The present invention relates to the finishing of parts produced by injection-molding a ceramic slurry into a mold formed by assembling at least two parts along a parting line. The invention relates more specifically to the removal of flash from the area of the parting line of the two parts. The invention is concerned with ceramic cores used in the manufacture of hollow blades for turbine engines by the investment casting process.
The use of so-called “ceramic” foundry cores is particularly familiar in certain applications that require a range of severe quality characteristics and criteria such as resistance to high temperatures, lack of reactivity, dimensional stability, and good mechanical properties. As is known, applications having such demands include aeronautical applications and, for example, the manufacture by casting of turbine blades for jet engines. Advancement in molding processes from so-called equiaxed casting to directional solidification casting or monocrystalline casting has further ramped up these demands concerning cores whose use and complexity are necessitated by the search for high performance in the parts to be obtained, as is the case for example with internally cooled hollow blades.
The desired complex crystalline structure of the blade is incompatible with having flash on the core. Flash can become detached during casting and contaminate the part by creating inclusions and/or geometrical defects. A piece of flash that remains in place creates a fissure in the part and therefore a crack initiator. Cores therefore must be deflashed.
This operation is traditionally done by hand following firing. However, manual deburring of thin, complicated cores such as the cores of the moving blades of high-pressure (HP) stages or the fixed HP turbine nozzle assemblies, is more and more difficult to do accurately and reproducibly, because it has to be possible to do these high-precision operations on a production line. What is more, these repeated operations on cores can be harmful to the health of operators by giving rise of musculoskeletal disorders (MSDs).
Manual deburring can generate high levels of rejects with defects such as the following: incipient cracks, core breakages during handling, lack of reproducibility, and delamination of the core leading to inclusions in the metal parts.
Efforts have been made to automate the process of deburring the part after firing. However, the results are unsatisfactory because the deformation of the parts is poorly understood due to shrinkage after firing. This shrinkage makes deburring by machining very difficult and hard to automate.
This problem is solved with a method, according to the invention, for deburring a ceramic foundry core obtained by injection-molding a ceramic slurry, said slurry containing a binder with a predetermined glass transition temperature, into a mold and having at least one surface portion with surplus material forming flash to be removed, said method being characterized in that it comprises the following steps:
By means of the invention, by deburring before firing the foundry core, the problem of the dimensional variation of the core is avoided and the way is opened up to carry out this operation by means of a robot. This ensures better reproducibility of deburring from one core to the next, leading to better quality deburring and a decrease in the part breakage rate. A better quality core also means that the number of incipient cracks is reduced, leading to a decrease in manufacturing cycles and therefore a reduction in costs.
It is advantageous to use a milling tool with a helix angle of between 20° and 70° and a hemispherical tip. In this way, cut material is carried well away from the cutting zone, reducing the risk of clogging.
More particularly the cutting parameters are:
In accordance with another feature, cooling is provided by diffusing a fluid toward the surface portion to be deflashed. This may be air, for example.
The method is particularly suitable for deburring ceramic cores for turbine engine blades. It results in particular in a decrease in incipient cracks in the cast products.
In order to implement the method, it is preferred to use equipment for finishing ceramic cores of mold parts comprising a support for said core, a toolholding chuck that is rotatable about its axis, and at least one cooling fluid injection nozzle.
The method will now be described in more detail with reference to the appended drawings, in which:
This rather complex part is produced by injection-molding a ceramic slurry with the aid of a press. The slurry is obtained by mixing a binder, an organic polymer, and particles of ceramic materials. The mixture is injected by means of injection presses, such as screw-type injection presses, into a metal injection mold. This mold is an assembly of at least two elements with impressions, which are brought into contact with each other along a meeting surface usually known as the parting line. During the injection the slurry progressively spreads from the inlet orifice through the volume defined by the impressions. However, some material creeps out between the surfaces of the parting line. On demolding, this surplus material forms the flash.
After injection molding, the rest of the core manufacturing method consists in demolding the core, firing it in a furnace at high temperature, finishing it and performing dimensional checking.
The purpose of finishing is to remove the flash B1, B2 and B3. Flash can be removed either immediately after injection of the mixture, that is deburring before firing, or after firing, in other words deburring the core in the fired state.
The normal manual deburring can introduce numerous defects as reported above.
Trials of automatic deburring using cutting tools such as milling cutters have been carried out on cores after firing. They do not give conclusive results owing in part to the fact that cores in the fired state have differing firing shrinkages. The position of the tool cannot therefore be defined accurately and reproducibly because of milling cutter wear due to the abrasion and hardness of the fired core. Areas 10A, 10B, 103′, 10C and 10C′ would need to be examined minutely before deburring.
In accordance with the invention, the material is removed before firing, on the part following injection molding of the polymer/ceramic mixture in order to eliminate said problems related with deformation of the part during and after firing.
The method of the invention defines core cutting parameters that take account of intrinsic properties of the material of the latter.
Specifically, the type of polymer binder that is mixed with the ceramic, e.g. polyethylene glycol, has properties that can change in the vicinity of room temperature, particularly a tendency to soften. This leads to clogging of the material when the material forming the flash is attacked with a conventional milling cutter. This clogging will eventually prevent further removal of the flash.
In accordance with one feature of the invention, a helical milling cutter, that is a cutter with a longitudinal cutting edge in the form of a helix, is used.
Shown in
The slope of the helix is defined by a helix angle α of between 20° and 70°, preferably between 35° and 65°.
The diameter of the milling cutter suitable for this operation, bearing in mind the narrow spaces formed by the holes, is between 0.5 and 1 mm. The tip of the milling cutter is preferably hemispherical.
In accordance with another feature of the invention, the flash material is maintained at a temperature below the glass transition temperature. One way is to provide nozzles blowing cool air at the moving end of the milling cutter. For example, for PEG the temperature is maintained at between 16 and 26° C.
As it rotates about itself, the tool is traversed along the flash that is to be removed. The cutting and feed speeds are adapted to the profile. For example, they differ between the outline and recess of the core, or the run-out grooves of the trailing edge.
By way of illustration, the cutting speed is between 5 and 25 m per minute and the feed speed is between 400 and 1800 mm per minute.
Number | Date | Country | Kind |
---|---|---|---|
08/02179 | Apr 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP09/54591 | 4/17/2009 | WO | 00 | 10/18/2010 |