Jan 1985 | EP |
0189491 | Aug 1986 | EP |
0192786 | Sep 1986 | EP |
0245160 | Nov 1987 | EP |
0319275 | Jun 1989 | EP |
0337924 | Oct 1989 | EP |
0343501 | Nov 1989 | EP |
0364966 | Apr 1990 | EP |
0365301 | Apr 1990 | EP |
0372152 | Jun 1990 | EP |
0378896 | Jul 1990 | EP |
0429191 | May 1991 | EP |
0471455 | Feb 1992 | EP |
0475563 | Mar 1992 | EP |
0595474 | May 1994 | EP |
0600448 | Jun 1994 | EP |
0619122 | Oct 1994 | EP |
0439711 | May 1995 | EP |
0869738 | Oct 1998 | EP |
2493708 | May 1982 | FR |
2561949 | Oct 1985 | FR |
201800 | Aug 1923 | GB |
2252656 | Aug 1992 | GB |
2328745 | Mar 1999 | GB |
S60253197 | Dec 1985 | JP |
S62216199 | Sep 1987 | JP |
S63290547 | Nov 1988 | JP |
H01207038 | Aug 1989 | JP |
H02224647 | Sep 1990 | JP |
H02234747 | Sep 1990 | JP |
H0355040 | Mar 1991 | JP |
H04115677 | Apr 1992 | JP |
H0584296 | Apr 1993 | JP |
H07178169 | Jul 1995 | JP |
H0849598 | Feb 1996 | JP |
H0999034 | Apr 1997 | JP |
H10211198 | Aug 1998 | JP |
2000175900 | Jun 2000 | JP |
2003102724 | Apr 2003 | JP |
2003116843 | Apr 2003 | JP |
2003210456 | Jul 2003 | JP |
2003225234 | Aug 2003 | JP |
2004174008 | Jun 2004 | JP |
2004236849 | Aug 2004 | JP |
2004298550 | Oct 2004 | JP |
8001754 | Sep 1980 | WO |
8500292 | Jan 1985 | WO |
8803815 | Jun 1988 | WO |
9114232 | Sep 1991 | WO |
9114233 | Sep 1991 | WO |
9315658 | Aug 1993 | WO |
9325141 | Dec 1993 | WO |
9415664 | Jul 1994 | WO |
9632975 | Oct 1996 | WO |
9712550 | Apr 1997 | WO |
9820919 | May 1998 | WO |
9924095 | May 1999 | WO |
0061216 | Oct 2000 | WO |
03015633 | Feb 2003 | WO |
2004012787 | Feb 2004 | WO |
2004035116 | Apr 2004 | WO |
2005016165 | Feb 2005 | WO |
2005035995 | Apr 2005 | WO |
2006042093 | Apr 2006 | WO |
2007092618 | Aug 2007 | WO |
2007133942 | Nov 2007 | WO |
2009051995 | Apr 2009 | WO |
2010117841 | Oct 2010 | WO |
2011011346 | Jan 2011 | WO |
2011125303 | Oct 2011 | WO |
2012155035 | Nov 2012 | WO |
Entry |
---|
The International Preliminary Report on Patentability and Written Opinion dated Sep. 24, 2015 from corresponding PCT Application No. PCT/US2014/026324. |
The International Search Report and Written Opinion dated Jul. 18, 2014 from corresponding PCT Application No. PCT/US2014/026324, which was filed on Mar. 13, 2014. |
Parker, K.J., et al., “A Particulate Contrast Agent With Potential For Ultrasound Imaging of Liver,” Ultrasound in Medicine & Biology, vol. 13, Issue 9, pp. 555-566 (Sep. 1987). |
Rosen, B.R. et al., “Perfusion Imaging with NMR Contrast Agents,” Magentic Resonance in Medicine, vol. 14, No. 2, pp. 249-265, May 1, 1990. |
Sablayrolles, J-L, “Cardiac CT: Experience from Daily Practice”, Advance CT, A GE Healthcare Publication. Aug. 2004. |
Stevens, M.A., et al. “A Prospective Randomized Trial of Prevention Measures in Patients at High Risk for Contrast Nephropathy,” J. of the ACC, vol. 33, Issue 2, pp. 403-411, Feb. 1999. |
Swiss; Medical Care., “CT Expres Contrast Media Delivery System Operation Manual Rev 1”, 2004. |
“The Solution for Your IV Formulas”, Valley Lab. Inc., E-39-15, 3399, 3400, 2646. |
Wada D.R. and Ward; D.S., “The hybrid model: a new pharmacokinetic model for computer-controlled infusion pumps”, IEEE Transactions on Biomedical Engineering, 1994, vol. 41, Issue 2, pp. 134-142. |
Wada, D.R. and Ward, D.S., “Open loop control of multiple drug effects in anesthesia”, IEEE Transactions on Biomedical Engineering, vol. 42, Issue 7, pp. 666-677, 1995. |
Yamashita, Y. et al., “Abdominal Helical CT: Evaluation of Optimal Doses of Intravenous Contrast Material—A Prospective Randomized Study,” Radiology, vol. 216, Issue 3, pp. 718-723, Sep. 1, 2000. |
Angelini, P., “Use of mechanical injectors during percutaneous transluminal coronary angioplasty (PTCA),” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 193-194, Mar. 1989. |
Awai, K., et al., “Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight,” Radiology, vol. 230, Issue 1, pp. 142-150, 2004. |
Bae, et al.“Aortic and Hepatic Contrast Medium Enhancement at CT—Part I, Prediction with a Computer Model”, Radiology 1998;207:647-655. |
Bae, K.T., et al., “Multiphasic Injection Method for Uniform Prolonged Vascular Enhancement at CT Angiography: Pharmacokinetic Analysis and Experimental Porcine Model,” Radiology, vol. 216, Issue 3, pp. 872-880 (Sep. 2000). |
Bae, K.T. et al, “Peak Contrast Enhancement in CT and MR Angiography: When Does it Occur and Why? Pharmacokinetic Study in a Porcine Model”, Radiology, vol. 227, Jun. 2003, pp. 809-816. |
Bae, K.T., et al., “Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method,” Radiology, vol. 231, Issue 3, pp. 732-736, 2004. |
Baker, Aaron; et al. “Fluid Mechanics Analysis of a Spring-Loaded Jet Injector.” IEEE Transactions on Biomedical Engineering, vol. 46, No. 2, Feb. 1999. |
Becker, C.R., et al., “Optimal contrast application for cardiac 4-detector-row computed tomography,” Investigative Radiology, vol. 38, Issue 11, pp. 690-694 (Nov. 2003). |
Blomley, M.J.K. and Dawson, P., “Bolus Dynamics: Theoretical and Experimental Aspects,” The Brit. J. ofRadiology, vol. 70, No. 832, pp. 351-359 (Apr. 1997). |
Brunette J.; et al, “Comparative rheology of low- and iso-osmolarity contrast agents at different temperature”, Catheterization and Cardiovascular Interventions, 2008, vol. 71 Issue No. 1, 78-83. |
Cademartiri, F. and Luccichenti, G., et al. “Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications,” Seminars in Ultrasound, CT and MRI, vol. 25, Issue 1, pp. 2-16, 2004. |
Dardik, H. et al., “Remote Hydraulic Syringe Actuator,” Arch. Surg., vol. 115, Issue 1, Jan. 1980. |
Dawson, P. and Blomley, M., “The value of mathematical modelling in understanding contrast enhancement in CT with particular reference to the detection of hypovascular liver metastases,” European Journal of Radiology, vol. 41, Issue 3, pp. 222-236 (Mar. 2002). |
“Digital Injector for Angiography”, Sias. (Sep. 7, 1993). |
Disposable Low-Cost Catheter Tip Sensor Measures Blood Pressure during Surgery, Sensor (Jul. 1989). |
EZ CHEM Brochure, E-Z-EM, Inc. (Jul. 2007). |
Fisher, M.E. and Teo, K.L., “Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics”, IEEE Transactions on Biomedical Engineering, vol. 36, Issue 4, pp. 479-486, 1989. |
Flegal, K.M., et al., “Prevalence and trends in obesity among US adults,” JAMA, 2002, vol. 288, Issue 14, pp. 1-4, (1999-2000). |
Fleischmann, D. and Hittmair, K., “Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform,” Journal of Computer Assisted Tomography, vol. 23, Issue 3, pp. 474-484 (May/Jun. 1999). |
Fleischmann, D., “Contrast Medium Injection Technique,” In: U. Joseph Schoepf: “Multidetector—Row CT of The Thorax,” pp. 47-59 (Jan. 22, 2004). |
Fleischmann, D., “Present and Future Trends in Multiple Detector—Row CT Applications; CT Angiography”, European Radiology, vol. 12, Issue 2, Supplement 2, Jul. 2002, pp. s11-s15. |
Gardiner, G. A., et al., “Selective Coronary Angiography Using a Power Injector,” AJR Am J Roentgenol., vol. 146, Issue 4, pp. 831-833 (Apr. 1986). |
Garrett, J. S., et al., “Measurement of cardiac output by cine computed tomography,” The American Journal of Cardiology, vol. 56, Issue 10, pp. 657-661, 1985. |
Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter Sensitivity Indices,” PhD Thesis Case Western Reserve University, 1974. |
Gentilini A., et al., “A new paradigm for the closed-loop intraoperative administration of analgesics in humans,” IEEE Transactions on Biomedical Engineering, vol. 49, Issue 4, pp. 289-299 (Apr. 2002). |
Gerlowski L.E. and Jain R.K., “Physiologically Based Pharmacokinetic Modeling: Principles and Applications,” Journal of Pharmaceutical Sciences, vol. 72, pp. 1104-1125, Oct. 1983. |
Goss, J. E., et al., “Power injection of contrast media during percutaneous transluminal coronary artery angioplasty,” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 195-198 (Mar. 1989). |
Grant, S.C.D. et al., “Reduction of Radiation Exposure to the Cardiologist during Coronary Angiography by the Use of A Remotely Controlled Mechanical Pump for Injection of Contrast Medium,” Catheterization and Cardiovascular Diagnosis, vol. 25, Issue 2, pp. 107-109 (Feb. 1992). |
Hackstein, N. et al., “Glomerular Filtration Rate Measured by Using Triphasic Helical CT with a Two-Point Patlak Plot Technique,” Radiology, vol. 230, Issue 1, pp. 221-226, Jan. 2004. |
Hansen, P.C, Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, vol. 6, Issue 1, pp. 35, 1994. |
Hansen, P.C., “The truncated SVD as a method for regularization,” BIT Numerical Mathematics, vol. 27, Issue 4, pp. 534-555, 1987. |
Harris P., H. D. “The Human Pulmonary Circulation,” Edinburgh, Churchill Livingstone, (Appendix I), 1986. |
Hayes, M., “Statistical Digital Signal Processing and Modeling”, New York, New York, Wiley and Sons, 1996, pp. 154-177, (Prony's method). |
Heiken; J.P. et al, “Dynamic Contrast-Enhanced CT of the Liver: Comparison of Contrast Medium Injection Rates and Uniphasic and Biphasic Injection Protocols”, Radiology, May 1993, vol. 187, No. 2, pp. 327-331. |
Ireland, M.A., et al., “Safety and Convenience of a Mechanical Injector Pump for Coronary Angiography,”Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 199-201 (1989). |
Jacobs, J.R., “Algorithm for optimal linear model-based control with application to pharmacokinetic model-driven drug delivery,” IEEE Transactions on Biomedical Engineering, vol. 37, Issue 1, pp. 107-109 (Jan. 1990). |
Korosec, F.R., “Physical Principles of Phase-Contrast, Time-of-Flight, and Contrast-Enhanced MR Angiography,” 41st Annual Meeting of American Association of Physicists in Medicine, Jul. 25-29, 1999. |
Korosec, Frank, “Basic Principles of Phase-contrast, Time-of-flight, and Contrast-enhanced MR Angiography”, 1999. |
Krause, W, “Application of pharmacokinetics to computed tomography: injection rates and schemes: mono-, bi-, or multiphasic?,” Investigative Radiology, vol. 31, Issue 2, pp. 91-100, Feb. 1996. |
Krieger, R. A., “CO2-Power-Assisted Hand-Held Syringe: Better Visualization during Diagnostic and InterventionalAngiography,” Cathet Cardiovasc Diagn., vol. 19, Issue 2, pp. 123-128 (Feb. 1990). |
Liebel-Flarsheim Company, “Angiomat 6000 Digital Injection System—Operator's Manual”, Document No. 600950, Rev. 1, Jan. 1990. |
Mahnken, A. H., et al., “Determination of cardiac output with multislice spiral computed tomography: a validation study,” Investigative Radiology, vol. 39, Issue 8, pp. 451-454, Aug. 2004. |
Mahnken, A. H., et al., “Measurement of cardiac output from a test-bolus injection in multislice computed tomography,” European Radiology, vol. 13, Issue 11, pp. 2498-2504, 2003. |
Mark V/Mark V Plus Injector Operation Manual KMP 805P Rev. B. MEDRAD, Inc, 1990. |
Mcclellan, J.H., “Parametric Signal Modeling,” Chapter 1 in Advanced Topics in Signal Processing, Pentice-Hall, Englewood Cliffs, NJ (1988). |
MCT and MCT Plus Injection Systems Operation Manual KMP 810P, MEDRAD, Inc, 1991. |
Morden Peter.; et al, “The Role of Saline Flush Injection Rate in Displacement of CT Injectable Peripherally Inserted Central Catheter Tip During Power Injection of Contrast Material”, AJR, Jan. 2014, 202, W13-W18. |
Neatpisarnvanit, C. and Boston, J.R., “Estimation of plasma insulin from plasma glucose”, IEEE Transactions on Biomedical Engineering, vol. 49, Issue 11, pp. 1253-1259, 2002. |
Ostergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer boluspassages. Part 1: Mathematical approach and statistical analysis,” Magnetic Resonance in Medicine, vol. 36, Issue 5,pp. 715-725 (Nov. 1996). |
Ostergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer boluspassages. Part II: Experimental comparison and preliminary results,” Magn Reson Med, vol. 36, Issue 5, pp. 726-736(Nov. 1996). |
Number | Date | Country | |
---|---|---|---|
20180296993 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13799426 | Mar 2013 | US |
Child | 15417945 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15417945 | Jan 2017 | US |
Child | 16013050 | US |