The present invention relates to methods for debugging programs on reconfigurable architectures.
Reconfigurable architecture refers to modules (VPUs) having a configurable function and/or interconnection, in particular integrated modules having a plurality of one-dimensionally or multidimensionally arranged arithmetic and/or logic and/or analog and/or memory and/or interconnecting modules (hereinafter referred to as PAEs) and/or communicative/peripheral, modules (IOs) that are interconnected directly or via one or more bus systems. PAEs are arranged in any configuration, combination, and hierarchy. This system is referred to below as a PAE array or PA.
The generic class of such modules includes in particular systolic arrays, neural networks, multiprocessor systems, processors having a plurality of arithmetic units and/or logic cells, interconnection and network modules such as crossbar switches, as well as conventional modules of the generic types FPGA, DPGA, XPUTER, etc. In this connection, reference is made in particular to the following applications of the same applicant: P 44 16 881.0-53, DE 197 81 412.3, DE 197 81 483.2, DE 196 54 846.2-53, DE 196 54 593.5-53, DE 197 04 044.6-53, DE 198 80 129.7, DE 198 61 088.2-53, DE 199 80 312.9, PCT/DE 00/01869, DE 100 36 627.9-33, DE 100 28 397.7, DE 101 10 530.4, DE 101 11 014.6, PCT/EP 00/10516, EP 01 102 674.7, DE 102 06 856.9, 60/317,876, DE 102 02 044.2, DE 101 29 237.6-53, DE 101 39 170.6. These are herewith incorporated to the full extent for disclosure purposes.
In addition, it should be pointed out that the methods to be described here may be used for groups of multiple modules. Nevertheless, reference is made below to a VPU and/or to “modules.” These modules and their operations are to be further improved.
An object of the present invention is to provide something novel for commercial use.
A plurality of variants and hardware implementations (which make efficient debugging of VPU systems possible) are presented in the following.
In a preferred variant, debugging is performed either by using a microcontroller appropriately connected to a VPU or the module or by the load logic according to the patents P 44 16 881.0-53, DE 196 51 075.9, DE 196 54 846.2-53, DE 196 54 593.5-53, DE 197 57 200.6-33, DE 198 07 872.2, DE 101 39 170.6, DE 199 26 538.0, DE 100 28 397.7, the full content of which is herewith incorporated by this reference. As will be seen, however, other hardware variants may also be used.
The following basic methods may be used alternatively and/or jointly here:
1.1 Detecting a Debug Condition
1.1.1 Condition
The programmer defines, e.g., within the debugging tool, one or more conditions which start debugging (cf. breakpoint according to the related art). The occurrence of the conditions is detected at run time in the VPU and/or in any device exchanging data with the VPU. This preferably takes place due to the occurrence of certain data values with certain variables and/or certain trigger values with certain PAEs.
1.1.2 Precondition
In the optimum case, a certain condition according to the definition given above may already be defined by the programmer several cycles before the occurrence of the debugging condition. This precludes, from the beginning, certain latency problems which are discussed below.
Two fundamental types of debugging for VPUs are discussed below, the method preferred in each case depending on the choice of the compiler. Method A described below may be particularly suitable for compilers which generate code on the basis of instantiated modules of a hardware description language (or a similar language).
For compilers like those described in DE 101 39 170.6 and additional applications which generate complex instructions according to a method like VLIW, method B described below is particularly suitable. Generally, method B is the method preferred for operation of a VPU or a corresponding module as a processor or coprocessor.
It has been recognized that in particular the use of the two methods A and B together yields the best and most transparent debugging results. In particular, depending on the depth of the error to be debugged, it is possible to perform debugging first with the help of fast debugging method B, and then after adequate localization of the error, to analyze the details in depth by method A.
2. Method A
2.1 Basic Principle
After the occurrence of a (pre)condition, the VPU is stopped. The relevant debug information is then transferred from the PAEs to the debug program. The relevant debug information has previously been defined by the programmer within the debug program. After readout of all relevant debug information, the next cycle is executed and the relevant debug information is again read out. This is repeated until the programmer terminates the debugging operation. Instead of stopping the VPU, other methods are optionally also possible. For a given sequence of cycles, for example, data may be made available repeatedly for readout, if this is possible rapidly enough.
2.2 Support by the Hardware
2.2.1 Readout from the Registers
Essential for the functioning of the debugger is the possibility of reading back another externally connected (host) processor or a reserved area of array, the internal data registers, and/or status registers, and/or state registers, and optionally, depending on implementation, other relevant registers and/or signals from the PAEs and/or the network through a higher level unit (referred to below as a debug processor (DB)), i.e., a CT or a load logic, for example, and doing so only for selected registers and/or signals (referred to jointly below as debug information). Such a possibility is implementable, for example, with the connection created in PCT/DE 98/00334 between the load logic and the data bus of a PAE (PCT/DE 98/00334 0403, FIG. 4).
It should be pointed out explicitly that serial methods for readout of the registers may also be used. For example, JTAG may be selected, and the DB may also be connected via this method and optionally also as a separate external device, possibly a device that is commonly available on the market (e.g., from Hitex, Karlsruhe).
Since the debugger may have reading and/or writing access to all registers or at least a considerable number of them, it is optionally and preferably possible to omit a significant portion of the (serial) chaining of the registers for test purposes (scan chain) for the production tests of the chip. The scan chain is normally used to permit preloading of test data into all the registers within a chip during production tests and/or to permit the contents of the registers to be read back for test purposes. Preloading and/or reading back then typically take place through test systems (e.g., SZ Test Systems, Amerang) and/or according to the methods described in DE 197 57 200.6-33. The scan chain requires an additional not insignificant hardware complexity and surface area required for each register. This may now be eliminated at ,least for the registers that are debuggable, if, as proposed according to the present invention, production testing systems have access to the registers via suitable interfaces (e.g., parallel, serial, JTAG, etc.)
2.2.2 Stopping or Slowing Down the Clock Cycle
The clock may either be stopped or slowed down due to the occurrence of the condition and/or precondition to make available enough time for readout. This debug start is triggered in particular either directly by a PAE that has calculated the (pre)condition(s) or by a higher-level unit (e.g., load logic/CT, host processor) on the basis of any actions, e.g., due to the information that a pre(condition) has occurred on a PAE and/or due to an action within the debug processor and/or through any program and/or any external/peripheral source. Trigger mechanisms according to P 44 16 881.0-53, DE 196 51 075.9-53, DE 197 04 728.9, DE 198 07 872.2, DE 198 09 640.2, DE 100 28 397.7 are available for information. Alternatively, the clock pulse may be slowed down in general in debugging. If only array parts are to be debugged, a partial slowing down of the clock pulse may also be provided.
If the clock pulse is slowed down, all the relevant debug information must be read out of the PAEs by the debug processor within the slowed-down cycle of the processing clock pulse. It is therefore appropriate and preferable to slow down the clock pulse only partially, i.e., to reduce or stop the working clock pulse but to continue the clock pulse for the readout mechanism. In addition, it is reasonable and preferable to supply the registers in general with a clock pulse for data preservation.
After stopping the clock pulse, a single-step mode may be implemented, i.e., the debug processor stops the processing clock pulse until it has read out all the debug information. It restarts the processing clock pulse for one cycle and then stops it again until all relevant debug information has been read out.
The readout clock pulse and the clock pulse of the debug processor are preferably independent of the processing clock pulse of the PAEs, so that data processing is separated from debugging and in particular from readout of debug information.
In terms of the hardware, the clock pulse is stopped or slowed down by conventional methods, such as gated clocks and/or PLLs, and/or splitters or other methods. These means are preferably introduced at suitable locations (nodes) within the clock tree so that global clock control of the deeper branches is implementable. Slowing down the clock pulse of only selected array portions is described in the patent applications of the present applicant cited above.
It is particularly preferable for clock control information to be sent from a higher level unit, e.g., a load logic/CT, host processor) to all PAEs or to all PAEs that are to be debugged. This may be accomplished preferably via the configuration bus system. The clock control information here is typically transmitted by being broadcast, i.e., all PAEs receive the same information.
For example, the following clock control information may be implemented:
GO: The working clock pulse continues normally.
The method for stopping and/or slowing down the clock pulse may also be used to reduce power consumption. If no computing power is needed at the moment, a “sleep mode” may be implemented by switching off the working clock pulse (STOP), for example, or through special instructions (SLEEP). If the full computing power is not needed, the clock pulse may be slowed down by using SLOW and/or temporarily suspended by using STEP(n). To this extent, this method may be used optionally and/or in addition to the methods described in German Patent Application No. DE 102 06 653.1 for reducing the power loss in particular.
One problem in broadcasting clock control information is the transmission time of the broadcast through the array of PAEs. At higher clock pulse frequencies, the transmission cannot take place within one working clock cycle. However, it is obligatory for all PAEs to respond to the clock control information at the same time. The clock control information is therefore preferably transmitted over a pipelined bus system similar to the CT bus system described in German Patent Application No. DE 100 28 397.7. In addition, a numerical value (LATVAL) is appended to the clock control information, this numerical value being equal to or greater than the maximum length of the pipeline of the bus system. The numerical value is decremented in cycles in each pipeline step (subtraction of 1). Each PAE receiving clock control information also decrements the numerical value with each clock pulse. This ensures that the numerical value in the pipelined bus system and the PAEs that have already received the clock control information is always exactly the same. If the numerical value reaches a value or 0, this ensures that all the PAEs have received the clock control information. The clock control information then goes into effect and the behavior of the clock pulse is modified accordingly.
Another latency time occurs due to the method described here. This latency may be additionally supported through the register pipeline which is described in greater detail below or, as is particularly preferred, by the definition of the (pre)condition by setting the (pre)condition forward to the extent that the latency time is already taken into account.
The latency time in the single-step mode is negligible because it plays a role only in the shutdown of the clock pulse (STOP). Since the STEP instruction always executes only one step, there is no corruption (delay) of the debug data due to the latency time during single-step operation.
2.2.3 Register Pipeline for Compensating for Latency
At higher operating frequencies, there may be a latency time between detecting the debug start and stopping or slowing down the clock pulse. This latency time is precisely predictable because the position of the delaying registers in the VPU is defined by the hardware and/or by the algorithm to be debugged and is therefore exactly calculable by the debugger.
However, due to the latency time, the information made available to the debug processor is shifted, so it is no longer possible to read out the correct' debug information. This problem is preferably solved by a suitable definition of the (pre)condition by the programmer. By inserting a multistage register pipeline which transmits the debug information further by one register in each clock pulse, the debug processor is optionally able to use as many cycles of debug information as the register pipeline is long. The length of the register pipeline is to be designed to correspond to the maximum expected latency. Because of the precise calculability of the latency time, the debug program is now able to read the timely correct and relevant debug information out of the register pipeline.
One problem which occurs in using register pipelines is that they are relatively long and are thus expensive, based on the silicon surface area required for implementation.
2.3 Visible Debug Information
In this method, debugging is generally performed after occurrence of the (pre)condition because only thereafter is the clock pulse slowed down or stopped and the debug information read out. Debug information prior to occurrence of the (pre)condition is therefore not visible at first.
However, it is also possible, although this also involves a loss of performance, to operate a VPU at a slowed clock pulse or in single-step mode directly from the start of an application. The relevant debug information is then read out by the debug processor from the start.
3. Method B
3.1 Basic Principle
Relevant debug information from the memory units, which includes the application data and states of a certain working step in accordance with P 44 16 881.0-53, DE 196 54 846.2-53, DE 199 26 538.0, DE 101 39 170.6 as well as their additional applications and DE 101 10 530.4, is transmitted to the debug program. These memory units, hereinafter also referred to as working memories, operate more or less as registers for storing data which has been calculated within a configuration cycle in the PA or parts of the PA, in the machine model according to P 44 16 881.0-53, DE 196 54 846.2-53, DE 101 39 170.6 and their additional applications DE 199 26 538.0 and DE 101 10 530.4. Reference is made in particular to German Patent Application No. DE 101 39 170.6 and its additional applications which describe in detail the use of the memory units as registers (REG) for implementation of a processor model. The full content of DE 101 39 170.6 and its additional applications are herewith included for disclosure purposes. A memory unit here includes any arrangement and hierarchy of independent and dependent memories. It is possible to execute simultaneously a plurality of different algorithms on the PA (processing array), which then use different memories.
It is essential for the use of this method that data and/or algorithmically relevant states are stored in the memory units assigned to the PAEs, one memory unit in each case being of such size that all the relevant data and/or states of a cycle may be stored there. The length of a cycle may be determined by the size of the memory unit, which it preferably actually is (see DE 196 54 846.2-53). In other words, the cycle length is adapted to the hardware.
Different data and/or states are stored in the memory units in such a way that the latter may be assigned unambiguously to the algorithm. The debugger is therefore able to unambiguously identify the relevant data and/or states (debug information).
The relevant debug information may be determined by the programmer within the debug program—in particular also in advance. This debug information is read out of the memory units. Different methods are available for this, and a few possibilities are discussed in greater detail below. After readout of all relevant debug information, the next configuration cycle is executed and the relevant debug information is again read out. This is repeated until the programmer/debugger aborts the debugging procedure.
In other words, the relevant data and/or status information is not transmitted to the debugger in cycles but instead according to the configuration. It is read out of the memory units that are comparable to the registers of the CPU.
3.2 Support by the Hardware
For the mode of operation of the debugger, it is essential for the CT or another externally connected processor (referred to below as the debug processor (DB)) to be able to read the internal working memory (memories) of the VPU, for example. Such a possibility is provided, for example, by connecting the CT to the working memory for preloading and reading the data and/or by the method described in DE 199 26 538.0 for writing the internal memory to external memories. In one possible embodiment, the working memory may be accessed by various methods of the related art (e.g., shared memory, bank switching) by the debug processor, so that data exchange with the DB may take place largely independently of any other data processing in the VPU.
In one possible embodiment, the clock pulse of the VPU may optionally be either retarded or stopped for readout of the memory, e.g., according to method A by one or more of the measures described above and/or it may optionally be operated in a single-step mode. Depending on the implementation of the working memory, e.g., in the bank switching method, it is possible to eliminate a separate intervention involving the clock pulse. The clock pulse is typically stopped or slowed down according to method B and the working memories are read out and/or copied and/or switched only when a data processing or configuration cycle is ended.
In other words, an important advantage of method B is that it does not require any particular support by the hardware.
In one possible embodiment, a DB need only have access to the working memory. In an example embodiment which is particularly preferred, the working memory is accessed through a suitable configuration of the VPU, which therefore reads out the working memories automatically and without modification and transmits this information to a DB.
3.3 Access to Debug Information
Patents and patent applications P 44 16 881.0-53, DE 196 54 846.2-53, DE 101 39 170.69, DE 199 26 538.0 describe data processing methods in which a set of operations is mapped cyclically onto a reconfigurable data processing module. In each cycle, a plurality of data originating from a peripheral source and/or an internal/external working memory and written to a peripheral source and/or an internal/external working memory is calculated. Different working memories and/or in particular a plurality of independent working memories may be used at the same time. For example, in this data processing method, the working memories or some of the working memories function as register sets.
According to DE 101 39 170.6 and DE 199 26 538.0, all data and states relevant for further data processing are stored in the working memory and/or read out of same. In a preferred method, states irrelevant for further data processing are not stored.
The differentiation between relevant and irrelevant states is to be illustrated using the following example, although for disclosure purposes, reference is made in particular to the discussion in DE 101 39 170.6.
The state information of a comparison is essential for further processing of data, for example, because it determines the functions to be executed.
A sequential divider is formed, for example, by mapping a division instruction onto hardware that supports only sequential division. This results in a state which characterizes the computation step within division. This state is irrelevant because the algorithm needs only the result (i.e., the division performed). Therefore, in this case, only the results and the time information (i.e., the availability) are needed.
The time information is available from the RDY/ACK handshake in the VPU technology according to P 44 16 881.0-53, DE 196 51 075.9-53 and DE 199 26 538.0, for example. However, it should be pointed out here in particular that the handshake itself likewise does not constitute a relevant state because it merely signals the validity of the data, so that the remaining relevant information is in turn reduced to the existence of valid data.
DE 101 39 170.6 shows a differentiation between locally relevant states and globally relevant states:
Local: The state is relevant only within a single closed configuration. Therefore, this state need not necessarily be stored.
Global: The state information is needed for a plurality of configurations. This state must be stored.
It is possible that the programmer might want to debug a locally relevant state that is not stored in the memories. In this case, the application may be modified to create a debug configuration (equivalent to the debug code of processors), having a modification of the “normal” code of the application so that this state is additionally written into the memory unit and is therefore made available to the debugger. This results in a deviation between the debug code and the actual code which may result in a difference in the performance of the codes.
In a particularly preferred embodiment, no debugging configuration is used. Instead, the configuration to be debugged is terminated so that the data additionally required for debugging purposes outlasts the termination, i.e., it remains valid in the corresponding memory locations (REGs) (e.g., registers, counters, memories).
If the configuration to be debugged is terminated in such a way that the data additionally required for debugging purposes outlasts the termination, it is possible to perform debugging easily by not loading the next configuration required in a normal program sequence, but loading instead a configuration through which the data required for debugging purposes is transmitted to the debugging unit, i.e., the debugging means. It should be pointed out that in such debugging, the data required for debugging purposes may always be stored even later in the program run, thereby ensuring that the program which has been executed later has been subject to a debugging process in exactly the same way as required. Normal program execution may continue after readout of the debug information by a dedicated debugging configuration.
A configuration is loaded which connects the REGs in a suitable manner and in a defined order to one or more global memories to which the DB has access (e.g., working memories).
It is thus proposed that a configuration is loaded which connects the REGs in a suitable manner and in a defined order to one or more global memories to which the DB has access (e.g., working memories).
The configuration may use address generators, for example, to which the global memory (memories) has/have access. The configuration may use address generators, for example, to access REGs designed as memories. According to the configured connection between the REGs, the contents of the REGs are written in a defined order into the global memory, the particular addresses being predetermined by address generators. The address generator generates the addresses for the global memory (memories) in such a way that the described memory areas (DEBUGINFO) may be unambiguously assigned to the remote configuration to be debugged.
This method corresponds to the context switch described in DE 102 06 653.1 and DE 101 39 170.6, the full content of which is incorporated here for disclosure purposes.
The DB may then access data within a memory area (DEBUGINFO) which is accessible to it. If debugging is to be performed by a single-step method, a context switch may be performed after each single step of a configuration to be debugged, so that all data is preserved and the information to be debugged is written out of the REGs and into a working memory. While preserving the data, the configuration to be debugged is then reconfigured again and prepared for another single step. This is done for each single step to be debugged of the configuration to be debugged. Reference is made here to the possibility of debugging using the principles known as “wave reconfiguration.”
3.4 Visible Debug Information
Debugging before the (pre)condition may be performed easily and without any great loss of performance because the required debug information is available in working memories. The debug information may be secured in a simple manner by transferring the working memories to other memory areas to which the DB preferably has direct access. An even faster method is to switch the working memories by a bank switching method (according to the related art) between the individual configurations so that the debug information is always in a new bank. This switching may take place in a very time-optimizing manner, in the optimum case even without any effect on the processing performance.
It has already been disclosed that in a VPU, data may be transferred by blocks into a memory area, which may also be located outside of the actual PA and/or may have a dual-ported RAM or the like, so that it is readily possible to externally access the information thus written.
4. Mode of Operation of the Debugger
The debugger program itself may run on a DB outside of the PA. As an alternative, a VPU itself may form the DB according to the methods used with processors. To do so, a task switch or context switch (SWITCH) may be performed according to the description given in PACT11 (U.S. Published Application No. 2003-0056202). The debug information of the program to be debugged is saved together with the relevant data in a SWITCH and the debugger program, which analyzes the information and/or processes it interactively with the programmer, is loaded. Another SWITCH is then performed (in which the relevant information of the debugger is saved) and the program to be debugged is continued. It should also be mentioned that a partial area of the processor may be provided as a debugger.
The debug information is read by the debugger according to method A and/or B and is saved in a memory and/or memory area that is separate from the data processing and to which the DB preferably has direct access. The breakpoints and (pre) conditions are defined by the debugger program. The debugger program may also assume control of execution of the application, in particular the start of execution and the end of execution.
The debugger makes a suitable working environment available to the programmer, optionally with a graphical interface. In a particularly preferred embodiment, the debugger is integrated into a complex development environment with which it exchanges data and/or control information. In particular, the debugger may save the data read out of the working memories on a data medium (hard drive, CD-ROM) for any further processing and/or may run it within a network (such as Ethernet).
The debugger according to the present invention may also communicate with other tools and in particular other debuggers within a development environment described in DE 101 29 237.6-53. In a preferred embodiment, the control and/or definition of the debug parameters may be taken over from another debugger. Likewise, the debugger may make the debug information generated by it available to another debugger and/or may receive debug information from another debugger.
In particular, the determination of the occurrence of breakpoints and/or a (pre)condition may be implemented by another debugger and/or the units debugged by this other debugger. The debugger according to the present invention and the VPU then respond accordingly.
The other debugger may be in particular the debugger of another processor (CT or ARC in Chameleon, Pentium, AMD, etc.) connected to a VPU.
In particular, the other debugger may run on a processor connected or assigned to the VPU and/or it may be the processor assigned to the DB, e.g., a CT or ARC in Chameleon. In a particularly preferred embodiment, the particular processor may be a host processor such as that described in U.S. Patent Application Ser. No. 60/317,876 and/or DE 102 06 856.9, for example.
5. Evaluation of Methods
Method A is considerably more time- and resource-intensive than method B, which requires hardly any additional hardware, and also omits the time-consuming readout of debug information from the start of the application. Method B is therefore fundamentally preferable. Method B is preferred for compilers described in DE 101 39 170.6 and its related applications.
It has been recognized that in particular using methods A and B together yields the best and most transparent debugging results. In particular, depending on the depth of the error to be debugged, debugging may be performed first with the help of the fast debugging method B and then after adequate localization of the error, debugging may be performed by method A, which analyzes the details in depth.
6. Mixed-Mode Debugger
When using method B, which is particularly preferred, the problem may also occur that the visible information in the memories is insufficient.
Typically, detailed debugging may proceed as follows:
6.1 Advantages of a Mixed-Mode Debugger
The mixed-mode debugger permits a detailed analysis of the sequences within a module. Due to the possibility according to method B of working at full speed up to a set breakpoint and then stopping, if necessary, slowing down and/or switching to a single-step mode, if necessary, the debugging becomes time-efficient, so it becomes possible to test large volumes of data and/or complex algorithms. The preferred use of a simulator after occurrence of the breakpoint on the basis of the current data and states permits detailed insight into the hardware. If the time required for the simulation is too long and/or a 100% correspondence of the simulator to the hardware is questionable, then reading back the data in the single-step mode after occurrence of a breakpoint according to method A or according to the context switching method according to DE 102 06 653.1 and DE 101 39 170.6 permits 100% correct debugging of the algorithm and/or the hardware itself.
a shows the structure of a particularly preferred VPU.
b shows the detail of an exemplary CPU system.
a shows an exemplary hardware design that may be used for debugging reconfigurable processors.
b shows as an example the expansion according to the present invention.
Operand and result memories (0202, 0203) are linked together physically or virtually so that the results of a function may be used as the operands of another memory and/or results and operands of a function may also be used as the operands of another memory. Such a linkage may be established through bus systems, for example, or via (re)configuration whereby the function and interconnection of the memories with 0201 are reconfigured.
0101
b and 0102b are shown as already described. In addition, an external memory unit (0302) is also shown which may be connected (0307) to 0102b, as in DE 199 26 538.0. Both 0102b and 0302 may be external or internal memory units. Likewise, one memory unit should be defined as at least one register, a set of registers or a memory (RAM, flash, etc.) or a bulk memory (hard drive, tape, etc.).
Debugging unit 0301 may set breakpoints within 0101b (0303) on the basis of which the actual debugging operation is triggered. On reaching a breakpoint, information (0304) is sent to 0301, starting the debugging operation. At the same time, all procedures for debugging (e.g., stopping and/or slowing down the cycle) within 0101b are triggered. As an alternative, information may also be generated through 0301 and sent to 0101b. Via 0305 and/or 0306, it is possible for 0301 to access the data or states from memory 0102b and/or memory 0302. The access may take place, for example,
A figure from DE 199 26 538.0 has been selected as an example. It should be pointed out explicitly that generally any memory and any memory linkage (stack, random access, FIFO, etc.) may be processed accordingly.
a and 4b show other possible embodiments; these have been described in German Patent Application No. DE 102 06 856.9, the full content of which is herewith included for disclosure purposes.
a shows the structure of a particularly preferred VPU. Preferably hierarchical configuration managers (CTs) (0401) control and manage a system of reconfigurable elements (PACs) (0402). The CTs are assigned a local memory for configurations (0403). The memory also has an interface (0404) to a global memory which provides the configuration data. The configuration sequences are controllable via an interface (0405). An interface of reconfigurable elements (0402) for sequence control and event management (0406) is provided; likewise there is an interface for data exchange (0407). For example, one CT may function as a DB.
b shows a detail of an exemplary CPU system, e.g., a DSP of the C6000 type from Texas Instruments (0451). This shows program memory (0452), data memory (0453), any peripheral (0454) and EMIF (0455). A VPU is integrated as coprocessor (0458) via a memory bus (0456) and a peripheral bus (0457). A DMA controller (EDMA) (0459) may perform any DMA transfers, e.g., between memory (0453) and VPU (0458) or memory (0453) and periphery (0454). In this example, 0451 may function as a DB and in particular the debugger according to the present invention may also be connected to and/or integrated into its debugger.
a shows an exemplary hardware design that may be used for debugging reconfigurable processors. A pipelined configuration bus 0501 like that described in DE 100 28 397.7 is used for this purpose. The pipeline is composed of a plurality of register stages (0502) in the horizontal and/or vertical direction to achieve higher clock pulse frequencies. The pipelined configuration bus is connected to configuring elements (PAEs) (0503) to supply them with configuration data.
b shows as an example the expansion according to the present invention. Each register stage (0502) decrements the numerical value (LATVAL) by one (indicated by −1) to compensate for the latency time. Likewise, each PAE (0503), which has already received clock control information, decrements it by one per cycle (indicated by −1/T). It is then possible to have not only write access but also read access to the PAEs and in particular to their internal registers, e.g., via a special control line (RD) to read out debug data. In this example, data to be read and written passes through the bus system through the arrays of PAEs from left to right and in the reverse direction in the bottom row. The configuration bus is also connected back (0504) like a pipeline via register stages (0505). In this example, a higher-level unit (CR/load logic, host processor) (0506) may also have read and write access to the bus like a dedicated test interface (0507). The test interface may have its own test controller and in particular may be compatible with one or more test interfaces available on the market (e.g., JTAG, Tektronix, Rhode & Schwarz, etc.). The choice of the bus controlling unit is made via a multiplexer/demultiplexer unit (0508). A circuit for back-calculating the source address (0509) of debug data arriving via 0504 may be provided in 0509 (shown in parentheses and in italics) or upstream from units 0506 and 0507. The address calculations within the system shown here are performed as follows: first, the address is applied to bus 0501 through 0506 or 0507. Like the processing of numerical values (LATVAL) for the latency computation, the address is decremented in each register stage (0502 and 0505). As soon as the address is equal to 0, the PAE after the register stage is selected. In the following register stage the address becomes negative so that no other PAEs are activated. If data is read out of a PAE, it is transmitted again together with the address. The address is decremented further in each register stage. A reverse calculation in 0509 of the addresses arriving at 0506 and/or 0507 together with the debugging data is now possible via a simple addition, by adding the number of decrementing register stages to the incoming address value. It should be pointed out that register stages 0502 in
It is pointed out here again that dedicated test interface (0507) conforms to industry standards. It may be used for tests during the software debugging procedure and/or for testing during the assembly of hardware components and systems (e.g., assembling circuits on a circuit board) and/or for function tests of the semiconductor module (chip) as part of semiconductor fabrication. In particular, the usual scan chain may be omitted here for testing the register during the function test of the semiconductor or it may at least be minimized because then only the registers that are not triggerable by the bus system (0501) need pass through the scan chain.
Likewise, it is pointed out in particular that the method explained in conjunction with
Mixed operation of different bus systems such as configuration bus systems, data bus systems according to DE 197 04 742.4 and ordinary data bus systems is also fundamentally possible.
Therefore a plurality of test interfaces may be provided or (and this option is technically preferable) multiplexer/demultiplexer stage (0508) may be designed for a plurality of bus systems (n 0501, n 0504).
In conclusion, it should also be mentioned in particular that by connecting back the bus system according to
8. Definition of Terms
Number | Date | Country | Kind |
---|---|---|---|
101 42 894 | Sep 2001 | DE | national |
101 42 904 | Sep 2001 | DE | national |
101 44 733 | Sep 2001 | DE | national |
101 45 795 | Sep 2001 | DE | national |
101 54 259 | Nov 2001 | DE | national |
102 02 044 | Jan 2002 | DE | national |
102 02 175 | Jan 2002 | DE | national |
102 06 856 | Feb 2002 | DE | national |
102 07 226 | Feb 2002 | DE | national |
102 40 022 | Aug 2002 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 12/354,590, filed on Jan. 15, 2009 now U.S. Pat. No. 8,069,373, which is a continuation of and claims priority to U.S. patent application Ser. No. 10/487,687, filed on Aug. 25, 2004, which issued as U.S. Pat. No. 7,480,825 and which was the National Stage of International Application Serial No. PCT/DE02/03278, filed on Sep. 3, 2002, the entire contents of each of which are expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3564506 | Bee et al. | Feb 1971 | A |
3681578 | Stevens | Aug 1972 | A |
3753008 | Guarnaschelli | Aug 1973 | A |
3754211 | Rocher et al. | Aug 1973 | A |
3855577 | Vandierendonck | Dec 1974 | A |
4151611 | Sugawara et al. | Apr 1979 | A |
4233667 | Devine et al. | Nov 1980 | A |
4414547 | Knapp et al. | Nov 1983 | A |
4498134 | Hansen et al. | Feb 1985 | A |
4498172 | Bhavsar | Feb 1985 | A |
4566102 | Hefner | Jan 1986 | A |
4571736 | Agrawal et al. | Feb 1986 | A |
4590583 | Miller | May 1986 | A |
4591979 | Iwashita | May 1986 | A |
4594682 | Drimak | Jun 1986 | A |
4623997 | Tulpule | Nov 1986 | A |
4646300 | Goodman et al. | Feb 1987 | A |
4663706 | Allen et al. | May 1987 | A |
4667190 | Fant et al. | May 1987 | A |
4682284 | Schrofer | Jul 1987 | A |
4686386 | Tadao | Aug 1987 | A |
4706216 | Carter | Nov 1987 | A |
4720778 | Hall et al. | Jan 1988 | A |
4720780 | Dolecek | Jan 1988 | A |
4739474 | Holsztynski | Apr 1988 | A |
4748580 | Ashton et al. | May 1988 | A |
4760525 | Webb | Jul 1988 | A |
4761755 | Ardini et al. | Aug 1988 | A |
4791603 | Henry | Dec 1988 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4852043 | Guest | Jul 1989 | A |
4852048 | Morton | Jul 1989 | A |
4860201 | Stolfo et al. | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4873666 | Lefebvre et al. | Oct 1989 | A |
4882687 | Gordon | Nov 1989 | A |
4884231 | Mor et al. | Nov 1989 | A |
4891810 | de Corlieu et al. | Jan 1990 | A |
4901268 | Judd | Feb 1990 | A |
4910665 | Mattheyses et al. | Mar 1990 | A |
4918440 | Furtek et al. | Apr 1990 | A |
4939641 | Schwartz et al. | Jul 1990 | A |
4959781 | Rubinstein et al. | Sep 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4972314 | Getzinger et al. | Nov 1990 | A |
4992933 | Taylor | Feb 1991 | A |
5010401 | Murakami et al. | Apr 1991 | A |
5014193 | Garner et al. | May 1991 | A |
5015884 | Agrawal et al. | May 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5023775 | Poret | Jun 1991 | A |
5031179 | Yoshida et al. | Jul 1991 | A |
5034914 | Osterlund | Jul 1991 | A |
5036473 | Butts et al. | Jul 1991 | A |
5036493 | Nielsen | Jul 1991 | A |
5041924 | Blackborow et al. | Aug 1991 | A |
5043978 | Nagler et al. | Aug 1991 | A |
5047924 | Fujioka et al. | Sep 1991 | A |
5055997 | Sluijter et al. | Oct 1991 | A |
5065308 | Evans | Nov 1991 | A |
5070475 | Normoyle et al. | Dec 1991 | A |
5072178 | Matsumoto | Dec 1991 | A |
5076482 | Kozyrski et al. | Dec 1991 | A |
5081375 | Pickett et al. | Jan 1992 | A |
5081575 | Hiller et al. | Jan 1992 | A |
5099447 | Myszewski | Mar 1992 | A |
5103311 | Sluijter et al. | Apr 1992 | A |
5109503 | Cruickshank et al. | Apr 1992 | A |
5113498 | Evan et al. | May 1992 | A |
5115510 | Okamoto et al. | May 1992 | A |
5119290 | Loo et al. | Jun 1992 | A |
5123109 | Hillis | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5142469 | Weisenborn | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5193202 | Jackson et al. | Mar 1993 | A |
5203005 | Horst | Apr 1993 | A |
5204935 | Mihara et al. | Apr 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5212716 | Ferraiolo et al. | May 1993 | A |
5212777 | Gove et al. | May 1993 | A |
5218302 | Loewe et al. | Jun 1993 | A |
5226122 | Thayer et al. | Jul 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5233539 | Agrawal et al. | Aug 1993 | A |
5237686 | Asano et al. | Aug 1993 | A |
5243238 | Kean | Sep 1993 | A |
5245616 | Olson | Sep 1993 | A |
5247689 | Ewert | Sep 1993 | A |
RE34444 | Kaplinsky | Nov 1993 | E |
5274593 | Proebsting | Dec 1993 | A |
5276836 | Fukumaru et al. | Jan 1994 | A |
5287472 | Horst | Feb 1994 | A |
5287511 | Robinson et al. | Feb 1994 | A |
5287532 | Hunt | Feb 1994 | A |
5301284 | Estes et al. | Apr 1994 | A |
5301344 | Kolchinsky | Apr 1994 | A |
5303172 | Magar et al. | Apr 1994 | A |
5311079 | Ditlow et al. | May 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5343406 | Freeman et al. | Aug 1994 | A |
5347639 | Rechtschaffen et al. | Sep 1994 | A |
5349193 | Mott et al. | Sep 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5355508 | Kan | Oct 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5365125 | Goetting et al. | Nov 1994 | A |
5379444 | Mumme | Jan 1995 | A |
5386154 | Goetting et al. | Jan 1995 | A |
5386518 | Reagle et al. | Jan 1995 | A |
5392437 | Matter et al. | Feb 1995 | A |
5408643 | Katayose | Apr 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5412795 | Larson | May 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5418953 | Hunt et al. | May 1995 | A |
5421019 | Holsztynski et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5425036 | Liu et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5428526 | Flood et al. | Jun 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5435000 | Boothroyd et al. | Jul 1995 | A |
5440245 | Galbraith et al. | Aug 1995 | A |
5440538 | Olsen et al. | Aug 1995 | A |
5442790 | Nosenchuck | Aug 1995 | A |
5444394 | Watson et al. | Aug 1995 | A |
5448186 | Kawata | Sep 1995 | A |
5450022 | New | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5469003 | Kean | Nov 1995 | A |
5473266 | Ahanin et al. | Dec 1995 | A |
5473267 | Stansfield | Dec 1995 | A |
5475583 | Bock et al. | Dec 1995 | A |
5475803 | Stearns et al. | Dec 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5477525 | Okabe | Dec 1995 | A |
5483620 | Pechanek et al. | Jan 1996 | A |
5485103 | Pedersen et al. | Jan 1996 | A |
5485104 | Agrawal et al. | Jan 1996 | A |
5489857 | Agrawal et al. | Feb 1996 | A |
5491353 | Kean | Feb 1996 | A |
5493239 | Zlotnick | Feb 1996 | A |
5493663 | Parikh | Feb 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5502838 | Kikinis | Mar 1996 | A |
5504439 | Tavana | Apr 1996 | A |
5506998 | Kato et al. | Apr 1996 | A |
5510730 | El Gamal et al. | Apr 1996 | A |
5511173 | Yamaura et al. | Apr 1996 | A |
5513366 | Agarwal et al. | Apr 1996 | A |
5521837 | Frankle et al. | May 1996 | A |
5522083 | Gove et al. | May 1996 | A |
5525971 | Flynn | Jun 1996 | A |
5530873 | Takano | Jun 1996 | A |
5530946 | Bouvier et al. | Jun 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5532957 | Malhi | Jul 1996 | A |
5535406 | Kolchinsky | Jul 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5537580 | Giomi et al. | Jul 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541530 | Cliff et al. | Jul 1996 | A |
5544336 | Kato et al. | Aug 1996 | A |
5548773 | Kemeny et al. | Aug 1996 | A |
5550782 | Cliff et al. | Aug 1996 | A |
5555434 | Carlstedt | Sep 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5561738 | Kinerk et al. | Oct 1996 | A |
5568624 | Sites et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572710 | Asano et al. | Nov 1996 | A |
5574927 | Scantlin | Nov 1996 | A |
5574930 | Halverson, Jr. et al. | Nov 1996 | A |
5581731 | King et al. | Dec 1996 | A |
5581734 | DiBrino et al. | Dec 1996 | A |
5583450 | Trimberger et al. | Dec 1996 | A |
5584013 | Cheong et al. | Dec 1996 | A |
5586044 | Agrawal et al. | Dec 1996 | A |
5587921 | Agrawal et al. | Dec 1996 | A |
5588152 | Dapp et al. | Dec 1996 | A |
5590345 | Barker et al. | Dec 1996 | A |
5590348 | Phillips et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5600597 | Kean et al. | Feb 1997 | A |
5600845 | Gilson | Feb 1997 | A |
5602999 | Hyatt | Feb 1997 | A |
5603005 | Bauman et al. | Feb 1997 | A |
5606698 | Powell | Feb 1997 | A |
5608342 | Trimberger | Mar 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5617577 | Barker et al. | Apr 1997 | A |
5619720 | Garde et al. | Apr 1997 | A |
5625806 | Kromer | Apr 1997 | A |
5625836 | Barker et al. | Apr 1997 | A |
5627992 | Baror | May 1997 | A |
5634131 | Matter et al. | May 1997 | A |
5635851 | Tavana | Jun 1997 | A |
5642058 | Trimberger et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5649176 | Selvidge et al. | Jul 1997 | A |
5649179 | Steenstra et al. | Jul 1997 | A |
5652529 | Gould et al. | Jul 1997 | A |
5652894 | Hu et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5655124 | Lin | Aug 1997 | A |
5656950 | Duong et al. | Aug 1997 | A |
5657330 | Matsumoto | Aug 1997 | A |
5659785 | Pechanek et al. | Aug 1997 | A |
5659797 | Zandveld et al. | Aug 1997 | A |
5675262 | Duong et al. | Oct 1997 | A |
5675743 | Mavity | Oct 1997 | A |
5675757 | Davidson et al. | Oct 1997 | A |
5675777 | Glickman | Oct 1997 | A |
5677909 | Heide | Oct 1997 | A |
5680583 | Kuijsten | Oct 1997 | A |
5682491 | Pechanek et al. | Oct 1997 | A |
5682544 | Pechanek et al. | Oct 1997 | A |
5687325 | Chang | Nov 1997 | A |
5694602 | Smith | Dec 1997 | A |
5696791 | Yeung | Dec 1997 | A |
5696976 | Nizar et al. | Dec 1997 | A |
5701091 | Kean | Dec 1997 | A |
5705938 | Kean | Jan 1998 | A |
5706482 | Matsushima et al. | Jan 1998 | A |
5713037 | Wilkinson et al. | Jan 1998 | A |
5717890 | Ichida et al. | Feb 1998 | A |
5717943 | Barker et al. | Feb 1998 | A |
5727229 | Kan et al. | Mar 1998 | A |
5732209 | Vigil et al. | Mar 1998 | A |
5734869 | Chen | Mar 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5737516 | Circello et al. | Apr 1998 | A |
5737565 | Mayfield | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5745734 | Craft et al. | Apr 1998 | A |
5748872 | Norman | May 1998 | A |
5748979 | Trimberger | May 1998 | A |
5752035 | Trimberger | May 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5754820 | Yamagami | May 1998 | A |
5754827 | Barbier et al. | May 1998 | A |
5754871 | Wilkinson et al. | May 1998 | A |
5754876 | Tamaki et al. | May 1998 | A |
5760602 | Tan | Jun 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768629 | Wise et al. | Jun 1998 | A |
5773994 | Jones | Jun 1998 | A |
5778237 | Yamamoto et al. | Jul 1998 | A |
5778439 | Timberger et al. | Jul 1998 | A |
5781756 | Hung | Jul 1998 | A |
5784313 | Trimberger et al. | Jul 1998 | A |
5784630 | Saito et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5794059 | Barker et al. | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5801547 | Kean | Sep 1998 | A |
5801715 | Norman | Sep 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5804986 | Jones | Sep 1998 | A |
5815004 | Trimberger et al. | Sep 1998 | A |
5815715 | Ku.cedilla.uk.cedilla.akar | Sep 1998 | A |
5815726 | Cliff | Sep 1998 | A |
5821774 | Veytsman et al. | Oct 1998 | A |
5828229 | Cliff et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5831448 | Kean | Nov 1998 | A |
5832288 | Wong | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838988 | Panwar et al. | Nov 1998 | A |
5841973 | Kessler et al. | Nov 1998 | A |
5844422 | Trimberger et al. | Dec 1998 | A |
5844888 | Markkula, Jr. et al. | Dec 1998 | A |
5848238 | Shimomura et al. | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5857097 | Henzinger et al. | Jan 1999 | A |
5857109 | Taylor | Jan 1999 | A |
5859544 | Norman | Jan 1999 | A |
5860119 | Dockser | Jan 1999 | A |
5862403 | Kanai et al. | Jan 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5867723 | Chin et al. | Feb 1999 | A |
5870620 | Kadosumi et al. | Feb 1999 | A |
5884075 | Hester et al. | Mar 1999 | A |
5887162 | Williams et al. | Mar 1999 | A |
5887165 | Martel et al. | Mar 1999 | A |
5889533 | Lee | Mar 1999 | A |
5889982 | Rodgers et al. | Mar 1999 | A |
5892370 | Eaton et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5895487 | Boyd et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5901279 | Davis, III | May 1999 | A |
5913925 | Kahle et al. | Jun 1999 | A |
5915099 | Takata et al. | Jun 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5924119 | Sindhu et al. | Jul 1999 | A |
5926638 | Inoue | Jul 1999 | A |
5933023 | Young | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5936424 | Young et al. | Aug 1999 | A |
5943242 | Vorbach et al. | Aug 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5960200 | Eager et al. | Sep 1999 | A |
5966143 | Breternitz, Jr. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5978583 | Ekanadham et al. | Nov 1999 | A |
5996048 | Cherabuddi et al. | Nov 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6003143 | Kim et al. | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6020758 | Patel et al. | Feb 2000 | A |
6020760 | Sample et al. | Feb 2000 | A |
6021490 | Vorbach et al. | Feb 2000 | A |
6023564 | Trimberger | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6026478 | Dowling | Feb 2000 | A |
6026481 | New et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6035371 | Magloire | Mar 2000 | A |
6038650 | Vorbach et al. | Mar 2000 | A |
6038656 | Martin et al. | Mar 2000 | A |
6044030 | Zheng et al. | Mar 2000 | A |
6045585 | Blainey | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6049222 | Lawman | Apr 2000 | A |
6049866 | Earl | Apr 2000 | A |
6052524 | Pauna | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6054873 | Laramie | Apr 2000 | A |
6055619 | North et al. | Apr 2000 | A |
6058266 | Megiddo et al. | May 2000 | A |
6058469 | Baxter | May 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6072348 | New et al. | Jun 2000 | A |
6075935 | Ussery et al. | Jun 2000 | A |
6076157 | Borkenhagen et al. | Jun 2000 | A |
6077315 | Greenbaum et al. | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6081903 | Vorbach et al. | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6086628 | Dave et al. | Jul 2000 | A |
6088795 | Vorbach et al. | Jul 2000 | A |
6092174 | Roussakov | Jul 2000 | A |
RE36839 | Simmons et al. | Aug 2000 | E |
6096091 | Hartmann | Aug 2000 | A |
6105105 | Trimberger et al. | Aug 2000 | A |
6105106 | Manning | Aug 2000 | A |
6108760 | Mirsky et al. | Aug 2000 | A |
6118724 | Higginbottom | Sep 2000 | A |
6119181 | Vorbach et al. | Sep 2000 | A |
6122719 | Mirsky et al. | Sep 2000 | A |
6125072 | Wu | Sep 2000 | A |
6125408 | McGee et al. | Sep 2000 | A |
6127908 | Bozler et al. | Oct 2000 | A |
6128720 | Pechanek et al. | Oct 2000 | A |
6134166 | Lytle et al. | Oct 2000 | A |
6137307 | Iwanczuk et al. | Oct 2000 | A |
6145072 | Shams et al. | Nov 2000 | A |
6150837 | Beal et al. | Nov 2000 | A |
6150839 | New et al. | Nov 2000 | A |
6154048 | Iwanczuk et al. | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6154826 | Wulf et al. | Nov 2000 | A |
6157214 | Marshall | Dec 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6172520 | Lawman et al. | Jan 2001 | B1 |
6173419 | Barnett | Jan 2001 | B1 |
6173434 | Wirthlin et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6185256 | Saito et al. | Feb 2001 | B1 |
6185731 | Maeda et al. | Feb 2001 | B1 |
6188240 | Nakaya | Feb 2001 | B1 |
6188650 | Hamada et al. | Feb 2001 | B1 |
6191614 | Schultz et al. | Feb 2001 | B1 |
6198304 | Sasaki | Mar 2001 | B1 |
6201406 | Iwanczuk et al. | Mar 2001 | B1 |
6202163 | Gabzdyl et al. | Mar 2001 | B1 |
6202182 | Abramovici et al. | Mar 2001 | B1 |
6204687 | Schultz et al. | Mar 2001 | B1 |
6211697 | Lien et al. | Apr 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6212650 | Guccione | Apr 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6216223 | Revilla et al. | Apr 2001 | B1 |
6219833 | Solomon et al. | Apr 2001 | B1 |
RE37195 | Kean | May 2001 | E |
6230307 | Davis et al. | May 2001 | B1 |
6240502 | Panwar et al. | May 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6247147 | Beenstra et al. | Jun 2001 | B1 |
6249756 | Bunton et al. | Jun 2001 | B1 |
6252792 | Marshall et al. | Jun 2001 | B1 |
6256724 | Hocevar et al. | Jul 2001 | B1 |
6260114 | Schug | Jul 2001 | B1 |
6260179 | Ohsawa et al. | Jul 2001 | B1 |
6262908 | Marshall et al. | Jul 2001 | B1 |
6263430 | Trimberger et al. | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6279077 | Nasserbakht et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282701 | Wygodny et al. | Aug 2001 | B1 |
6285624 | Chen | Sep 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6289369 | Sundaresan | Sep 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6298043 | Mauger et al. | Oct 2001 | B1 |
6298396 | Loyer et al. | Oct 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6301706 | Maslennikov et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6311265 | Beckerle et al. | Oct 2001 | B1 |
6321298 | Hubis | Nov 2001 | B1 |
6321366 | Tseng et al. | Nov 2001 | B1 |
6321373 | Ekanadham et al. | Nov 2001 | B1 |
6338106 | Vorbach et al. | Jan 2002 | B1 |
6339424 | Ishikawa et al. | Jan 2002 | B1 |
6339840 | Kothari et al. | Jan 2002 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6373779 | Pang et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6378068 | Foster et al. | Apr 2002 | B1 |
6381624 | Colon-Bonet et al. | Apr 2002 | B1 |
6389379 | Lin et al. | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6400601 | Sudo et al. | Jun 2002 | B1 |
6404224 | Azegami et al. | Jun 2002 | B1 |
6405185 | Pechanek et al. | Jun 2002 | B1 |
6405299 | Vorbach et al. | Jun 2002 | B1 |
6421808 | McGeer | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6425054 | Nguyen | Jul 2002 | B1 |
6425068 | Vorbach | Jul 2002 | B1 |
6426649 | Fu et al. | Jul 2002 | B1 |
6427156 | Chapman et al. | Jul 2002 | B1 |
6430309 | Pressman et al. | Aug 2002 | B1 |
6434642 | Camilleri et al. | Aug 2002 | B1 |
6434672 | Gaither | Aug 2002 | B1 |
6434695 | Esfahani et al. | Aug 2002 | B1 |
6434699 | Jones et al. | Aug 2002 | B1 |
6437441 | Yamamoto | Aug 2002 | B1 |
6438747 | Schreiber et al. | Aug 2002 | B1 |
6449283 | Chao et al. | Sep 2002 | B1 |
6456628 | Greim et al. | Sep 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6476634 | Bilski | Nov 2002 | B1 |
6477643 | Vorbach et al. | Nov 2002 | B1 |
6480937 | Vorbach et al. | Nov 2002 | B1 |
6480954 | Trimberger et al. | Nov 2002 | B2 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487709 | Keller et al. | Nov 2002 | B1 |
6490695 | Zagorski et al. | Dec 2002 | B1 |
6496740 | Robertson et al. | Dec 2002 | B1 |
6496902 | Faanes et al. | Dec 2002 | B1 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6504398 | Lien et al. | Jan 2003 | B1 |
6507898 | Gibson et al. | Jan 2003 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6512804 | Johnson et al. | Jan 2003 | B1 |
6513077 | Vorbach et al. | Jan 2003 | B2 |
6516382 | Manning | Feb 2003 | B2 |
6518787 | Allegrucci et al. | Feb 2003 | B1 |
6519674 | Lam et al. | Feb 2003 | B1 |
6523107 | Stansfield et al. | Feb 2003 | B1 |
6525678 | Veenstra et al. | Feb 2003 | B1 |
6526520 | Vorbach et al. | Feb 2003 | B1 |
6538468 | Moore | Mar 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6539415 | Mercs | Mar 2003 | B1 |
6539438 | Ledzius et al. | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6542394 | Marshall et al. | Apr 2003 | B2 |
6542844 | Hanna | Apr 2003 | B1 |
6542998 | Vorbach | Apr 2003 | B1 |
6553395 | Marshall et al. | Apr 2003 | B2 |
6553479 | Mirsky et al. | Apr 2003 | B2 |
6567834 | Marshall et al. | May 2003 | B1 |
6571381 | Vorbach et al. | May 2003 | B1 |
6587939 | Takano | Jul 2003 | B1 |
6598128 | Yoshioka et al. | Jul 2003 | B1 |
6606704 | Adiletta et al. | Aug 2003 | B1 |
6624819 | Lewis | Sep 2003 | B1 |
6625631 | Ruehle | Sep 2003 | B2 |
6631487 | Abramovici et al. | Oct 2003 | B1 |
6633181 | Rupp | Oct 2003 | B1 |
6657457 | Hanrahan et al. | Dec 2003 | B1 |
6658564 | Smith et al. | Dec 2003 | B1 |
6665758 | Frazier et al. | Dec 2003 | B1 |
6668237 | Guccione et al. | Dec 2003 | B1 |
6681388 | Sato et al. | Jan 2004 | B1 |
6687788 | Vorbach et al. | Feb 2004 | B2 |
6694434 | McGee et al. | Feb 2004 | B1 |
6697979 | Vorbach et al. | Feb 2004 | B1 |
6704816 | Burke | Mar 2004 | B1 |
6708223 | Wang et al. | Mar 2004 | B1 |
6708325 | Cooke et al. | Mar 2004 | B2 |
6717436 | Kress et al. | Apr 2004 | B2 |
6721830 | Vorbach et al. | Apr 2004 | B2 |
6725334 | Barroso et al. | Apr 2004 | B2 |
6728871 | Vorbach et al. | Apr 2004 | B1 |
6745317 | Mirsky et al. | Jun 2004 | B1 |
6748440 | Lisitsa et al. | Jun 2004 | B1 |
6751722 | Mirsky et al. | Jun 2004 | B2 |
6754805 | Juan | Jun 2004 | B1 |
6757847 | Farkash et al. | Jun 2004 | B1 |
6757892 | Gokhale et al. | Jun 2004 | B1 |
6782445 | Olgiati et al. | Aug 2004 | B1 |
6785826 | Durham et al. | Aug 2004 | B1 |
6802026 | Patterson et al. | Oct 2004 | B1 |
6803787 | Wicker, Jr. | Oct 2004 | B1 |
6820188 | Stansfield et al. | Nov 2004 | B2 |
6829697 | Davis et al. | Dec 2004 | B1 |
6836842 | Guccione et al. | Dec 2004 | B1 |
6847370 | Baldwin et al. | Jan 2005 | B2 |
6859869 | Vorbach | Feb 2005 | B1 |
6868476 | Rosenbluth | Mar 2005 | B2 |
6871341 | Shyr | Mar 2005 | B1 |
6874108 | Abramovici et al. | Mar 2005 | B1 |
6886092 | Douglass et al. | Apr 2005 | B1 |
6901502 | Yano et al. | May 2005 | B2 |
6928523 | Yamada | Aug 2005 | B2 |
6957306 | So et al. | Oct 2005 | B2 |
6961924 | Bates et al. | Nov 2005 | B2 |
6975138 | Pani et al. | Dec 2005 | B2 |
6977649 | Baldwin et al. | Dec 2005 | B1 |
7000161 | Allen et al. | Feb 2006 | B1 |
7007096 | Lisitsa et al. | Feb 2006 | B1 |
7010667 | Vorbach | Mar 2006 | B2 |
7010687 | Ichimura | Mar 2006 | B2 |
7028107 | Vorbach et al. | Apr 2006 | B2 |
7036114 | McWilliams et al. | Apr 2006 | B2 |
7038952 | Zack et al. | May 2006 | B1 |
7043416 | Lin | May 2006 | B1 |
7144152 | Rusu et al. | Dec 2006 | B2 |
7155708 | Hammes et al. | Dec 2006 | B2 |
7164422 | Wholey et al. | Jan 2007 | B1 |
7210129 | May et al. | Apr 2007 | B2 |
7216204 | Rosenbluth | May 2007 | B2 |
7237087 | Vorbach et al. | Jun 2007 | B2 |
7249351 | Songer et al. | Jul 2007 | B1 |
7254649 | Subramanian et al. | Aug 2007 | B2 |
7340596 | Crosland et al. | Mar 2008 | B1 |
7346644 | Langhammer et al. | Mar 2008 | B1 |
7350178 | Crosland et al. | Mar 2008 | B1 |
7382156 | Pani et al. | Jun 2008 | B2 |
7455450 | Liu et al. | Nov 2008 | B2 |
7595659 | Vorbach et al. | Sep 2009 | B2 |
7650448 | Vorbach et al. | Jan 2010 | B2 |
7657877 | Vorbach et al. | Feb 2010 | B2 |
7759968 | Hussein et al. | Jul 2010 | B1 |
7873811 | Wolinski et al. | Jan 2011 | B1 |
20010001860 | Bieu | May 2001 | A1 |
20010003834 | Shimonishi | Jun 2001 | A1 |
20010010074 | Nishihara et al. | Jul 2001 | A1 |
20010018733 | Fujii et al. | Aug 2001 | A1 |
20010032305 | Barry | Oct 2001 | A1 |
20020004916 | Marchand et al. | Jan 2002 | A1 |
20020010853 | Trimberger et al. | Jan 2002 | A1 |
20020013861 | Adiletta et al. | Jan 2002 | A1 |
20020038414 | Taylor | Mar 2002 | A1 |
20020045952 | Blemel | Apr 2002 | A1 |
20020051482 | Lomp | May 2002 | A1 |
20020073282 | Chauvel et al. | Jun 2002 | A1 |
20020083308 | Pereira et al. | Jun 2002 | A1 |
20020099759 | Gootherts | Jul 2002 | A1 |
20020103839 | Ozawa | Aug 2002 | A1 |
20020124238 | Metzgen | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020143505 | Drusinsky | Oct 2002 | A1 |
20020144229 | Hanrahan | Oct 2002 | A1 |
20020147932 | Brock et al. | Oct 2002 | A1 |
20020152060 | Tseng | Oct 2002 | A1 |
20020156962 | Chopra et al. | Oct 2002 | A1 |
20020162097 | Meribout | Oct 2002 | A1 |
20020165886 | Lam | Nov 2002 | A1 |
20030001615 | Sueyoshi et al. | Jan 2003 | A1 |
20030014743 | Cooke et al. | Jan 2003 | A1 |
20030046607 | May et al. | Mar 2003 | A1 |
20030052711 | Taylor | Mar 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030056062 | Prabhu | Mar 2003 | A1 |
20030056085 | Vorbach | Mar 2003 | A1 |
20030056091 | Greenberg | Mar 2003 | A1 |
20030056202 | May et al. | Mar 2003 | A1 |
20030061542 | Bates et al. | Mar 2003 | A1 |
20030062922 | Douglass et al. | Apr 2003 | A1 |
20030070059 | Dally et al. | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093662 | Vorbach et al. | May 2003 | A1 |
20030097513 | Vorbach et al. | May 2003 | A1 |
20030123579 | Safavi et al. | Jul 2003 | A1 |
20030135686 | Vorbach et al. | Jul 2003 | A1 |
20030154349 | Berg et al. | Aug 2003 | A1 |
20030192032 | Andrade et al. | Oct 2003 | A1 |
20030226056 | Yip et al. | Dec 2003 | A1 |
20040015899 | May et al. | Jan 2004 | A1 |
20040025005 | Vorbach et al. | Feb 2004 | A1 |
20040039880 | Pentkovski et al. | Feb 2004 | A1 |
20040078548 | Claydon et al. | Apr 2004 | A1 |
20040088689 | Hammes | May 2004 | A1 |
20040088691 | Hammes et al. | May 2004 | A1 |
20040168099 | Vorbach et al. | Aug 2004 | A1 |
20040199688 | Vorbach et al. | Oct 2004 | A1 |
20050066213 | Vorbach et al. | Mar 2005 | A1 |
20050091468 | Morita et al. | Apr 2005 | A1 |
20050144210 | Simkins et al. | Jun 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20060036988 | Allen et al. | Feb 2006 | A1 |
20060095716 | Ramesh | May 2006 | A1 |
20060230094 | Simkins et al. | Oct 2006 | A1 |
20060230096 | Thendean et al. | Oct 2006 | A1 |
20070050603 | Vorbach et al. | Mar 2007 | A1 |
20070083730 | Vorbach et al. | Apr 2007 | A1 |
20070143577 | Smith | Jun 2007 | A1 |
20080313383 | Morita et al. | Dec 2008 | A1 |
20090085603 | Paul et al. | Apr 2009 | A1 |
20090193384 | Sima et al. | Jul 2009 | A1 |
20100306602 | Kamiya et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
42 21 278 | Jan 1994 | DE |
44 16 881 | Nov 1994 | DE |
38 55 673 | Nov 1996 | DE |
196 51 075 | Jun 1998 | DE |
196 54 593 | Jul 1998 | DE |
196 54 595 | Jul 1998 | DE |
196 54 846 | Jul 1998 | DE |
197 04 044 | Aug 1998 | DE |
197 04 728 | Aug 1998 | DE |
197 04 742 | Sep 1998 | DE |
198 22 776 | Mar 1999 | DE |
198 07 872 | Aug 1999 | DE |
198 61 088 | Feb 2000 | DE |
199 26 538 | Dec 2000 | DE |
100 28 397 | Dec 2001 | DE |
100 36 627 | Feb 2002 | DE |
101 29 237 | Apr 2002 | DE |
102 04 044 | Aug 2003 | DE |
0 208 457 | Jan 1987 | EP |
0 221 360 | May 1987 | EP |
0 398 552 | Nov 1990 | EP |
0 428 327 | May 1991 | EP |
0 463 721 | Jan 1992 | EP |
0 477 809 | Apr 1992 | EP |
0 485 690 | May 1992 | EP |
0 497 029 | Aug 1992 | EP |
0 539 595 | May 1993 | EP |
0 638 867 | Aug 1994 | EP |
0 628 917 | Dec 1994 | EP |
0 678 985 | Oct 1995 | EP |
0 686 915 | Dec 1995 | EP |
0 696 001 | Feb 1996 | EP |
0 707 269 | Apr 1996 | EP |
0 726 532 | Aug 1996 | EP |
0 735 685 | Oct 1996 | EP |
0 746 106 | Dec 1996 | EP |
0 748 051 | Dec 1996 | EP |
0 926 594 | Jun 1999 | EP |
1 061 439 | Dec 2000 | EP |
1 115 204 | Jul 2001 | EP |
1 146 432 | Oct 2001 | EP |
1 669 885 | Jun 2006 | EP |
2 752 466 | Feb 1998 | FR |
2 304 438 | Mar 1997 | GB |
58-058672 | Apr 1983 | JP |
1044571 | Feb 1989 | JP |
1-229378 | Sep 1989 | JP |
2-130023 | May 1990 | JP |
2-226423 | Sep 1990 | JP |
5-265705 | Oct 1993 | JP |
5-276007 | Oct 1993 | JP |
5-509184 | Dec 1993 | JP |
6-266605 | Sep 1994 | JP |
7-086921 | Mar 1995 | JP |
7-154242 | Jun 1995 | JP |
8-148989 | Jun 1995 | JP |
8-044581 | Feb 1996 | JP |
8-069447 | Mar 1996 | JP |
8-101761 | Apr 1996 | JP |
8-102492 | Apr 1996 | JP |
8-221164 | Aug 1996 | JP |
8-250685 | Sep 1996 | JP |
9-027745 | Jan 1997 | JP |
9-294069 | Nov 1997 | JP |
11-184718 | Jul 1999 | JP |
11-307725 | Nov 1999 | JP |
2000-076066 | Mar 2000 | JP |
2000-181566 | Jun 2000 | JP |
2000-201066 | Jul 2000 | JP |
2000-311156 | Nov 2000 | JP |
2001-500682 | Jan 2001 | JP |
2001-167066 | Jun 2001 | JP |
2001-510650 | Jul 2001 | JP |
2002-0033457 | Jan 2002 | JP |
3-961028 | Aug 2007 | JP |
WO9004835 | May 1990 | WO |
WO9011648 | Oct 1990 | WO |
WO9201987 | Feb 1992 | WO |
WO9311503 | Jun 1993 | WO |
WO9406077 | Mar 1994 | WO |
WO9408399 | Apr 1994 | WO |
WO9526001 | Sep 1995 | WO |
WO9810517 | Mar 1998 | WO |
WO9826356 | Jun 1998 | WO |
WO9828697 | Jul 1998 | WO |
WO9829952 | Jul 1998 | WO |
WO9831102 | Jul 1998 | WO |
WO9835294 | Aug 1998 | WO |
WO9835299 | Aug 1998 | WO |
WO9900731 | Jan 1999 | WO |
WO9900739 | Jan 1999 | WO |
WO9912111 | Mar 1999 | WO |
WO9932975 | Jul 1999 | WO |
WO9940522 | Aug 1999 | WO |
WO9944120 | Sep 1999 | WO |
WO9944147 | Sep 1999 | WO |
WO0017771 | Mar 2000 | WO |
WO0038087 | Jun 2000 | WO |
WO0045282 | Aug 2000 | WO |
WO0049496 | Aug 2000 | WO |
WO0077652 | Dec 2000 | WO |
WO0155917 | Aug 2001 | WO |
WO0213000 | Feb 2002 | WO |
WO0229600 | Apr 2002 | WO |
WO0250665 | Jun 2002 | WO |
WO02071196 | Sep 2002 | WO |
WO02071248 | Sep 2002 | WO |
WO02071249 | Sep 2002 | WO |
WO02103532 | Dec 2002 | WO |
WO03017095 | Feb 2003 | WO |
WO03023616 | Mar 2003 | WO |
WO03025781 | Mar 2003 | WO |
WO03036507 | May 2003 | WO |
WO 03091875 | Nov 2003 | WO |
WO2004053718 | Jun 2004 | WO |
WO2004114128 | Dec 2004 | WO |
WO2005045692 | May 2005 | WO |
WO 2007030395 | Mar 2007 | WO |
Entry |
---|
U.S. Reexamination Appl. Control No. 90/010,979, Vorbach et al., filed May 4, 2010. |
U.S. Reexamination Appl. Control No. 90/011,087, Vorbach et al., filed Jul. 8, 2010. |
U.S. Reexamination Appl. Control No. 90/010,450, Vorbach et al., filed Mar. 27, 2009. |
U.S. Appl. No. 60/109,417, Jefferson et al., filed Nov. 18, 1998. |
Abnous et al., “Ultra-Low-Power Domain-Specific Multimedia Processors,” U.C. Berkeley, 1996 IEEE, pp. 461-470. |
Abnous, A., et al., “The Pleiades Architecture,” Chapter I of The Application of Programmable DSPs in Mobile Communications, A. Gatherer and A. Auslander, Ed., Wiley, 2002, pp. 1-33. |
Ade, et al., “Minimum Memory Buffers in DSP Applications,” Electronics Letters, vol. 30, No. 6, Mar. 17, 1994, pp. 469-471. |
Advanced RISC Machines, “Introduction to AMBA,” Oct. 1996, Section 1, pp. 1-7. |
Arm, “The Architecture for the Digital World,” http://www.arm.com/products/ Mar. 18, 2009, 3 pages. |
Arm, “The Architecture for the Digital World; Milestones,” http://www.arm.com/aboutarm/milestones.html Mar. 18, 2009, 5 pages. |
Arm Limited, “ARM Architecture Reference Manual,” Dec. 6, 2000, pp. A10-6-A10-7. |
Albahama, O.T. et al., “On the Viability of FPGA-Based Integrated Coprocessors,” Dept. of Electrical and Electronic Engineering, Imperial College of Science, London, 1999 IEEE, pp. 206-215. |
Alippi, et al., “Determining the Optimum Extended Instruction Set Architecture for Application Specific Reconfigurable VLIW CPUs,” IEEE, 2001, pp. 50-56. |
Altera, “Implementing High-Speed Search Applications with Altera CAM,” Jul. 2001, Ver. 2.1, Application Note 119, 50 pages. |
Altera, “Flex 8000 Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-62. |
Altera, “Flex 10K Embedded Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-128. |
Altera, “APEX 20K Programmable Logic Device Family,” Altera Corporation Data Sheet, Mar. 2004, ver. 5.1, pp. 1-117. |
Altera, “2. TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices,” Altera Corporation, Jul. 2005, 28 pages. |
Altera, “APEX II Programmable Logic Device Family,” Altera Corporation Data Sheet, Aug. 2002, Ver. 3.0, 99 pages. |
Arabi, et al., “PLD Integrates Dedicated High-speed Data Buffering, Complex State machine, and Fast Decode Array,” conference record on WESCON '93, Sep. 28, 1993, pp. 432-436. |
Asari, K. et al., “FeRAM circuit technology for system on a chip,” Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999), pp. 193-197. |
Athanas, “A Functional Reconfigurable Architecture and Compiler for Adoptive Computing,” IEEE 1993, pp. 49-55. |
Athanas, et al., “An Adaptive Hardware Machine Architecture and Compiler for Dynamic Processor Recongifugation,” IEEE, Laboratory for Engineering man/Machine Systems Division of Engineering, Box D, Brown University, Providence, Rhode Island, 1991, pp. 397-400. |
Athanas et al., “Processor Reconfiguration Through Instruction-Set Metamorphosis,” 1993, IEEE Computers, pp. 11-18. |
Atmel, 5-K-50K Gates Coprocessor FPGA with Free Ram, Data Sheet, Jul. 2006, 55 pages. |
Atmel, FPGA-based FIR Filter Application Note, Sep. 1999, 10 pages. |
Atmel, “An Introduction to DSP Applications using the AT40K FPGA,” FPGA Application Engineering, San Jose, CA, Apr. 2004, 15 pages. |
Atmel, Configurable Logic Design & Application Book, Atmel Corporation, 1995, pp. 2-19 through 2-25. |
Atmel, Field Programmable Gate Array Configuration Guide, AT6000 Series Configuration Data Sheet, Sep. 1999, pp. 1-20. |
Bacon, D. et al., “Compiler Transformations for High-Performance Computing,” ACM Computing Surveys, 26(4):325-420 (1994). |
Bakkes, P.J., et al., “Mixing Fixed and Reconfigurable Logic for Array Processing,” Dept. of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, 1996 IEEE, pp. 118-125. |
Ballagh et al., “Java Debug Hardware Models Using JBits,” 8th Reconfigurable Architectures Workshop, 2001, 8 pages. |
Baumgarte, V. et al., “PACT XPP—A Self-reconfigurable Data Processing Architecture,” PACT Info. GMBH, Munchen Germany, 2001, 7 pages. |
Beck et al., “From control flow to data flow,” TR 89-1050, Oct. 1989, Dept. of Computer Science, Cornell University, Ithaca, NY, pp. 1-25. |
Becker, J., “A Partitioning Compiler for Computers with Xputer-based Accelerators,” 1997, Kaiserslautern University, 326 pp. |
Becker, J. et al., “Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC),” IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (Feb. 2003), 6 pages. |
Becker, J., “Configurable Systems-on-Chip (CSoC),” (Invited Tutorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (Sep. 2002), 6 pages. |
Becker et al., “Automatic Parallelism Exploitation for FPL-Based Accelerators,” 1998, Proc. 31st Annual Hawaii International Conference on System Sciences, pp. 169-178. |
Becker, J. et al., “Parallelization in Co-compilation for Configurable Accelerators—a Host/accelerator Partitioning Compilation Method,” Proceedings of Asia and South Pacific Design. Automation Conference, Yokohama, Japan, Feb. 10-13, 1998, 11 pages. |
Bellows et al., “Designing Run-Time Reconfigurable Systems with JHDL,” Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, The Netherlands, 2001, pp. 29-45. |
Bittner, “Wormhole Run-time Reconfiguration: Conceptualization and VLSI Design of a High Performance Computing System,” Dissertation, Jan. 23, 1997, pp. 1-XX, 1-415. |
“BlueGene/L—Hardware Architecture Overview,” BlueGene/L design team, IBM Research, Oct. 17, 2003 slide presentation, pp. 1-23. |
“BlueGene/L: the next generation of scalable supercomputer,” Kissel et al., Lawrence Livermore National Laboratory, Livermore, California, Nov. 18, 2002, 29 pages. |
BlueGene Project Update, Jan. 2002, IBM slide presentation, 20 pages. |
BlueGene/L, “An Overview of the BlueGene/L Supercomputer,” The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory, 2002 IEEE. pp. 1-22. |
Bolsens, Ivo (CTO Xilinx), “FPGA, a history of interconnect,” Xilinx slide presentation, posted on the internet Oct. 30, 2008 at http://www.docstoc.com/docs/2198008/FPGA-a-history-of-interconnect, 32 pages. |
Bondalapati et al., “Reconfigurable Meshes: Theory and Practice,” Dept. of Electrical Engineering-Systems, Univ. of Southern California, Apr. 1997, Reconfigurable Architectures Workshop, International Parallel Processing Symposium, 15 pages. |
Bratt, A, “Motorola field programmable analogue arrays, present hardware and future trends,” Motorola Programmable Technology Centre, Gadbrook Business Centre, Northwich, Cheshire, 1998, The Institute of Electrical Engineers, IEE. Savoy Place, London, pp. 1-5. |
Cadambi, et al., “Managing Pipeline-reconfigurable FPGAs,” ACM, 1998, pp. 55-64. |
Callahan, et al., “The Garp Architecture and C Compiler,” Computer, Apr. 2000, pp. 62-69. |
Cardoso, J.M.P., et al., “A novel algorithm combining temporal partitioning and sharing of functional units,” University of Algarve, Faro, Portugal, 2001 IEEE, pp. 1-10. |
Cardoso, Joao M.P., and Markus Weinhardt, “XPP-VC: A C Compiler with Temporal Partitioning for the PACT-XPP Architecture,” Field-Programmable Logic and Applications. Reconfigurable Computing is Going Mainstream, 12th International Conference FPL 2002, Proceedings (Lecture Notes in Computer Science, vol. 2438) Springer-Verlag Berlin, Germany, 2002, pp. 864-874. |
Cardoso, J.M.P., “Compilation of Java™ Algorithms onto Reconfigurable Computing Systems with Exploitation of Operation-Level Parallelism,” Ph.D. Thesis, Universidade Tecnica de Lisboa (UTL), Lisbon, Portugal Oct. 2000 (Table of Contents and English Abstract only). |
Cardoso, J.M.P., et al., “Compilation and Temporal Partitioning for a Coarse-Grain Reconfigurable Architecture,” New Algorithms, Architectures and Applications for Reconfigurable Computing, Lysacht, P. & Rosentiel, W. eds., (2005) pp. 105-115. |
Cardoso, J.M.P., et al., “Macro-Based Hardware Compilation of Java™ Bytecodes into a Dynamic Reconfigurable Computing System,” IEEE, Apr. 21, 1999, pp. 2-11. |
Chaudhry, G.M. et al., “Separated caches and buses for multiprocessor system,” Circuits and Systems, 1993; Proceedings of the 36th Midwest Symposium on Detroit, MI, USA, Aug. 16-18, 1993, New York, NY IEEE, Aug. 16, 1993, pp. 1113-1116, XP010119918 ISBN: 0-7803-1760-2. |
Chen et al., “A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths,” IEEE Journal of Solid-State Circuits, vol. 27, No. 12, Dec. 1992, pp. 1895-1904. |
Cherbaka, Mark F., “Verification and Configuration of a Run-time Reconfigurable Custom Computing Integrated Circuit for DSP Applications,” Thesis: Virginia Polytechnic Institute and State University, Jul. 8, 1996, 106 pages. |
Compton, K., et al., “Configurable Computing: A Survey of Systems and Software,” Northwestern University, Dept. of ECE, Technical Report, 1999, (XP-002315148), 39 pages. |
Cook, Jeffrey J., “The Amalgam Compiler Infrastructure,” Thesis at the University of Illinois at Urbana-Champaign (2004) Chapter 7 & Appendix G. |
Cronquist, D., et al., “Architecture Design of Reconfigurable Pipelined Datapaths,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, Proceedings of the 20th Anniversary Conference on Advanced Research in VSLI, 1999, pp. 1-15. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” pp. 434-437, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” p. 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
DeHon, A., “DPGA Utilization and Application,” MIT Artificial Intelligence Laboratory, Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays (FPGA 1996), IEEE Computer Society, pp. 1-7. |
DeHon, Andre, “Reconfigurable Architectures for General-Purpose Computing,” Massachusetts Institute of Technology, Technical Report AITR-1586, Oct. 1996, XP002445054, Cambridge, MA, pp. 1-353. |
Del Corso et al., “Microcomputer Buses and Links,” Academic Press Inc. Ltd., 1986, pp. 138-143, 277-285. |
Diniz, P., et al., “Automatic Synthesis of Data Storage and Control Structures for FPGA-based Computing Engines,” 2000, IEEE, pp. 91-100. |
Diniz, P., et al., “A behavioral synthesis estimation interface for configurable computing,” University of Southern California, Marina Del Rey, CA, 2001 IEEE, pp. 1-2. |
Donandt, “Improving Response Time of Programmable Logic Controllers by use of a Boolean Coprocessor,” AEG Research Institute Berlin, IEEE, 1989, pp. 4-167-4-169. |
Dutt, et al., “If Software is King for Systems-in-Silicon, What's New in Compilers?” IEEE, 1997, pp. 322-325. |
Ebeling, C., et al., “Mapping Applications to the RaPiD Configurable Architecture,” Department of Computer Science and Engineering, University of Washington, Seattle, Wa, FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium, Publication Date: Apr. 16-18, 1997, 10 pages. |
Equator, Pixels to Packets, Enabling Multi-Format High Definition Video, Equator Technologies BSP-15 Product Brief, www.equator.com, 2001, 4 pages. |
Fawcett, B.K., “Map, Place and Route: The Key to High-Density PLD Implementation,” Wescon Conference, IEEE Center (Nov. 7, 1995) pp. 292-297. |
Ferrante, J., et al., “The Program Dependence Graph and its Use in Optimization ACM Transactions on Programming Languages and Systems,” Jul. 1987, USA, [online] Bd. 9, Nr., 3, pp. 319-349, XP002156651 ISSN: 0164-0935 ACM Digital Library. |
Fineberg, S, et al., “Experimental Analysis of a Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting,” Journal of Parallel and Distributed Computing, vol. 11, No. 3, Mar. 1991, pp. 239-251. |
FOLDOC, The Free On-Line Dictionary of Computing, “handshaking,” online Jan. 13, 1995, retrieved from Internet Jan. 23, 2011 at http://foldoc.org/handshake. |
Fornaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the 2nd Annual IEEE International Conference on Innovative Systems in Silicon, New York, NY, Oct. 1997, pp. 323-330. |
Franklin, Manoj, et al., “A Fill-Unit Approach to Multiple Instruction Issue,” Proceedings of the Annual International Symposium on Microarchitecture, Nov. 1994, pp. 162-171. |
Freescale Slide Presentation, An Introduction to Motorola's RCF (Reconfigurable Compute Fabric) Technology, Presented by Frank David, Launched by Freescale Semiconductor, Inc., 2004, 39 pages. |
Galanis, M.D. et al., “Accelerating Applications by Mapping Critical Kernels on Coarse-Grain Reconfigurable Hardware in Hybrid Systems,” Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2005, 2 pages. |
Genius, D., et al., “A Case for Array Merging in Memory Hierarchies,” Proceedings of the 9th International Workshop on Compilers for Parallel Computers, CPC'01 (Jun. 2001), 10 pages. |
Gokhale, M.B., et al., “Automatic Allocation of Arrays to Memories in FPGA processors with Multiple Memory Banks,” Field-Programmable Custom Computing Machines, 1999, IEEE, pp. 63-69. |
Guccione et al., “JBits: Java based interface for reconfigurable computing,” Xilinx, Inc., San Jose, CA, 1999, 9 pages. |
Guo, Z. et al., “A Compiler Intermediate Representation for Reconfigurable Fabrics,” University of California, Riverside, Dept. of Electrical Engineering, IEEE 2006, 4 pages. |
Gwennap, Linley, “P6 Underscores Intel's Lead,” Microprocessor Report, vol. 9., No. 2, Feb. 16, 1995 (MicroDesign Resources), p. 1 and pp. 6-15. |
Gwennap, Linley, “Intel's P6 Bus Designed for Multiprocessing,” Microprocessor Report, vol. 9, No. 7 (MicroDesign Resources), May 30, 1995, p. 1 and pp. 6-10. |
Hammes, Jeff, et al., “Cameron: High Level Language Compilation for Reconfigurable Systems,” Department of Computer Science, Colorado State University, Conference on Parallel Architectures and Compilation Techniques, Oct. 12-16, 1999, 9 pages. |
Hartenstein, R. et al., “A new FPGA architecture for word-oriented datapaths,” Proc. FPL'94, Springer LNCS, Sep. 1994, pp. 144-155. |
Hartenstein, R., “Coarse grain reconfigurable architectures,” Design Automation Conference, 2001, Proceedings of the ASP-DAC 2001 Asia and South Pacific, Jan. 30-Feb. 2, 2001, IEEE Jan. 30, 2001, pp. 564-569. |
Hartenstein et al., “Parallelizing Compilation for a Novel Data-Parallel Architecture,” 1995, PCAT-94, Parallel Computing: Technology and Practice, 13 pp. |
Hartenstein et al., “A Two-Level Co-Design Framework for Xputer-based Data-driven Reconfigurable Accelerators,” 1997, Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, 10 pp. |
Hastie et al., “The implementation of hardware subroutines on field programmable gate arrays,” Custom Integrated Circuits Conference, 1990, Proceedings of the IEEE 1990, May 16, 1990, pp. 31.3.1-31.4.3 (3 pages). |
Hauck, “The Roles of FPGAs in Reprogrammable Systems,” IEEE, Apr. 1998, pp. 615-638. |
Hauser, J.R., et al., “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” University of California, Berkeley, IEEE, Apr. 1997, pp. 12-23. |
Hedge, S.J., “3D WASP Devices for On-line Signal and Data Processing,” 1994, International Conference on Wafer Scale Integration, pp. 11-21. |
Hendrich, N., et al., “Silicon Compilation and Rapid Prototyping of Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400,” Microprocessing & Microprogramming (Sep. 1992) vol. 35(1-5), pp. 287-294. |
Huang, Libo et al., “A New Architecture for Multiple-Precision Floating-Point Multiply-Add Fused Unit Design,” School of Computer National University of Defense Technology, China, IEEE 2007, 8 pages. |
Hwang, K., “Advanced Computer Architecture—Parallelism, Scalability, Programmability,” 1993, McGraw-Hill, Inc., pp. 348-355. |
Hwang, K., “Computer Architecture and Parallel Processing,” Data Flow Computers and VLSI Computations, XP-002418655, 1985 McGraw-Hill, Chapter 10, pp. 732-807. |
Hwang, L., et al., “Min-cut Replication in Partitioned Networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [online] Bd. 14, Nr. 1, Jan. 1995, pp. 96-106, XP00053228 USA ISSN: 0278-0070 IEEE Xplore. |
IBM Technical Disclosure Bulletin, IBM Corp., New York, XP000424878, Bd. 36, Nr. 11, Nov. 1, 1993, pp. 335-336. |
“IEEE Standard Test Access Port and Boundary-Scan Architecture,” IEEE Std. 1149.1-1990, 1993, pp. 1-127. |
IMEC, “ADRES multimedia processor & 3MF multimedia platform,” Transferable IP, IMEC Technology Description, (Applicants believe the date to be Oct. 2005), 3 pages. |
Intel, “Pentium Pro Family Developer's Manual, vol. 3: Operating System Writer's Guide,” Intel Corporation, Dec. 1995, [submitted in 4 PDF files: Part I, Part II, Part III and Part IV], 458 pages. |
Intel, Intel MXP5800/MXP5400 Digital Media Processors, Architecture Overview, Jun. 2004, Revision 2.4, pp. 1-24. |
Inside DSP, “Ambric Discloses Massively Parallel Architecture,” Aug. 23, 2006, http://www.insidedsp.com/Articles/tabid/64/articleType/ArticleView/articleId/155/Default.aspx, 2 pages. |
Iseli, C., et al. “A C++ Compiler for FPGA Custom Execution Units Synthesis,” IEEE, 1995, pp. 173-179. |
Isshiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture,” 1996 IEEE, pp. 38-47. |
Jacob, J., et al., “Memory Interfacing and Instruction Specification for Reconfigurable Processors,” ACM Feb. 1999, pp. 145-154. |
Jantsch, Axel et al., “A Case Study on Hardware/Software Partitioning,” Royal Institute of Technology, Kista, Sweden, Apr. 10, 1994, IEEE, pp. 111-118. |
Jantsch, Axel et al., “Hardware/Software Partitioning and Minimizing Memory Interface Traffic,” Electronic System Design Laboratory, Royal Institute of Technology, ESDLab, Electrum 229, S-16440 Kista, Sweden (Apr. 1994), pp. 226-231. |
Jo, Manhwee et al., “Implementation of Floating-Point Operations for 3D Graphics on a Coarse-Grained Reconfigurable Architecture,” Design Automation Laboratory, School of EE/CS, Seoul National University, Korea, IEEE 2007, pp. 127-130. |
John, L., et al., “A Dynamically Reconfigurable Interconnect for Array Processors,” vol. 6, No. 1, Mar. 1998, IEEE, pp. 150-157. |
Kanter, David, “NVIDIA's GT200: Inside a Parallel Processor,” http://www.realworldtech,com/page.cfm?ArticleID=RWT090989195242&p=1, Sep. 8, 2008, 27 pages. |
Kastrup, B., “Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU Featuring Philips CPLDs,” Proceedings of the PACT Workshop on Reconfigurable Computing, 1998, pp. 5-10. |
Kaul, M., et al., “An automated temporal partitioning and loop fission approach of FPGA based reconfigurable synthesis of DSP applications,” University of Cincinnati, Cincinnati, OH, ACM 1999, pp. 616-622. |
Kean, T.A., “Configurable Logic: A Dynamically Programmable Cellular Architecture and its VLSI Implementation,” University of Edinburgh (Dissertation) 1988, pp. 1-286. [in two PDFs, Pt.1 and Pt.2.]. |
Kean, T., et al., “A Fast Constant Coefficient Multiplier for the XC6200,” Xilinx, Inc., Lecture Notes in Computer Science, vol. 1142, Proceedings of the 6th International Workshop of Field-Programmable Logic, 1996, 7 pages. |
Kim et al., “A Reconfigurable Multifunction Computing Cache Architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems vol. 9, Issue 4, Aug. 2001 pp. 509-523. |
Knittel, Gunter, “A PCI-compatible FPGA-Coprocessor for 2D/3D Image Processing,” University of Turgingen, Germany, 1996 IEEE, pp. 136-145. |
Koch, A., et al., “Practical Experiences with the SPARXIL Co-Processor,” 1998, IEEE, pp. 394-398. |
Koch, Andreas et al., “High-Level-Language Compilation for Reconfigurable Computers,” Proceedings of European Workshop on Reconfigurable Communication-Centric SOCS (Jun. 2005) 8 pages. |
Koren et al., “A data-driven VLSI array for arbitrary algorithms,” IEEE Computer Society, Long Beach, CA vol. 21, No. 10, Oct. 1, 1988, pp. 30-34. |
Kung, “Deadlock Avoidance for Systolic Communication,” 1988 Conference Proceedings of the 15th Annual International Symposium on Computer Architecture, May 30, 1998, pp. 252-260. |
Lange, H. et al., “Memory access schemes for configurable processors,” Field-Programmable Logic and Applications, International Workshop, FPL, Aug. 27, 2000, pp. 615-625, XP002283963. |
Larsen, S., et al., “Increasing and Detecting Memory Address Congruence,” Proceedings of the 2002 IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT'02), pp. 1-12 (Sep. 2002). |
Lee et al., “A new distribution network based on controlled switching elements and its applications,” IEEE/ACT Trans. of Networking, vol. 3, No. 1, pp. 70-81, Feb. 1995. |
Lee, Jong-eun, et al., “Reconfigurable ALU Array Architecture with Conditional Execution,” International Soc. Design Conference (ISOOC) [online] Oct. 25, 2004, Seoul, Korea, 5 pages. |
Lee, R. B., et al., “Multimedia extensions for general-purpose processors,” IEEE Workshop on Signal Processing Systems, SIPS 97—Design and Implementation (1997), pp. 9-23. |
Lee, Ming-Hau et al., “Design and Implementation of the MorphoSys Reconfigurable Computing Processors,” The Journal of VLSI Signal Processing, Kluwer Academic Publishers, BO, vol. 24, No. 2-3, Mar. 2, 2000, pp. 1-29. |
Li et al., “Hardware-Software Co-Design of Embedded Reconfigurable Architectures,” Los Angeles, CA, 2000 ACM, pp. 507-512. |
Li, Zhiyuan, et al., “Configuration prefetching techniques for partial reconfigurable coprocessor with relocation and defragmentation,” International Symposium on Field Programmable Gate Arrays, Feb. 1, 2002, pp. 187-195. |
Ling, X., “WASMII: An MPLD with Data-Driven Control on a Virtual Hardware,” Journal of Supercomputing, Kluwer Acdemic Publishers, Dordrecht, Netherlands, 1995, pp. 253-276. |
Ling et al., “WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. |
Mano, M.M., “Digital Design,” by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984, pp. 119-125, 154-161. |
Margolus, N., “An FPGA architecture for DRAM-based systolic computations,” Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory, IEEE 1997, pp. 2-11. |
Marshall et al., “A Reconfigurable Arithmetic Array for Multimedia Applications,” FPGA '99 Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, 10 pages. |
Maxfield,C., “Logic that Mutates While-U-Wait,” EDN (Bur. Ed) (USA), EDN (European Edition), Nov. 7, 1996, Cahners Publishing, USA, pp. 137-140, 142. |
Mei, Bingfeng, “A Coarse-Grained Reconfigurable Architecture Template and Its Compilation Techniques,” Katholeike Universiteit Leuven, PhD Thesis, Jan. 2005, IMEC vzw, Universitair Micro-Electronica Centrum, Belgium, pp. 1-195 (and Table of Contents). |
Mei, Bingfeng et al., “Design and Optimization of Dynamically Reconfigurable Embedded Systems,” IMEC vzw, 2003, Belgium, 7 pages, http://www.imec.be/reconfigurable/pdf/ICERSA—01—design.pdf. |
Mei, Bingfeng et al., “Adres: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,” Proc. Field-Programmable Logic and Applications (FPL 03), Springer, 2003, pp. 61-70. |
Melvin, Stephen et al., “Hardware Support for Large Atomic Units in Dynamically Scheduled Machines,” Computer Science Division, University of California, Berkeley, IEEE (1988), pp. 60-63. |
Miller, M.J., et al., “High-Speed FIFOs Contend with Widely Differing Data Rates: Dual-port RAM Buffer and Dual-pointer System Provide Rapid, High-density Data Storage and Reduce Overhead,” Computer Design, Sep. 1, 1985, pp. 83-86. |
Mirsky, E. DeHon, “MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157-166. |
Miyamori, T., et al., “REMARC: Reconfigurable Multimedia Array Coprocessor,” Computer Systems Laboratory, Stanford University, IEICE Transactions on Information and Systems E Series D, 1999; (abstract): Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, p. 261, Feb. 22-25, 1998, Monterey, California, United States, pp. 1-12. |
Moraes, F., et al., “A Physical Synthesis Design Flow Based on Virtual Components,” XV Conference on Design of Circuits and Integrated Systems (Nov. 2000) 6 pages. |
Muchnick, S., “Advanced Compiler Design and Implementation,” (Morgan Kaufmann 1997), Table of Contents, 11 pages. |
Murphy, C., “Virtual Hardware Using Dynamic Reconfigurable Field Programmable Gate Arrays,” Engineering Development Centre, Liverpool John Moores University, UK, GERI Annual Research Symposium 2005, 8 pages. |
Myers, G. “Advances in Computer Architecture,” Wiley-Interscience Publication, 2nd ed., John Wiley & Sons, Inc., 1978, pp. 463-494. |
Nageldinger, U., “Design-Space Exploration for Coarse Grained Reconfigurable Architectures,” (Dissertation) Universitaet Kaiserslautern, 2000, Chapter 2, pp. 19-45. |
Neumann, T., et al., “A Generic Library for Adaptive Computing Environments,” Field Programmable Logic and Applications, 11th International Conference, FPL 2001, Proceedings (Lecture Notes in Computer Science, vol. 2147) (2001) pp. 503-512. |
Nilsson, et al., “The Scalable Tree Protocol—A Cache Coherence Approaches for Large-Scale Multiprocessors,” IEEE, pp. 498-506, Dec. 1992. |
Norman, R.S., “Hyperchip Business Summary, The Opportunity,” Jan. 31, 2000, pp. 1-3. |
Ohmsha, “Information Processing Handbook,” edited by the Information Processing Society of Japan, pp. 376, Dec. 21, 1998. |
Olukotun, K., “The Case for a Single-Chip Microprocessor,” ACM Sigplan Notices, ACM, Association for Computing Machinery, New York, vol. 31, No. 9, Sep. 1996 pp. 2-11. |
Ozawa, Motokazu et al., “A Cascade ALU Architecture for Asynchronous Super-Scalar Processors,” IEICE Transactions on Electronics, Electronics Society, Tokyo, Japan, vol. E84-C, No. 2, Feb. 2001, pp. 229-237. |
PACT Corporation, “The XPP Communication System,” Technical Report 15 (2000), pp. 1-16. |
Parhami, B., “Parallel Counters for Signed Binary Signals,” Signals, Systems and Computers, 1989, Twenty-Third Asilomar Conference, vol. 1, pp. 513-516. |
PCI Local Bus Specification, Production Version, Revision 2.1, Portland, OR, Jun. 1, 1995, pp. 1-281. |
Piotrowski, A., “IEC-BUS, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten and Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25. [English Abstract Provided]. |
Pirsch, P. et al., “VLSI implementations of image and video multimedia processing systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, No. 7, Nov. 1998, pp. 878-891. |
Pistorius et al., “Generation of Very Large Circuits to Benchmark the Partitioning of FPGAs,” Monterey, CA, ACM 1999, pp. 67-73. |
Price et al., “Debug of Reconfigurable Systems,” Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187. |
Quenot, G.M., et al., “A Reconfigurable Compute Engine for Real-Time Vision Automata Prototyping,” Laboratoire Systeme de Perception, DGA/Etablissement Technique Central de l'Armement, France, 1994 IEEE, pp. 91-100. |
Razdan et al., A High-Performance Microarchitecture with Hardware-Programmable Functional Units, Micro-27, Proceedings of the 27th Annual International Symposium on Microarchitecture, IEEE Computer Society and Association for Computing Machinery, Nov. 30-Dec. 2, 1994, pp. 172-180. |
Rotenberg, Eric., et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching,” Proceedings of the 29th Annual International Symposium on Microarchitecture, Paris, France, IEEE (1996), 12 pages. |
Saleeba, Z.M.G., “A Self-Reconfiguring Computer System,” Department of Computer Science, Monash University (Dissertation) 1998, pp. 1-306. |
Salefski, B. et al., “Re-configurable computing in wireless,” Annual ACM IEEE Design Automation Conference: Proceedings of the 38th conference on Design automation (2001) pp. 178-183. |
Schmidt, H. et al., “Behavioral synthesis for FGPA-based computing,” Carnegie Mellon University, Pittsburgh, PA, 1994 IEEE, pp. 125-132. |
Schmidt, U. et al., “Datawave: A Single-Chip Multiprocessor for Video Applications,” IEEE Micro, vol. 11, No. 3, May/Jun. 1991, pp. 22-25, 88-94. |
Schmit, et al., “Hidden Markov Modeling and Fuzzy Controllers in FPGAs, FPGAs for Custom Computing Machines,” 1995; Proceedings, IEEE Symposium in Napa Valley, CA, Apr. 1995, pp. 214-221. |
Schönfeld, M., et al., “The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and.Fault Tolerance by Reconfiguration and Coding Techniques,” J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, (Oct. 1, 1995) vol. 11(1/2), pp. 51-74. |
Shin, D., et al., “C-based Interactive RTL Design Methodology,” Technical Report CECS-03-42 (Dec. 2003) pp. 1-16. |
Shirazi, et al., “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,” IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, Apr. 19-21, 1995, pp. 155-162. |
Siemers et al., “The .>S<puter: A Novel Micoarchitecture Model for Execution inside Superscalar and VLIW Processors Using Reconfigurable Hardware,” Australian Computer Science Communications, vol. 20, No. 4, Computer Architecture, Proceedings of the 3rd Australian Computer Architecture Conference, Perth, John Morris, Ed., Feb. 2-3, 1998, pp. 169-178. |
Simunic, et al., Source Code Optimization and Profiling of Energy Consumation in Embedded Systems, Proceedings of the 13th International Symposium on System Synthesis, Sep. 2000, pp. 193-198. |
Singh, H. et al., “MorphoSys: An Integrated Reconfigurable System for Data-Parallel Computation-Intensive Applications,” University of California, Irvine, CA. and Federal University of Rio de Janeiro, Brazil, 2000, IEEE Transactions on Computers, pp. 1-35; also published in IEEE Transactions on Computers, vol. 49, No. 5, May 2000, pp. 465-481. |
Skokan, Z.E., “Programmable logic machine (A programmable cell array),” IEEE Journal of Solid-State Circuits, vol. 18, Issue 5, Oct. 1983, pp. 572-578. |
Sondervan, J., “Retiming and logic synthesis,” Electronic Engineering (Jan. 1993) vol. 65(793), pp. 33, 35-36. |
Soni, M., “VLSI Implementation of a Wormhole Run-time Reconfigurable Processor,” Jun. 2001, (Masters Thesis)Virginia Polytechnic Institute and State University, 88 pages. |
Sueyoshi, T, “Present Status and Problems of the Reconfigurable Computing Systems Toward the Computer Evolution,” Department of Artificial Intelligence, Kyushi Institute of Technology, Fukuoka, Japan; Institute of Electronics, Information and Communication Engineers, vol. 96, No. 426, IEICE Technical Report (1996), pp. 111-119 [English Abstract Only]. |
Sundararajan et al., “Testing FPGA Devices Using JBits,” Proc. MAPLD 2001, Maryland, USA, Katz (ed.), Nasa, CA, 8 pages. |
Sutton et al., “A Multiprocessor DSP System Using PADDI-2,” U.C. Berkeley, 1998 ACM, pp. 62-65. |
Tau, E., et al., “A First Generation DPGA Implementation,” FPD'95, pp. 138-143. |
Tenca, A.F., et al., “A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architectures,” University of California, Los Angeles, 1998, pp. 216-225. |
The XPP White Paper, Release 2.1, PACT—A Technical Perspective, Mar. 27, 2002, pp. 1-27. |
TMS320C54X DSP: CPU and Peripherals, Texas Instruments, 1996, 25 pages. |
TMS320C54x DSP: Mnemonic Instruction Set, Texas Instruments, 1996, 342 pages. |
Translation of DE 101 39 170, filed Aug. 16, 2001, by examiner in related case using Google Translate, 10 pages. |
Tsutsui, A., et al., “YARDS: FPGA/MPU Hybrid Architecture for Telecommunication Data Processing,” NTT Optical Network Systems Laboratories, Japan, 1997 ACM, pp. 93-99. |
Vasell et al., “The Function Processor: A Data-Driven Processor Array for Irregular Computations,” Chalmers University of Technology, Sweden, 1992, pp. 1-21. |
Villasenor, et al., “Configurable Computing Solutions for Automatic Target Recognition,” IEEE, 1996 pp. 70-79. |
Villasenor, et al., “Configurable Computing,” Scientific American, vol. 276, No. 6, Jun. 1997, pp. 66-71. |
Villasenor, et al., “Express Letters Video Communications Using Rapidly Reconfigurable Hardware,” IEEE Transactions on Circuits and Systems for Video Technology, IEEE, Inc., NY, Dec. 1995, pp. 565-567. |
Wada, et al., “A Performance Evaluation of Tree-based Coherent Distributed Shared Memory,” Proceedings of the Pacific RIM Conference on Communications, Comput and Signal Processing, Victoria, May 19-21, 1993, pp. 390-393. |
Waingold, E., et al., “Baring it all to software: Raw machines,” IEEE Computer, Sep. 1997, at 86-93. |
Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, p. 332 (definition of “dedicated”). |
Weinhardt, M., “Compilation Methods for Structure-programmable Computers,” dissertation, ISBN 3-89722-011-3, 1997. [Table of Contents and English Abstract Provided]. |
Weinhardt, Markus et al., “Pipeline Vectorization for Reconfigurable Systems,” 1999, IEEE, pp. 52-62. |
Weinhardt, Markus et al., “Pipeline Vectorization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, No. 2, Feb. 2001, pp. 234-248. |
Weinhardt, Markus et al., “Memory Access Optimization for Reconfigurable Systems,” IEEE Proceedings Computers and Digital Techniques, 48(3) (May 2001) pp. 1-16. |
Wittig, et al., “OneChip: An FPGA Processor with Reconfigurable Logic,” IEEE, 1996, pp. 126-135. |
Wolfe, M. et al., “High Performance Compilers for Parallel Computing,” (Addison-Wesley 1996) Table of Contents, 11 pages. |
Wu, et al., “A New Cache Directory Scheme,” IEEE, pp. 466-472, Jun. 1996. |
Xilinx, “Logic Cell Array Families: XC4000, XC4000A and XC4000H,” 1994, product description, pp. 2-7, 2-9, 2-14, 2-15, 8-16, and 9-14. |
Xilinx, “The Programmable Logic Data Book,” 1994, Section 2, pp. 1-231, Section 8, pp. 1, 23-25, 29, 45-52, 169-172. |
Xilinx, “Spartan and SpartanXL Families Field Programmable Gate Arrays,” Jan. 1999, Xilinx, pp. 4-3 through 4-70. |
Xilinx, “XC6200 Field Programmable Gate Arrays,” Apr. 24, 1997, Xilinx product description, pp. 1-73. |
Xilinx, “XC3000 Series Field Programmable Gate Arrays,” Nov. 6, 1998, Xilinx product description, pp. 1-76. |
Xilinx, “XC4000E and XC4000X Series Field Programmable Gate Arrays,” May 14, 1999, Xilinx product description, pp. 1-68. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v1.5) Jul. 17, 2002, Xilinx Production Product Specification, pp. 1-118. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v2.2) Sep. 10, 2002, Xilinx Production Product Specification, pp. 1-52. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA User Guide,” Mar. 28, 2007, Xilinx user guide, pp. 1-559. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA Platform FPGAs: Complete Data Sheet,” (v4.6) Mar. 5, 2007, pp. 1-302. |
Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” (v3.5) Nov. 5, 2007, pp. 1-226. |
Xilinx, White Paper 370: (Virtex-6 and Spartan-6 FPGA Families) “Reducing Switching Power with Intelligent Clock Gating,” Frederic Rivoallon, May 3, 2010, pp. 1-5. |
Xilinx, White Paper 298: (Spartan-6 and Virtex-6 Devices) “Power Consumption at 40 and 50 nm,” Matt Klein, Apr. 13, 2009, pp. 1-21. |
Xu, H. et al., “Parallel QR Factorization on a Block Data Flow Architecture,” Conference Proceeding Article, Mar. 1, 1992, pp. 332-336. |
Ye, Z.A. et al., “A C-Compiler for a Processor With a Reconfigurable Functional Unit,” FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gate Arrays, Monterey, CA Feb. 9-11, 2000, pp. 95-100. |
Yeung, A. et al., “A data-driven architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, Proceedings VLSI Signal Processing Workshop, IEEE Press, pp. 225-234, Napa, Oct. 1992. |
Yeung, A. et al., “A reconfigurable data-driven multiprocessor architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, pp. 169-178, IEEE 1993. |
Zhang, et al., “Architectural Evaluation of Flexible Digital Signal Processing for Wireless Receivers, Signals, Systems and Computers,” 2000; Conference Record of the Thirty-Fourth Asilomar Conference, Bd. 1, Oct. 29, 2000, pp. 78-83. |
Zhang, et al., “A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing,” IEEE Journal of Solid-State Circuits, vol. 35, No. 11, Nov. 2000, pp. 1697-1704. |
Zhang et al., “Abstract: Low-Power Heterogeneous Reconfigurable Digital Signal Processors with Energy-Efficient Interconnect Network,” U.C. Berkeley (2004), pp. 1-120. |
Zima, H. et al., “Supercompilers for parallel and vector computers,” (Addison-Wesley 1991) Table of Contents, 5 pages. |
Microsoft Press Computer Dictionary, Third Edition, Redmond, WA, 1997, 3 pages. |
Microsoft Press Computer Dictionary, Second Edition, Redmond, WA, 1994, 3 pages. |
A Dictionary of Computing, Fourth Edition, Oxford University Press, 1997, 4 pages. |
Communications Standard Dictionary, Third Edition, Martin Welk (Ed.), Chapman & Hall, 1996, 3 pages. |
Dictionary of Communications Technology, Terms Definitions and Abbreviations, Second Edition, Gilbert Held (Ed.), John Wiley & Sons, England, 1995, 5 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 14 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 4 pages. |
Random House Personal Computer Dictionary, Second Edition, Philip E. Margolis (Ed.), Random House, New York, 1996, 5 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 36 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 8 pages. |
McGraw-Hill Electronics Dictionary, Sixth Edition, Neil Sclater et al. (Ed.), McGraw-Hill, 1997, 3 pages. |
Modern Dictionary of Electronics, Sixth Edition, Rudolf Graf (Ed.), Newnes (Butterwoth-Heinemann), 1997, 5 pages. |
The American Heritage Dictionary, Fourth Edition, Dell (Houghton-Mifflin), 2001, 5 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 23 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 8 pages. |
The American Heritage Dictionary, Third Edition, Dell Publishing (Bantam Doubleday Dell Publishing Group, Inc.), 1994, 4 pages. |
The American Heritage Dictionary, Fourth Edition, Dell/Houghton Mifflin 2001, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 4 pages. |
The Oxford American Dictionary and Language Guide, Oxford University Press, 1999, 5 pages. |
The Oxford Duden German Dictionary, Edited by the Dudenredaktion and the German Section of the Oxford University Press, W. Scholze-Stubenrecht et al. (Eds), Clarendon Press, Oxford, 1990, 7 pages. |
Oxford Dictionary of Computing, Oxford University Press, 2008, 4 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 7 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 5 pages. |
Garner's Modern American Usage, Bryan A. Garner (Ed.), Oxford University Press, 2003, 3 pages. |
The New Fowler's Modern English Usage, R.W. Burchfield (Ed.), Oxford University Press, 2000, 3 pages. |
Wikipedia, the free encyclopedia, “Granularity,” at http://en.wikipedia.org/wiki/Granularity, Jun. 18, 2010, 4 pages. |
Wordsmyth, The Premier Educational Dictionary—Thesaurus, at http://www.wordsmyth.net, “communication,” Jun. 18, 2010, 1 page. |
Yahoo! Education, “affect,” at http://education.yahoo.com/reference/dictionary/entry/affect, Jun. 18, 2010, 2 pages. |
mPulse Living Language, “high-level,” at http://www.macmillandictionary.com/dictionary/american/high-level, Jun. 18, 2010, 1 page. |
MSN Encarta, “regroup,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=regroup, Jun. 17, 2010, 2 pages. |
MSN Encarta, “synchronize,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=synchronize, Jun. 17, 2010, 2 pages. |
MSN Encarta, “pattern,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=pattern, Jun. 17, 2010, 2 pages. |
MSN Encarta, “dimension,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=dimension, Jun. 17, 2010, 2 pages. |
MSN Encarta, “communication,” at http://enearta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=communication, Jun. 17, 2010, 2 pages. |
MSN Encarta, “arrangement,” at http://encarta.msn.com/encnet/features/dictionary/DietionaryResults.aspx?lextype=3&search=arrangement , Jun. 17, 2010, 2 pages. |
MSN Encarta, “vector,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=vector, Jul. 30, 2010, 2 pages. |
Dictionary.com, “address,” at http://dictionary.reference.com/browse/address, Jun. 18, 2010, 4 pages. |
P.R . 4-3 Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc et al., E.D. Texas, 2:07-cv-00563-CE, Jul. 19, 2010, pp. 1-50. |
Order Granting Joint Motion for Leave to File an Amended Joint Claim Construction and Prehearing Statement and Joint Motion to File an Amended Joint Claim Construction and Prehearing Statement Pursuant to Local Patent Rule 4-3, and Exhibit A: P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, 72 pages. |
P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 3, 2010, pp. 1-65. |
Exhibit A—P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, pp. 1-66. |
PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-55. |
Declaration of Harry L. (Nick) Tredennick in Support of PACT's Claim Constructions, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-87. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 16 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-3. |
Agreed and Disputed Terms, Exhibit 17 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-16. |
Oral Videotaped Deposition—Joseph McAlexander dated Oct. 12, 2010, vol. 1, Exhibit 18 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-17. |
Expert Report of Joe McAlexander Re Claim Construction dated Sep. 27, 2010, Exhibit 19 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-112. |
Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999, Exhibit 20 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-37. |
Amendment from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 25 of PACT's Opening Claim Construction Brief, PACT XXP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Documents from File History U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 27 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-36. |
Amendment from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 39 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-9. |
Amendment from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 40 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-55. |
Declaration of Aaron Taggart in Support of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief (Exhibit A), PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-5. |
Oral Videotaped Deposition Joseph McAlexander (Oct. 12, 2010), Exhibit 1 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Expert Report of Joe McAlexander re Claim Construction, Exhibit 2 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Various Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999, Exhibit 6 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-181. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 7 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-28. |
Amendment, Response from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 15 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Application from File History of U.S. Appl. No. 08/544,435, filed Nov. 17, 1995, Exhibit 20 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-102. |
Documents from File History of U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 24 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010 , pp. 1-13. |
Documents from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 25 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-14. |
Amendment from File History of U.S. Appl. No. 11/246,617, filed Oct. 7, 2005, Exhibit 26 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, Exhibit 27 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-38. |
Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, specifically, German priority application specification [English translation provided], Exhibit 33 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PAXT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, 54 pages [including English translation]. |
Documents from File History of U.S. Appl. No. 09/335,974, filed Jun. 18, 1999, Exhibit 28 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-32. |
Documents from File History of U.S. Patent Reexamination Control No. 90/010,450, filed Mar. 27, 2009, Exhibit 30 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-71. |
Documents from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 32 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-23. |
PACT's Claim Construction Reply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 7, 2011, pp. 1-20. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Claim Construction Surreply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 18, 2011, 142 pages. |
Markman Hearing Minutes and Attorney Sign-In Sheet, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Feb. 22, 2011, 3 pages; and court transcript, 245 pages. |
Memorandum Opinion and Order, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jun. 17, 2011, pp. 1-71. |
Atmel Corporation, Atmel 5-K-50K Gates Coprocessor FPGA and FreeRAM, (www.atmel.com), Apr. 2002 , pp. 1-68. |
Glaskowsky, Peter N., “PACT Debuts Extreme Processor; Reconfigurable ALU Array Is Very Powerful—and Very Complex,” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Oct. 9, 2000 (www.MPRonline.com), 6 pages. |
Glaskowsky, Peter N., “Analysis' Choice Nominees Named; Our Picks for 2002's Most Important Products and Technologies,” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Dec. 9, 2002 (www.MPRonline.com), 4 pages. |
Lattice Semiconductor Corporation, “ispLSI 2000E, 2000VE and 2000 VL Family Architectural Description,” Oct. 2001, pp. 1-88. |
Olukotun, K. et al., “Rationale, Design and Performance of the Hydra Multiprocessor,” Computer Systems Laboratory, Stanford University, CA, Nov. 1994, pp. 1-19. |
PACT Corporate Backgrounder, PACT company release, Oct. 2008, 4 pages. |
Page, Ian., “Reconfigurable processor architectures,” Oxford University Computing Laboratory, Oxford UK, Elsevier Science B.V., Microprocessors an Microsystems 20 (1996) pp. 185-196. |
Singh, Hartej et al., “Morpho-Sys: A Reconfigurable Architecture for Multimedia Applications,” Univ. of California, Irvine, CA and Federal University of Rio de Janiero, Brazil, at http://www.eng.uci.edu/morphosys/docs/sbcci98.html, Jun. 18, 2010, 10 pages. |
Theodoridis, G. et al., “Chapter 2—A Survey of Coarse-Grain Reconfigurable Architectures and Cad Tools, Basic Definitions, Critical Design Issues and Existing Coarse-grain Reconfigurable Systems,” from S. Vassiliadis, and D. Soudris (eds.) Fine- and Coarse-Grained Reconfigurable Computing, Springer 2007, pp. 89-149. |
Weinhardt, Markus et al., “Using Function Folding to Improve Silicon Efficiency of Reconfigurable Arithmetic Arrays,” PACT XPP Technologies AG, Munich, Germany, IEEE 2004, pp. 239-245. |
Xilinx, XC6200 Field Programmable Gate Arrays, Advance Product Specification, Jun. 1, 1996 (Version 1.0), pp. 4-255 through 4-286. |
Xilinx, Virtex-II Platform FPGA User Guide, UG002 (V2.1) Mar. 28, 2007, pp. 1-502 [Parts 1-3]. |
Xilinx, XC4000E and SC4000X Serial Field Programmable Gate Arrays, Product Specification (Version 1.6), May 14, 1999, pp. 1-107. |
Agarwal, A., et al., “APRIL: A Processor Architecture for Multiprocessing,” Laboratory for Computer Science, MIT, Cambridge, MA, IEEE 1990, pp. 104-114. |
Almasi and Gottlieb, Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989, 3 pages (Fig. 4.1). |
Advanced RISC Machines Ltd (ARM), “AMBA—Advanced Microcontroller Bus Architecture Specification,” (Document No. ARM IHI 0001C), Sep. 1995, 72 pages. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Additional XC3000 Data,” XAPP 024.000, 1994, pp. 8-11 through 8-20. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Adders, Subtracters and Accumulators in XC3000,” XAPP 022.000, 1994, pp. 8-98 through 8-104. |
Alfke, Peter, Xilinx Application Note, “Megabit FIFO in Two Chips: One LCA Device and One DRAM,” XAPP 030.000, 1994, pp. 8-148 through 8-150. |
Alfke, Peter, Xilinx Application Note, “Dynamic Reconfiguration,” XAPP 093, Nov. 10, 1997, pp. 13-45 through 13-46. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Implementing State Machines in LCA Devices,” XAPP 027.001, 1994, pp. 8-169 through 8-172. |
Algotronix, Ltd., CAL64K Preliminary Data Sheet, Apr. 1989, pp. 1-24. |
Algotronix, Ltd., CAL4096 Datasheet, 1992, pp. 1-53. |
Algotronix, Ltd., CHS2x4 User Manual, “CHA2x4 Custom Computer,” 1991, pp. 1-38. |
Allaire, Bill; Fischer, Bud, Xilinx Application Note, “Block Adaptive Filter,” XAPP 055, Aug. 15, 1996 (Version 1.0), pp. 1-10. |
Altera Application Note (73), “Implementing FIR Filters in FLEX Devices,” Altera Corporation, Feb. 1998, ver. 1.01, pp. 1-23. |
Athanas, P. (Thesis), “An adaptive machine architecture and compiler for dynamic processor reconfiguration,” Brown University 1992, pp. 1-157. |
Berkeley Design Technology, Inc., Buyer's Guide to DSP Processors, 1995, Fremont, CA., pp. 673-698. |
Bittner, R. et al., “Colt: An Experiment in Wormhole Run-Time Reconfiguration,” Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, SPIE—International Society for Optical Engineering, vol. 2914/187, Nov. 1996, Boston, MA, pp. 187-194. |
Camilleri, Nick; Lockhard, Chris, Xilinx Application Note, “Improving XC4000 Design Performance,” XAPP 043.000, 1994, pp. 8-21 through 8-35. |
Cartier, Lois, Xilinx Application Note, “System Design with New XC4000EX I/O Features,” Feb. 21, 1996, pp. 1-8. |
Chen, D., (Thesis) “Programmable arithmetic devices for high speed digital signal processing,” U. California Berkeley 1992, pp. 1-175. |
Churcher, S., et al., “The XC6200 FastMap TM Processor Interface,” Xilinx, Inc., Aug. 1995, pp. 1-8. |
Cowie, Beth, Xilinx Application Note, “High Performance, Low Area, Interpolator Design for the XC6200,” XAPP 081, May 7, 1997 (Version 1.0), pp. 1-10. |
Duncan, Ann, Xilinx Application Note, “A32x16 Reconfigurable Correlator for the XC6200,” XAPP 084, Jul. 25, 1997 (Version 1.0), pp. 1-14. |
Ebeling, C., et al., “RaPiD—Reconfigurable Pipelined Datapath,” Dept. of Computer Science and Engineering, U. Washington, 1996, pp. 126-135. |
Epstein, D., “IBM Extends DSP Performance with Mfast—Powerful Chip Uses Mesh Architecture to Accelerate Graphics, Video,” 1995 MicroDesign Resources, vol. 9, No. 16, Dec. 4, 1995, pp. 231-236. |
Fawcett, B., “New SRAM-Based FPGA Architectures Address New Applications,” Xilinx, Inc. San Jose, CA, Nov. 1995, pp. 231-236. |
Goslin, G; Newgard, B, Xilinx Application Note, “16-Tap, 8-Bit FIR Filter Applications Guide,” Nov. 21, 1994, pp. 1-5. |
Iwanczuk, Roman, Xilinx Application Note, “Using the XC4000 RAM Capability,” XAPP 031.000, 1994, pp. 8-127 through 8-138. |
Knapp, Steven, “Using Programmable Logic to Accelerate DSP Functions,” Xilinx, Inc., 1995, pp. 1-8. |
New, Bernie, Xilinx Application Note, “Accelerating Loadable Counters in SC4000,” XAPP 023.001, 1994, pp. 8-82 through 8-85. |
New, Bernie, Xilinx Application Note, “Boundary Scan Emulator for XC3000,” XAPP 007.001, 1994, pp. 8-53 through 8-59. |
New, Bernie, Xilinx Application Note, “Ultra-Fast Synchronous Counters,” XAPP 014.001, 1994, pp. 8-78 through 8-81. |
New, Bernie, Xilinx Application Note, “Using the Dedicated Carry Logic in XC4000,” XAPP 013.001, 1994, pp. 8-105 through 8-115. |
New, Bernie, Xilinx Application Note, “Complex Digital Waveform Generator,” XAPP 008.002, 1994, pp. 8-163 through 8-164. |
New, Bernie, Xilinx Application Note, “Bus-Structured Serial Input-Output Device,” XAPP 010.001, 1994, pp. 8-181 through 8-182. |
Ridgeway, David, Xilinx Application Note, “Designing Complex 2-Dimensional Convolution Filters,” XAPP 037.000, 1994, pp. 8-175 through 8-177. |
Rowson, J., et al., “Second-generation compilers optimize semicustom circuits,” Electronic Design, Feb. 19, 1987, pp. 92-96. |
Schewel, J., “A Hardware/Software Co-Design System using Configurable Computing Technology,” Virtual Computer Corporation, Reseda, CA, IEEE 1998, pp. 620-625. |
Segers, Dennis, Xilinx Memorandum, “MIKE—Product Description and MRD,” Jun. 8, 1994, pp. 1-29. |
Texas Instruments, “TMS320C8x System-Level Synopsis,” Sep. 1995, 75 pages. |
Texas Instruments, “TMS320C80 Digital Signal Processor,” Data Sheet, Digital Signal Processing Solutions 1997, 171 pages. |
Texas Instruments, “TMS320C80 (MVP) Parallel Processor,” User's Guide, Digital Signal Processing Products 1995, 73 pages. |
Trainor, D.W., et al., “Implementation of the 2D DCT Using a Xilinx XC6264 FPGA,” 1997, IEEE Workshop of Signal Processing Systems SiPS 97, pp. 541-550. |
Trimberger, S, (Ed.) et al., “Field-Programmable Gate Array Technology,” 1994, Kluwer Academic Press, pp. 1-258 (and the Title Page, Table of Contents, and Preface) [274 pages total]. |
Trimberger, S., “A Reprogrammable Gate Array and Applications,” IEEE 1993, Proceedings of the IEEE, vol. 81, No. 7, Jul. 1993, pp. 1030-1041. |
Trimberger, S., et al., “A Time-Multiplexed FPGA,” Xilinx, Inc., 1997 IEEE, pp. 22-28. |
Ujvari, Dan, Xilinx Application Note, “Digital Mixer in an XC7272,” XAPP 035.002, 1994, p. 1. |
Veendrick, H., et al., “A 1.5 GIPS video signal processor (VSP),” Philips Research Laboratories, The Netherlands, IEEE 1994 Custom Integrated Circuits Conference, pp. 95-98. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (TMS320C50 Example),” XAPP 064, Oct. 9, 1996 (Version 1.1), pp. 1-9. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (MC68020 Example),” XAPP 063, Oct. 9, 1996 (Version 1.1), pp. 1-8. |
XCELL, Issue 18, Third Quarter 1995, “Introducing three new FPGA Families!”; “Introducing the XC6200 FPGA Architecture: The First FPGA Architecture Optimized for Coprocessing in Embedded System Applications,” 40 pages. |
Xilinx Application Note, Advanced Product Specification, “XC6200 Field Programmable Gate Arrays,” Jun. 1, 1996 (Version 1.0), pp. 4-253-4-286. |
Xilinx Application Note, “A Fast Constant Coefficient Multiplier for the XC6200,” XAPP 082, Aug. 24, 1997 (Version 1.0), pp. 1-5. |
Xilinx Technical Data, “XC5200 Logic Cell Array Family,” Preliminary (v1.0), Apr. 1995, pp. 1-43. |
Xilinx Data Book, “The Programmable Logic Data Book,” 1996, 909 pages. |
Xilinx, Series 6000 User's Guide, Jun. 26, 1997, 223 pages. |
Yeung, K., (Thesis) “A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing,” Electronics Research Laboratory, U. California Berkeley, Jul. 10, 1995, pp. 1-153. |
Yeung, L., et al., “A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP,” Dept. of EECS, U. California Berkeley, 1995 IEEE International Solid State Circuits Conference, pp. 108-110. |
ZILOG Preliminary Product Specification, “Z86C95 CMOS Z8 Digital Signal Processor,” 1992, pp. 1-82. |
ZILOG Preliminary Product Specification, “Z89120 Z89920 (ROMless) 16-Bit Mixed Signal Processor,” 1992, pp. 1-82. |
Defendants' Invalidity Contentions in PACT XPP Technologies, AG v. XILINX, Inc., et al., (Ed. Texas Dec. 28, 2007) (No. 2:07cv563)., including Exhibits A through K in separate PDF files. |
Ramanathan et al., “Reconfigurable Filter Coprocessor Architecture for DSP Applications,” Journal of VLSI Signal Processing, 2000, vol. 26, pp. 333-359. |
Shanley, Tom, Pentium Pro and Pentium II System Architecture, MindShare, Inc., Addition Wesley, 1998, Second Edition, pp. 11-17; Chapter 7; Chapter 10; pp. 209-211, and p. 394. |
Shoup, Richard, “Programmable Cellular Logic Arrays,” Dissertation, Computer Science Department, Carnegie-Mellon University, Mar. 1970, 193 pages. |
Zucker, Daniel F., “A Comparison of Hardware Prefetching Techniques for Multimedia Benchmarks,” Technical Report: CSL-TR-95-683, Dec. 1995, 26 pages. |
Coelho, F., “Compiling dynamic mappings with array copies,” Jul. 1997, 12 pages, http://delivery.acm.org/10.1145/270000/263786/p168-coehlo.pdf. |
Janssen et al., “A Specification Invariant Technique for Regularity Improvement between Flow-Graph Clusters,” Mar. 1996, 6 pages, http://delivery.acm.org/10.1145/790000/787534/74230138.pdf. |
Microsoft Press Computer Dictionary, Second Edition, 1994, Microsoft Press, ISBN 1-55615-597-2, p. 10. |
Newton, Harry, “Newton's Telecom Dictionary,” Ninteenth Edition, 2003, CMP Books, p. 40. |
Rehmouni et al., “Formulation and evaluation of scheduling techniques for control flow graphs,” Dec. 1995, 6 pages, http://delivery.acm.org/10.1145/230000/224352/p386-rahmouni.pdf. |
Sinha et al., “System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow,” May 1999, 10 pages, http://delivery.acm.org./10.1145/310000/203675/p432-sinha.pdf. |
Stallings, William, “Data & Computer Communications,” Sixth Edition, Jun. 2000, Prentice-Hall, Inc., ISBN 0-084370-9, pp. 195-196. |
Number | Date | Country | |
---|---|---|---|
20120079327 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12354590 | Jan 2009 | US |
Child | 13279561 | US | |
Parent | 10487687 | US | |
Child | 12354590 | US |