Claims
- 1. A process for depositing a wear resistant composite ceramic coating on a cemented carbide or hard ceramic substrate comprising the steps of:
- passing over the substrate a first gaseous mixture of a first metal halide vapor selected from the group consisting of halides of aluminum, yttrium and zirconium, with one or more oxidizing gases, and optionally a carrier gas, at a temperature of about 900.degree.-1250.degree. C. for the cemented carbide substrate, or about 900.degree.-1500.degree. C. for the hard ceramic substrate, at a pressure between about 1 torr and about ambient pressure, wherein the one or more oxidizing gases, the partial pressure ratios, the flow rates, and the deposition time are selected to deposit on the substrate a coating having at least two layers of a first-phase material selected from the group consisting of oxides of aluminum, zirconium, and yttrium;
- during the deposition of the coating, pulsing into the first gaseous mixture to mix therewith at least one additional metal halide vapor selected from the group consisting of the halides of aluminum, zirconium, and yttrium, optionally mixed with a carrier gas, wherein the at least one additional metal halide vapor is different from the first metal halide vapor, to deposit within the oxide coating at least one additional phase layer of at least one material selected from the group consisting of oxides of aluminum, zirconium and yttrium; and
- controlling the partial pressures of the metal halides and the one or more oxidizing gases, the total deposition time, and the time interval and lengths of time at which the at least one additional vapor is pulsed into the first gaseous mixture, to deposit a fully dense, adherent, wear resistant, laminated oxide coating about 0.3-20 microns thick on the substrate, the coating consisting essentially of at least three superimposed, adherent oxide layers, each about 0.1-3 microns thick, of materials independently selected from the group consisting of the oxides of aluminum, zirconium, and yttrium, each layer a predominantly of a different material than the layers adjacent thereto.
- 2. A process according to claim 1 further comprising the step of depositing between the substrate and the oxide coating at least one intermediate layer about 0.5-10 microns thick selected from the group consisting of carbides, nitrides, and carbonitrides of Ti, Zr, Hr, Va, Nb, Ta, Cr, Mo, W, Si, and B.
- 3. A process according to claim 1 wherein the controlling step effects deposition of a coating in which at least one of the oxide layers is about 0.1-0.5 microns thick.
- 4. A process for depositing a wear resistant composite ceramic coating on a cemented carbide or hard ceramic substrate comprising the steps of:
- passing over the substrate a first gaseous mixture of a first metal halide vapor selected from the group consisting of halides of aluminum, yttrium and zirconium, with one or more oxidizing gases, and optionally a carrier gas, at a temperature of about 900.degree.-1250.degree. C. for the cemented carbide substrate, or about 900.degree.-1500.degree. C. for the hard ceramic substrate, at a pressure between about 1 torr and about ambient pressure, wherein the one or more oxidizing gases, the partial pressure ratios, the flow rates, and the deposition time are selected to deposit on the substrate a coating having at least two layers of a first-phase material selected from the group consisting of oxides of aluminum, zirconium, and yttrium;
- during the deposition of the coating, pulsing into the first gaseous mixture to mix therewith at least one additional metal halide vapor selected from the group consisting of the halides of aluminum, zirconium, and yttrium, optionally mixed with a carrier gas, wherein the at least one additional metal halide vapor is different from the first metal halide vapor, to deposit within the oxide coating at least one additional phase layer of at least one material selected from the group consisting of oxides of aluminum, zirconium and yttrium; and
- controlling the partial pressures of the metal halides and the one or more oxidizing gases, the total deposition time, and the time interval and lengths of time at which the at least one additional vapor is pulsed into the first gaseous mixture, to deposit a fully dense, adherent, wear resistant, laminated oxide coating from 0.3-20 microns thick on the substrate, the coating consisting essentially of at least three superimposed, adherent oxide layers, each about 0.1-3 microns thick, of materials independently selected from the group consisting of the oxides of aluminum, zirconium, and yttrium, each layer being predominantly of a different material than the layers adjacent thereto, and wherein at least one layer includes discrete particles of at least one material predominant in a layer adjacent thereto.
- 5. A process according to claim 4 wherein the controlling step effects deposition of a coating consisting essentially of five layers, three imperforate first-phase layers of one of the oxide materials being interleaved with two additional phase layers of materials independently selected from the remaining of the oxide materials.
- 6. A process according to claim 4 further comprising the step of depositing between the substrate and the oxide coating at least one intermediate layer about 0.5-10 microns thick selected from the group consisting of carbides, nitrides, and carbonitrides of Ti, Zr, Hf, Va, Nb, Ta, Cr, Mo, W, Si, and B.
- 7. A process according to claim 4 wherein the controlling step effects deposition of a coating in which at least one of the oxide layers is about 0.1-0.5 microns thick.
Parent Case Info
This is a divisional of co-pending application Ser. No. 005,002 filed on 1/20/87, now U.S. Pat. No. 4,749,629.
US Referenced Citations (10)
Divisions (1)
|
Number |
Date |
Country |
Parent |
5002 |
Jan 1987 |
|