Field
This invention relates to antennas. More particularly, this invention relates to an analytic antenna design for a dipole antenna by eliminating or reducing antenna pattern nulls and impedance anti-resonances
Background
In 1947, H. A. Wheeler published formulas for qualifying the antenna radiation Q of electrically small antennas in terms of the antenna's physical size. Shortly thereafter, L. J. Chu published additional formulas and theories on this subject, also using the antenna's size as a metric. As the Q of an antenna is inversely related to the antenna's frequency response, of significant interest to antenna engineers is the theoretical Q limits imposed by Wheeler and Chu for given antenna dimensions. Numerous scientists have attempted to corroborate and expand on these dimension-based formulas in terms of actual measurements of scale models, computational models, or revised formulas based on electrical parameters, with some degree of success. However, these approaches have typically yielded solutions that are either very cumbersome, or do not provide an elegant approach for designing low Q antennas.
The present invention relates to a method for designing an electrically small antenna, in one embodiment, within an enclosing volume. In a preferred embodiment, the method comprises the steps of designing the electrically small antenna which has a general cross-sectional contour shape of an oblate spheroid from a top load portion to a stem portion below the top load portion. The oblate spheroid contour shape is represented by an antenna dipole moment algorithm which includes a dipole moment term. The method further comprises the steps of controlling the amplitude of the dipole moment term, including adjusting the amplitude of the dipole moment term to independently change the oblate spheroid contour shape, resulting in a change to the electric field outside the enclosing volume and a change to the electric field inside the enclosing volume.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that such subject matter may be practiced without these specific details.
Quasi-Static, Low Q Derivation
The radiation Q of an antenna is defined as the ratio of the average stored energy to the average radiated energy, and is usually understood as a metric for qualifying the radiation efficiency of the antenna. This important relationship can be expressed as:
Q=ωEs/Er, (1)
where Er is the radiated energy and Es is the stored energy.
For an electrically small antenna, the antenna behaves very much like a capacitor, exhibiting quasi-static field behavior, and consequently the instantaneous stored energy Es can be expressed in terms of the well known quasi-static relationship:
where V is the voltage and qpeak is the charge. For a time-harmonic current signal I(t)=Ipeak sin(ωt), Eq. 2 can be recast as
where C is the capacitance, ω is the radian frequency (2πf). If I(t) is expressed as an rms current (Irms), which is equivalent to an average static current, then the average stored energy Es in a capacitor can be expressed as:
And the radiated energy Er in the capacitor can be expressed as:
Er=RrIrms2, (5)
where Rr is the resistance in terms of real radiation.
By using the earlier definition of Q (Eq. 1) and combining the above expressions, the following relationship can be developed:
The above Eq. 6 expresses the Q for a quasi-static field about an electrically small antenna, in terms of electrical parameters of the antenna. However, to be able to arrive at the antenna's electrical parameters as expressed in Eq. 6, the significance of the antenna's shape and its affect on charge distribution must be developed.
It is well understood that the charge on a perfectly conducting antenna is distributed about the surface of the antenna. Since there is an intrinsic relationship between the electric field generated by a source charge, the electric field on the surface of the antenna can be expressed as a function of the distribution of the source charges. For the quasi-static case, this relationship can generally be expressed as:
where Φ is the electric field potential, q is the charge, ε is the permittivity, and rdist is the distance between the observer and the charge distribution.
For a perfectly conducting surface, the electric field potential is constant, therefore, a solution can be developed for Eq. 7 describing the exact charge distribution on the antenna surface. Therefore, given a simple shape, the charge distribution and attendant antenna parameters can usually be found using a direct, closed form solution. However, due to the complex shapes of most antennas, an indirect solution using numerical techniques must often be employed. As one of ordinary skill in the art can appreciate, numerous researchers have devoted their studies to solving Eq. 7 for assorted geometries and therefore there are a plethora of publications dedicated to this subject matter. These prior art approaches predominately pre-define a shape and thereafter derive a solution from the shape.
For some embodiments of the exemplary methods and apparatuses demonstrated herein, the charge distribution is pre-defined and thereafter the shape of the antenna is generated, based on the corresponding solution. To provide a degree(s) of freedom in the shaping of the antenna, a factor κ, which operates as dimension variable, is inserted into the defining equation(s). From a solution of the defining equation(s), the respective Q-related parameters can be generated to form an expression for Q. Since κ is a variable in the Q expression, it can operate as a solution for a given value of Q. Therefore, varying values of κ will result in varying values of Q. If the Q expression is minimized, then the corresponding value of κ will define a minimum Q antenna. Accordingly, antennas with minimum or otherwise low Q values can be designed by this exemplary method. The application of the exemplary method described will be demonstrated by example below, as derived from differing charge distributions. It should be noted that by use of the exemplary methods and apparatuses described herein, several novel antennas having very low Q values have been developed.
ACD
The Asymptotic Conical Dipole (ACD), sometimes referred to as a Hertzian monopole, is developed, having a constant charge distribution along its vertical axis. The antenna has a length L, and is given a total charge q running from z=−L/2 to z=+L/2. The electric potential Φ for this antenna is defined from the following cylindrical equation:
where ε0=free space permittivity,
and R2=√{square root over ((z+L/2)2+ρ2)}.
On the z-axis, this equation simplifies to
for |z|>|L/2|. If h is the actual height of the antenna, we can devise a dimensional variable κ such that κ=L/h. Therefore, the charge distribution per unit length is q/κh. Using this substitution and incorporating image theory, Eq. 8 can be rewritten as:
where
is for the monopole,
is for the image monopole, Rt=√{square root over ((z−κh)2+ρ2)} is the distance from ρ,z to the top of the monopole, Rf=√{square root over (z2 ρ2)} is the distance from ρ,z to the feed point and Rb=√{square root over ((z+κh)2+ρ2)} is the distance from ρ,z to the bottom of the image monopole. It is noted that Eq. 9 expresses the electric potential Φ with the dimensional variable κ embedded within. The capacitance can be calculated by first evaluating the above Rt, Rf, and Rb equations at the point ρ=0, z=h, which is known to be location of the maximum potential location, to result in Rt=(z−κh), Rf=z, Rb=(z+κh),
and
for z≧κh. Substituting these values into Eq. 9 yields
Further evaluating this expression at ρ=0, z=h results in
Since q=CΦ, then the capacitance is
The effective height he for the line charge distribution is he=κh/2. The radiation resistance Rr is
where k is the wave number (2π/λ). The Q can now be expressed as
It should be noted that the quantities C, Re and Q depend on the wave number k and the height h, which can be fixed as constants. A minimum value of Q can be found by taking the derivative of Eq. 14 and setting it to zero resulting in
As this is a non-trivial equation, Eq. 15 can be solved by any one of several methods of numerical iteration, that are well known in the art, to finally result in κ=0.7304719548370.
This value of κ can now define the dimensional aspects of an antenna that conforms to a constant line charge distribution as defined above. Additionally, as it was derived from a minimized Q relationship, it also defines the dimensional aspects of an antenna that has a minimum Q. Of course, if a non-minimum solution was sought, then Eq. 14 would be evaluated for different values of κ, to provide a spectrum of Q values. Accordingly, different antenna shapes would result from the different κ's, corresponding to different Q values.
In summary, the antenna parameters for the ACD are:
h
e=0.3652h
Rr=5.336(hk)2
C=1.064*10−10h
Based on the minimum κ value, and for a given k and h, the contour of an exemplary ACD antenna was generated.
P1 Legendre Polynomial Charge Distribution
Various current distribution functions, in addition to a constant line charge, can be chosen, according to design preference. Accordingly, in this exemplary embodiment, a first order Legendre Polynomial (P1) charge distribution is used on a monopole antenna. The P1 charge distribution is linear and defined on the z axis from z=−L/2 to z=+L/2. The static potential equation for this charge in cylindrical coordinates is
where
L is the length, R1=√{square root over ((z−L/2)2+ρ2)} and R2=√{square root over ((z+L/2)2+ρ2)}. If h is the height of the antenna, the line charge must be less than h by a factor κ<1. The above Eq. 17 represents the potential field for both the monopole and its image, that is, L=2κh.
Our assumption is that the total charge on the monopole is q. The required scale factor, 2q/κh, that enables this assumption is
With Eq. 18, the resulting potential field equation becomes
where
R1=√{square root over ((z−L/2)2+ρ2)} and R2=√{square root over ((z+L/2)2+ρ2)}. The maximum potential is known to be at z=h and ρ=0 resulting in the simplified expression
Using principles described in solving for the ACD antenna, the capacitance becomes
Given that the effective height for the P1 charge distribution is he=2κh/3. The radiation resistance is
and Q is
Again, Q is found to be formulated in terms of κ, k and h. Eq. 23 can be minimized by taking its derivative and setting it to zero:
The term in the square bracket can be solved by iteration; the quantity,
being a slowly changing function. The solution is found to be κ=0.69609037983344. In summary, the parameters for this exemplary antenna become:
The radiation resistance for this exemplary P1 charge antenna is 60% higher than the exemplary constant charge ACD antenna and the Q is 20% lower. This is offset by a 23% decrease in the capacitance of the antenna.
Using a κ value of 0.696 a contour of the exemplary P1 charge antenna was generated.
Based on the results tabulated above, a half meter physical model was constructed of wires and experimental measurements were performed.
It should be noted that typical antennas are known to exhibit anti-resonance or poor radiation characteristics at frequencies that are one half wavelength the longest dimension of the antenna. Examination of
Po+Point Charge Antenna
Progressing from the exemplary P1 charge antenna, another charge distribution was evaluated. A “bulb” antenna charge distribution was generated, using a constant line charge distribution (P0) with a point charge at the end of the constant line charge distribution. In essence, the bulb antenna charge distribution is the charge distribution of the constant line charge ACD antenna modified with a point charge at the top. The total charge q is split between the line charge and the point charge, with the point charge being αq and the line charge being (1−α)q/κh, where α is a proportionality constant. Using similar dimensional constraints as imposed in the constant line charge ACD antenna, the expression for the potential field distribution becomes
This potential is known to be maximum at ρ=0 and z=h, resulting in Eq. 26 being recast as
The capacitance can be found to be
The effective height heff is
heff(κ,α)=(1+α)κh/2. (29)
And the radiation resistance is
Rr(κ,α)=10[κhk(1+α)]2. (30)
Using free space, the resulting Q expression becomes
The minimum value Q is found by numerically evaluating Eq. 31 for a range of α values. The value of κ for the minimum Q is given in the following Table 1.
Using the α value of 0.9 (meaning 90% of the total charge on the point) the “bulb” antenna parameters are
h
e=0.5529h
Rr=12.22*(kh)2
C=6.7*10−11h.
Of interesting note is that the Q value is diminishing, as compared to the previous exemplary antennas.
A comparison of the Q performance was also made to Chu's theoretical minimum. Chu expresses the theoretical minimum Q of an antenna as
Using Eq. 32, only to the first order, a comparison of the Q/QChu ratio for the above exemplary antenna was made, for varying values of α, as a function of κ.
P1+Point Charge Antenna
The above demonstrated exemplary P0+point charge model can be modified by using a P1 feed line rather than a constant feed line. As previously described, the P1 charge distribution is a “linear” charge distribution versus a “constant” charge distribution, as in the case of P0. For this formulation, the net charge q is split between the linear charge and the point charge with the point charge quantity being αq and the line charge quantity being 2(1−α)q/κh.
The resulting expression for the potential becomes
Eq. 33 can be evaluated at ρ=0 and z=h, resulting in
The capacitance becomes
The effective height is
heff=(1−α)2κh/3+ακh. (36)
The radiation resistance is
Rr=40[κheffk(⅔+α/3)]2. (37)
The Q becomes
Using similar procedures as applied to the previous examples, the minimum value of Q can be found by numerically evaluating Eq. 38 for varying α, κ values. Table 2 below details the resulting evaluation.
For large values of α, the addition of a P1 distribution does little to change the performance of the antenna, as compared to the previously modeled antenna. For the case of α=0.9, this antenna's parameters are
h
e=0.5626h
Rr=12.66*(kh)2
C=6.6*10−11h
By using a P1 distribution rather than a constant distribution, only a slight improvement is demonstrated over the P0 distribution for modest values of α. For large values of α, the values will converge in the limit.
P1 and P3 Legendre Polynomial Charge Distribution
It should be understood that Q is defined by the stored energy in the near field and far fields of the antenna. Part of the stored energy is in the higher order moments of these fields. These moments could be reduced by adding a higher order charge distribution to account for these higher order field moments. In the following exemplary antenna, a higher order charge distribution term, Legendre polynomial P3, is added to the charge distribution. It should be noted that other polynomials or basis functions (not being Legendre in form) may be used without departing from the spirit and scope of this invention.
It should be understood that the fields created by differing basis functions, for example, Legendre polynomials—P1, P2, P3, . . . , Pn, the respective line charge distributions operate with independent degrees of freedom with different angular and radial dependence. If using Legendre polynomials, the radial and angular dependence can be shown to be Pn(θ)/rn+1 (where is θ measured from the z axis) for Pn (see Appendix for details). Mathematically, a surface constructed from a sequence of multipole functions should quickly converge.
In the following example, the Legendre polynomial P3 with a coefficient α3 (α3P3) is added to a P1 linear charge distribution. The Q can be further reduced by adding a α5P5 term. This shifts the α3 value some but reduces the error term to P7 (θ)/r7. An alternate approach is to algebraically calculate the multipole distribution (on the z axis) for each P2m+1 polynomial and solve the equation for the coefficients α3 and α5 to eliminate the P3 (θ)/r4 and P5 (θ)/r6 terms in the multipole expansion. (See Appendix for example). In addition, since the shape of the feed point is determined by the line charge distribution, combinations of P1, P3, P5, etc. can be used to parameterize the shape of the feed point and the input impedance for high frequencies.
Based on the above observations, the static potential charge distribution on the z axis from z=−L/2 to z=L/2 is
(Note: the above three lines are one equation)
where
L is the length, R1=√{square root over ((z−L/2)2+ρ2)} and R2=√{square root over ((z+L/2)2+ρ2)}. If h is the height of the antenna, the line charge must be less than this height by a factor κ<1. Eq. 40 represents both the monopole and image: L=2κh. The potential Φ can be re-expressed in terms of fields (Ψ1 and Ψ3) generated from the Legendre polynomials, the expression being
where α is a coefficient for the contribution of the Ψ3 term.
It should be noted that Eq. 40 can have a negative charge distribution. If the charge distribution is negative near the base of the antenna, the feed point is above ground level. If the charge distribution is negative at the top of the antenna, the feed point is at the base. In latter case, the negative charge distribution must be enclosed by the equal potential surface. If the equipotential surface cuts across the charge distributions the solution is understood to not be a valid solution.
Following procedures previously discussed, the total charge q on the monopole is
Using a substitution of variables by letting u=z/κh, the charge distribution as a function of the Legendre polynomials can be cast as
Substituting the functions P1(u) and P3(u), and simplifying yields
For α≦⅔, the feed point is at the ground and the total charge above the feed point is qNet. For α>⅔, the feed point is at
and the total charge above the feed point is
Derivation of the radiation resistance is discussed in the appendix, resulting in
If α<−1, the combination of P3 and P3 creates a negative charge distribution at the end of the wire. The negative charge distribution could cause the equipotential surface to cut cross the charge distributions which, as mentioned above, would generate an invalid solution. Therefore, the potential must be calculated near the end of the charge distribution to verify that the charge distribution is enclosed within the equipotential surface. This is demonstrated as
Substituting L=2κh recasts Eq. 46 as
Now with
on the interval κh<z≦1, this value must be larger than a calculated Φmax on the surface of an enclosing sphere. In this situation, the equation for the capacitance and Q on the sphere cannot be written and, therefore, the problem must be numerically solved.
At 50 MHz, the solution to Eq. 46 has two minimums: an absolute minimum at Q=28.706 corresponding to Q/QChu=4.1207 at κ=0.6513 and α=0.8600, with R=3.1939 and C=34.718 pF; and a local minimum at Q=31.879 corresponding to Q/QChu=4.576 at κ=0.88, α=−1.835, with R=1.7737 and C=56.294 pF. These tabulations are shown in
h
e=0.53967h
Rr=11.65(kh)2
C=6.943*10−11h
The radiation resistance for this antenna is 35% higher than the single P1 charge distribution antenna and Q is 12% lower. This is offset by 15% decrease in the capacitance of the antenna.
Of some interest is the shape of the local minimum Q solution.
P0 with Oblate Spheroid
From the above examples, it is apparent that the point charge at the end of constant line charge (Po) antenna reduces the Q of the antenna. This point charge is equivalent to giving a spherical end cap to the Po charge distribution. However, in the above configurations, the top of the spherical volume was not filled by the antenna. If the spherical volume is filled by the antenna, then this will reduce the charge surface density, which is known to increase the capacitance, which would decrease Q.
However, a better choice for the end cap would be an oblate spheroid. The eccentricity can be continuously varied from 0, a sphere, to 1, a disk. It should be noted that this antenna is not the same as a disk loaded monopole, which is well known in the antenna community. In the disk loaded monopole the charge is on the bottom of the disk with minimal charge on the top surface. For the oblate spheroid loaded Po charge antenna, the oblate spheroid has equal charge on both upper and lower surfaces. When the image is added, the effective charge density on the top surface will be reduced and the effective charge density on the bottom surface will be increased.
The potential for an oblate spheroid with a charge q is derived with oblate spheroidal coordinates, the details being given in the appendix. The cylindrical coordinates can be expressed as oblate spheroid coordinates as
z=a sin hu sin ν
ρ=a cos hu cos ν. (47)
(Note: a parameterizes the eccentricity variable in the oblate spheroidal domain and α is the charge proportionality variable.) The inversion of the above equations from one domain to the other is given in the appendix. The potential can be expressed as a function of u only:
Using procedures similar to those discussed above, the potential field generated from a constant line charge terminated with an oblate spheroidal point charge is
where the parameter a plays a role indirectly via u, and ut is for the top of the spheroid and ub is for the bottom of the spheroid in the spheroidal coordinate system.
The maximum potential is not at the top of the oblate spheroid, thus Eq. 49 is numerically evaluated on the surface of the enclosing sphere of the antenna.
A tabulation of these values is shown in Table 3 below.
For the case of 90% of the charge on the surface of the oblate sphereoid, the antenna parameters are
h
e=0.670h
Rr=17.9*(kh)2
C=8.632*10−11h
The resulting Q is found to be almost half of the result for the “bulb” antenna, which utilized a constant line charge with a point charge termination (i.e., spherical end cap). The Q is 47% lower; R and C are 46% and 30% higher, respectively, than the bulb antenna. This exemplary (1−α)P0+α oblate spheroid charge antenna was numerical modeled using α=0.90. The exemplary numerical model was generated using a cylindrical antenna with a continuous surface and with a ½ half meter height.
P1 with Oblate Spheroid
The same above exemplary technique can be expanded upon using a P1 line charge instead of a Po line charge, with an oblate spheroid end charge. Using the P1 line charge, the expression for the maximum potential field becomes
The results of this procedure is shown in Table 4 below.
Using a 90% charge on the oblate spheroid, the antenna parameters become
h
e=0.6792h
Rr=18.46*(kh)2
C=8.56*10−11h.
For h=½ m and 50 MHz, with α=0.9, the minimum Q=14.69 which is 2.109 times Chu's theoretical result.
P0 with Oblate Spheroid and 2nd Harmonic on Oblate Spheroid
The oblate spheroid solution can be further improved by redistributing the charge to modify the potential curves and therefore the shape of the surface. This can be calculated by solving the scalar potential equations for the oblate coordinate system. The scalar potential equation in this coordinate system can be expressed as
where Pn are Legendre polynomials, i=√{square root over (−1)}, and the Kn(iu) terms are the far-field dependence functions. Eq. 51 can be tackled using separation of variables in the oblate coordinate system with the solutions for the u dependence obtained from Arfkin's classic text—“Numerical Methods for Physicists,” 2nd Edition, Academic Press, Ohio, 1970. Eq. 51 with K0(iu), Po(ν) was used in the oblate spheroidal calculation. The second term K1(iu)P1 (ν) is an odd function and would change the shape of the oblate spheroid in a non-symmetric manner so that the assumption about the effective height would not be valid. Therefore, it is not used. The third term K2 (iu)P2 (ν) is symmetric which makes it suitable for our purposes. In Eq. 51, these first and third terms will be used to modify the oblate spheroid's shape. For reference, the first few values of K are
The general form of these terms being
where Pn are Legendre polynomials and the sum terminates at the first singular term. For simplicity only the P0(ν) and P2(ν) polynomials were used as they redistribute the charges equally on both sides of the oblate spheroid. None of the high order Pn(ν), n≠0 polynomials change the net charge on the oblate spheriod. Based on this decomposition, the potential field expression becomes
where β represents the coefficient for the P2 polynomial, νt is for the top oblate spheroid and νb is for the bottom oblate spheroid.
The effective height becomes heff=(1−α)κh/2+ακh and the radiation resistance is Rr=10[κhk(1+α)]2. Using procedures previously described, Q is numerically calculated. It is noted that the addition of the second order term P2 modifies the source charge on the oblate spheroid to where it could be negative at the center of the oblate spheroid or at the edge of the oblate spheroid. A program verified that an equipotential surface encloses all the charge in two areas: at ρ=0 on z axis and at edge of the oblate spheroid.
From the above derivations, the Q/QChu ratio is a function of κ, α, β, and a is plotted in
h
e=0.64505h
Rr=16.644*(kh)2
C=1.0482*10−10h
Non-Spherical Enclosing Volume
Using the previous example, the exemplary (1−α)P0+α oblate spheroid+β second harmonic on oblate spheroid charge antenna was constrained to fit within an inverted 45° cone where the angle is measured with respect to the vertical. Mathematically, this is expressed as ρ=1−z. The capacitance is calculated from the largest value of the potential on this cone. It should be noted, however, any enclosing surface may be used to arrive at a correct solution, therefore an appropriate solution is not limited to the use of 45° or a cone, but is used here as just one example of many approaches that may be used. Using the inverted 45° cone, for example, a plot was generated of the Q/QChu ratio as a function of κ, α, β, and a as shown in
A model of this antenna can be generated by using wire approximations. In general, this antenna can be approximated using 45° wires for the top portion with a wire tangential to the bottom surface of the antenna. Eight sets of wires can be used to approximate this antenna, with horizontal wires to connect the appropriate vertices.
Vertical Dipole
In the above examples, the antennas under study were principally monopole antennas of one form or another. In this embodiment, a dipole antenna is discussed. Of particular concern in electrical small antenna design is the loss caused by ground currents, which is often exacerbated in the case of a monopole antenna. The use of a dipole antenna reduces ground currents. The potential field for a dipole is calculated in principally the same manner as in the monopole case. The dipole is centered at z=h/2 and the image dipole is centered at z=−h/2. The length of the antenna arm is L=κh/2.
The calculation can be divided into two parts. The first part is with the dipole in free space, and the second part is with the image dipole. The top arm of the dipole is excited at a voltage. The other arm of the dipole is excited with the ground of the coaxial cable. The general potential field equation for such a structure is
For the free space dipole, the potential field is
where
is for the monopole,
is for the image monopole, Rt=√{square root over ((z−κh/2−h/2)2+ρ2)} is the distance from ρ,z to the top of the monopole, Rf=√{square root over ((z−h/2)2+ρ2)} is the distance from ρ,z to the feed point and Rb=√{square root over ((z−h/2+κh/2)2+ρ2)} is the distance from ρ,z to the bottom of the dipole. The capacitance is computed by calculating the potential or voltage at ρ=0 and z=h. The above equations simplify to Rt=(z−h/2−κh/2), Rf=z−h/2, Rb=(z−h/2+κh/2),
and
for z≧κh, resulting in
Eq. 57 can be further simplified to yield
For the image dipole
is for the monopole,
is for the image dipole, Rt=√{square root over ((z−κh/2−h/2)2+ρ2)} is the distance from ρ,z to the top of the image dipole, Rf=√{square root over ((z−h/2)2+ρ2)} is the distance from ρ,z to the feed point of the image and Rb=√{square root over ((z−h/2)2+ρ2)} is the distance from ρ,z to the bottom of the image dipole. The capacitance is computed by calculating the potential or voltage at ρ=0 and z=h. The above equations simplify to Rti=(z+h/2−κh/2), Rfi=z+h/2, Rbi=(z+h/2+κh/2),
and
for z≧κh. The resulting expression for the potential field for the image dipole becomes
which can be further simplified to
The combined potential from Eqs. 57 and 59 is
The capacitance become
And the equation for radiation resistance becomes
where q(z) is
Using a change in variables,
and performing the following steps:
results in Eq. 62 becoming
From the derivations shown above, the Q is found to be
The minimum value of Q is at κ=0.7437706. The resulting other antenna parameter values become
Q=12.67326/ka3
heff=0.37188*h
Rr=5.5319(ka)2
C=4.75458*10−11*h.
Based on the above values, an exemplary dipole antenna having a minimum Q was designed.
It should also be noted that, generally speaking, a cylindrically symmetric enclosing volume is the simplest case for monopole or linear-type antennas. However, as alluded above, the enclosing volume can be of very general shapes, in addition to a cylindrically symmetric volume. For example, a rectangular enclosing volume could be used. Various harmonic or non-harmonic basis functions could be used for the top-load. Complex line charge distributions could be used as elements.
Accordingly, by choosing a different enclosing volume shape, and tailoring basis functions to match that shape, it is possible to design a “flatter” antenna with a low Q. Flat antennas are of particular interest in the field of printed circuit card antennas or conformal antennas. For example, a possible design approach for a printed circuit card antenna is to project a three dimensional cylindrically symmetric antenna to a two dimensional antenna. (The two dimensional antenna is a slice of the three dimensional cylindrically symmetric antenna that includes the axis of rotation of the three dimensional cylindrically symmetric antenna.) Now, a spherical monopole becomes a disk monopole, as a gross approximation.
It should be also understood that a low Q, flatter antenna will have most of the charge on its edge. If one slices the flatter antenna to include the largest area, this will better approximate a printed circuit card antenna. The approach could improve the performance of the wire antenna, which was discussed above. The antenna could be any size and mounted on any object.
The exemplary process 100 begins 10 with designation of an electrically small antenna geometry 15 or a form factor corresponding to the antenna geometry 15. This designation is of general form and may simply be the establishment of a coordinate system that is consistent with the geometry chosen. Based on the type of antenna geometry 15 or form factor chosen, the exemplary process 100 incorporates a suitable dimensional variable 20 or a form factor related parameter. It is not necessary that the dimensional variable 20 or form factor related parameter be of a form that is consistent with the geometry's coordinate system, however, it would be preferred as this would obviate the need for a dimensional transformation. Proceeding from the dimensional variable 20 incorporation, the exemplary process 100 formulates quasi-static field equations 25. The quasi-static field equations 25 entail the application of Maxwell's formulas to result in a potential or scalar field equation(s) that relates the field intensities at field point(s) as a function of the source charge distribution.
Next, from the quasi-static field equation formulation 25 (and if the charge distribution is not already included), the exemplary process 100 impresses a given charge distribution 30 within the quasi-static field equation formulation 25. The given charge distribution 30 may be a single “type” charge distribution or of multiple “types” such as from differing basis functions. The charge distribution 30 may be different for different parts of the antenna geometry 15.
It should be appreciated that depending on the complexity of the charge distribution 30 and the quasi-static field formulation 25, the order of the exemplary process 100 for these respective steps may be reversed, without departing from the spirit and scope of this invention. Accordingly, the exemplary process 100 may first impress a given charge distribution 30 in accordance with the antenna geometry 15 or form factor chosen, and then proceed to generate the quasi-static field equations 25, without loss of generality.
Presuming that the charge distribution 30 is performed subsequent to the quasi-static field equation formulation 25, the exemplary process 100 proceeds onto a dimensional variable-reduced expression 35 of the quasi-static field equation formulation 25. The dimensional variable-reduced expression 35 may simply be a reduced algebraic expression or a form that relates the Q of the antenna geometry in terms of the dimensional variable (form factor related parameter) or may take the form of another antenna parameter, such as the capacitance, for example. The capacitance is expressible in terms of the charge distribution and the dimensional variable (form factor related parameter). If expressed in terms of the capacitance, this dimensional variable-reduced expression 35 can be used to generate a Q expression, by appropriate use of a corresponding radiation resistance calculation.
The Q expression can then be solved 40 using a minimization and/or numerical technique to find a minimum Q or dimensional variable-to-Q correspondence. A plot of the computed capacitance and radiation resistance can be generated to correlate to given or desired Q values. By evaluating Q, the capacitance, the radiation resistance, and selecting the appropriate dimensional value (form factor relater parameter), design decisions can be made to meet the performance requirements of an antenna. The solved equation 40 will provide a value(s) of the dimensional variable that generally operate to define the Q and geometry of a corresponding antenna. The exemplary process 100 then terminates at 45. The results of this exemplary process 100 can then be used to physically build or model an antenna that demonstrates the Q performance chosen.
Now that the details of the above cross-referenced application have been shown and described, the details of an analytic antenna design for a dipole antenna by eliminating or reducing antenna pattern nulls and impedance anti-resonances of the present invention will now be described and shown.
Existing antenna designs typically have anti-resonances in the impedance and nulls in the radiation pattern. An objective is to eliminate (or move to a higher frequency) one or more of the anti-resonances in the impedance and one or more of the nulls in the radiation pattern. The radiation pattern would be a dipole pattern over an extended frequency range. The performance of the algorithm should extend beyond a one wavelength high monopole antennas and potentially extends to ultra wide bandwidth antennas. The cross-referenced patent application entitled “Quasi-Static Design Approach For Low Q Factor Electrically Small Antennas”, or more simply “Quasi-static antenna design algorithm”, can be utilized to perform the designs. The algorithm will calculate the quasi-static Q, radiation resistance and capacitance. This design will not require added resistance to create wide bandwidth antennas.
Howard Stuart shows that the DC capacitance is the sum of the effective capacitances of the eigenmodes of the antenna. It is believed that each eigenmode is uniquely linked to the electrostatic spherical harmonic. The eigenmodes are analogous to resonant modes in a radio frequency cavity that decay via resistive loss in the conducing walls. The antenna eigenmodes decay via radiation loss. The ideal antenna would have a high radiation loss or a small Q for each eigenmode. Each eigenmode has a unique radiation pattern; the first eigenmode is a dipole radiation pattern. The higher order eigenmodes are odd vector spherical harmonics.
The impedance of each eigenmode is equivalent to a series LC with a resistor across the inductor. The antenna impedance is a parallel combination of all of the eigenmode equivalent circuits. Stuart pointed out that the DC capacitance was a sum of the effective capacitances from each eigenmode (At DC, the inductors short the resistors.). Stuart modeled the second eigenmode as a capacitance and neglected the higher order eigenmodes. Data for the second eigenmode was selected to illustrate the concept. The higher order eigenmode were neglected. Table I shows the combined data for a disk loaded monopole.
The radiation pattern at any given frequency is a linear combination of the eigenmode radiation patterns weighted with the current flow in each mode.
for eigenmode 1 and 2 respectively. The impedance for eigenmode 1 is
where the values of C1=8.88 pF, R1=738.7 and L1=58.7 nH.
resonance frequency for eigenmode 1 occurs when
The anti-resonance is caused by the cancellation of the combined eigenmode currents (the reactive part) at about 400 MHz. The eigenmodes are in parallel and have the same V0. The impedance is calculated from the equation
The above equation is
The following is an analysis of Stuart's data. At DC both the first and second eigenmode contributes to the radiation pattern. Table 2 (column 3) shows the quasi-static current flow at the feed point. Each vector spherical harmonic reduces to a unique electrostatic spherical harmonic in the quasi-static solution. It is believed that each eigenmode contributes a unique electrostatic spherical harmonic to the quasi-static solution. Thus the quasi-static solution contains information on the high frequency eigenmodes of the antenna.
The potential for a charge distribution is
|r-r′| is the distance between the two vectors r and The general potential can be expanded as the sum of
if the charge density is zero in this region, r>a. On this surface the ψ(a,θ,φ) has a maximum value ψmax. An equi-potential surface can be define with the potential ψmax.
If this surface encloses all of the charge inside the sphere than the surface is identical to a perfect conductor. In addition, ψ(r,θ,φ) is odd about θ=π/2 (image charge distribution). The image charge distribution has a potential −ψmax. Typically, the feedpoint(s) is in the plane θ=π/2. The general solution could give isolated perfect conductors; implicit assumption is that isolated conductors are connected by very thin wire with negligible charge. The most practical solutions have one perfect conductor and image.
The terms Alm with m>0 can be eliminated by making ψ(r,θ,φ) is independent of φ.
Since, the function ψ(θ) is odd about θ=π/2; therefore, the even l vanish. The following are Legendre Polynomial for the parameters of a design from the cross-reference patent application entitled “Quasi-static Antenna Design Algorithm”.
The potential ψ(θ) for a monopole, with the parameters in the following Table 3, is expanded with Legendre Polynomials. Column 2 is the Asymptotic Conical Dipole (ACD) with a line charge height κ with the Legendre Polynomial coefficients. The TopLoad is give in Column (3) with a disk height of κ and radius a with the Legendre Polynomial coefficients. The height of the topload was selected to give a negative a3 coefficient. The two solutions were combined to create an OSA with parameters in column (4). The parameter α is the weight factor for the topload and 1−α is the weight factor for the ACD. The equation for combining the Legendre polynomial coefficients (a1, a3, a5, a7, a9)
an(col.4)=(1−α)*an(col.2)+α*an(col.3)
This is an example; there is a family of solutions with different Q and RRad radiation resistance. The antenna shape for column 4 is shown in
This antenna is approximately a 70 degree cone at the feed point. This antenna should be a wideband antenna. The current practice is ‘cut and try’ where the antenna shape is changed manually. In addition, resistance may be added to improve performance.
The “Quasi-static Antenna Design Algorithm” was developed to design minimum Q electrically small antennas. This proposal modifies the code to compute the electrostatic spherical harmonics for the antenna solutions. Design curves would be generated. Eliminating an electrostatic spherical harmonic term should eliminate the corresponding eigenmode in the antenna. The capacitance for that eigenmode should be zero. An anti-resonance will also be eliminate. This would dramatically lower the antenna Q over an extended frequency range. The Smith chart will look like
In one embodiment, the “Quasi-static Antenna Design Algorithm” requires only 5 msec. to compute each antenna designs A NEC4 run of a similar antenna (100 unknowns) is about 0.1 sec. Additional complexity at the feed point increases the run time. It would be remarkable if ultra wide bandwidth antennas could be designed with a “Quasi-static Antenna Design Algorithm” referenced above.
A Smith chart of an antenna typically has many anti-resonances.
The above analysis indicates that the antenna has only one eigenmode in the 40 MHz to 6000 MHz frequency range. This antenna was designed as an electrically small antenna with 16 wires approximating a continuous surface. The next step is to numerical model and manufacture a continuous surface LCD antenna. Electrostatic multipoles, Legendre Polynomial P3, P5, P7, . . . ,P2+1 charge distribution, could be added to eliminate the higher order eigenmodes. The modified designs would be numerical modeled and physical antennas can be manufactured. This antenna could have a dipole antenna pattern over an extended frequency range.
Regarding
The measured curve R changes from near 0 ohms at 0.4 MHz to approximately 60 ohms at 2 MHz, and the measured reactance X curve changes from −j100 ohms at 0.4 MHz to nearly +j25 ohms around 1.4-1.6 MHz, then changes to approximately +j15 ohms at 2 MHz. The Q curve shows a change from about 80 at 0.4 MHz to approximately 0 at 2 MHz.
The measured plot R, X and Q curves shown in
Similarly,
The impedance plot shown in
The impedance plot
This antenna was designed as an electrically small antenna for the 50 MHz to 200 MHz band. It is remarkable that this antenna is an ultra wideband antenna with a VSWR <4 to 1 from 100 MHz to 2.4 GHz. It should be possible to greatly improve this design.
Previously, the dipole moment top load term was discussed but not calculated. In the following discussion two methods are presented for calculating the dipole moment top load contribution to the radiation resistance. The minimum Q antenna design can be calculated by using different combination of multipole basis function on the top load. The sequence of minimum Q antenna designs is plotted in
Adding the dipole term will reduce the Q but may also reduce the radiation resistance. In that case, the dipole moment term allows the solution to fill the top of the spherical enclosing volume. This leads to a much larger capacitance or reduced stored energy. On the other hand, a top load with two or more multipole top-load basis functions (the dipole and quadruple) gives a solution with a positive dipole contribution (spherical enclosing geometry) and increased radiation resistance.
General Calculation of Radiation Resistance.
The effective height calculation to the dipole term, K1(u)P1(cos ν) will now be described. The K1(u)P1(cos ν) term is discontinuous at u=0 and the charge distribution is finite with zero separation.
K1(0)P1(cos ν)=−K1(0)P1(cos(π−ν))
The dipole moment calculation from the charge distribution is
p=∫xq(x)d3x.
Where p and x are vectors (and bolded). If q(x) is rotational symmetric about the z-axis, the above equation reduces to
pz=∫z=−hz=h∫zq(ρ,z)2πρdρdz
where the charge distribution is located between −h and h (inside an inclosing sphere of radius h). If one assumes that the feed point is at z=0, q(ρ,z)=−q(ρ,−z) and qNet=∫z=0z=h∫q(ρ,z)2πρdρdz.
The dipole moment is
This follows directly from the definition of
When the feed point is not at z=0, the calculation of rRad follows the discussion in the above cross-referenced patent application (see paragraphs 0084-0086 and 00136).
The above calculation of the dipole moment would appear give zero, which is incorrect, as the potential has a dipole moment.
The dipole moment can be calculated by expanding the potential (rotational symmetric) with Legendre polynomials.
where r=√{square root over (z2+ρ2)}. The dipole moment is dz=β10a2
where
δ11=1 and δ1n=0. When r=a
The above equation is an alternate method for calculating the dipole moment discussed in paragraph 0136 of the first cross-referenced patent application. The effective height is calculated from
The following shows the connection between the charge distribution, potential and dipole moment. Simple example of a point charge, q at d/2 and −q at −d/2.
The dipole moment is pz=qd. The potential is
Series expansion valid for d/2z<2
Since only odd n contributes, we write n=2m+1
The dipole term allows the radiation resistance to be increased. Also, the dipole term allows the filling of the top of the enclosing volume with a conductor (see antenna shape shown in
The monopole term changes thickness of the top and bottom with the same sign while the dipole term changes the thickness of the top and bottom with a different sign. Also, the dipole term allows the electric field to be modified between the antenna and the corresponding image antenna,
The dipole moment components can also be added (by way of vector addition) through superposition to achieve the changes to the electric fields.
The contours shown in
What has been described above includes examples of one or more embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the aforementioned embodiments. It will, therefore, be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described and illustrated to explain the nature of the invention, may be made by those skilled in the art within the principal and scope of the invention as expressed in the appended claims.
Calculation of Potential for P3
u=x−z and du=dx
where R1=R1=√{square root over ((L/2−z)2+ρ2)} and R2=√{square root over ((L/2+z)2+ρ2)}
Expansion of Multipoles and Analytic Calculations of Pure Dipole Solution
The calculation of the potential on the z axis allows the multipole expansion of the potential to be calculated. For P1(u), the potential on the z axis is
Expanding this in a series
where each term
in the far field has an Pm(cos θ) angular dependence. Changing variables to u=2x/L and integrating term by term
For P3 (u), the potential on the z axis is
Expanding this in a series
where each term
in the far field has an Pm (cos θ) angular dependence. Changing variables to u=2x/L and integrating term by term
The Ψ1 (0,z) and Ψ3(0,z) can be combined with a −7/2 coefficient to cancel the
term in the far field.
(Note: the above two lines are one equation)
Additional terms, Ψ5 (0,z), could be used to cancel the
term. By using a succession of line sources P1, P3, P5 and P7 an antenna with a pure dipole far field can be generated. The error in the far field is Ψ9(ρ,z).
Radiation Resistance
The effective height for a positively charged distribution is normally calculated with the equation
where the feedpoint is at the ground plane. In the general, the definition must proceed from fundamental concepts. From Jackson the power radiated from a dipole is
P=10c2k4|p|2
where p is the dipole moment
p=∫xq(x)d3x
for a cylindrical symmetric dipole, this reduces to
pz=∫−d/2d/2zq(x)d3x
where by px=0 and py=0. The radiation resistance is defined in terms of the total power radiated as
where the Ifp is the peak current (½ converts peak to rms). In our model, negative charge below the feedpoint is part of the image current. This current is calculated from the continuity equation.
Ifp=iω∫fpd/2q(x)d3x
P=10c2k4|p|2
If we limit the antenna to a symmetric dipole, this equation reduces to
If the feedpoint current is the same as the net charge
The quantity in the square bracket is heff. This equation can be reduces to the usual results, when q(x)=1 and q(x)=δ(z−d/2).
The calculation for
will be discussed in detail below.
changing variables
p
z=2qκh∫−11u(P1(u)+αP3(u))du
Since u=P1(u) and ∫(u)P3(u)du=0
pz=2qκh∫−11u2du
The same variable change is made for
q
fp=2q∫−fp1(P1(u)+αP3(u))dx
This following calculation are performed with the
qu[2+α(5u2−3)]=0
u[2+α5u2−3α)]=0
For α≦⅔ the feedpoint is at the ground. Note: α>⅔
The following is a verification that P3 has no dipole moment
Expanding this in a series
where each term
in the far field has an Pm(cos θ) angular dependence. Changing variables to u=2x/L and integrating term by term
The third order Legendre polynomial does not contribute to the diople field
p
z=2qκh∫−11u[P1(u)dx+αP3(u)]du
Inversion of Oblate Spheroid Coordinates
An oblate spheroid has two limiting cases a sphere and a disk.
x=a cos hu cos ν cos φ
y=a cos hu cos ν sin φ
z=a sin hu sin ν
If one uses oblate spheroid coordinates with rotational symmetry on the z-axis.
ρ=a cos hu cos ν
ρ2=a2(1+sin h2u)cos2ν
ρ2 sin2 ν=(a2 sin2 ν+z2)cos2 ν
ρ2+z2=a(sin h2u sin2 ν+(1+sin h2u)cos2ν)
z
′2(1+sin h2u)+ρ′2 sin h2u=sin h2u(1+sin h2u)
sin h2 u(1+sin h2 u)−z′2(1+sin h2 u)−ρ′2 sin h2 u
sin h4u+sin h2u(1−z2−ρ2)sin h2u−z2=0
sin h4u−(z′2+ρ′2−1)sin h2u−z′2=0
There are three algebraically equivalent solutions. The first case is for r<a
if z=0
if ρ=0
The second case r=a
The third case r>a
(ρ′ sin ν)2−(z′ cos ν)2=cos2 ν sin2 ν
ρ′2 sin2 ν−z′2(1−sin2 ν)=(1−sin2 ν)sin2ν
ρ′2 sin2 ν−z′2(1−sin2 ν)−(1−sin2 ν)sin2 ν=0
ρ′2 sin2 ν+z′2(sin2 ν−1)+(sin2 ν−1)sin2 ν=0
sin4 ν+(ρ′2+z′2−1)sin2 ν−z′2=0
There are three algebraically equivalent solution. The first case is for r<a
if z=0
if ρ=0
The second case r=a
The third case ra
Calculation of the Oblate Spheroid Potential
hu=a(sin h2u+sin2 ν)1/2
hν=a(sin h2u+sin2 ν)1/2
hφ=a cos hu cos ν
If we assume that constant u forms equipotential surfaces the Ψ(u)
the solution is cos h u∂uΨ=K
the solution is
The constant K is related to the total charge.
q=ε
0
∫E
u
dA
where dA=hνhφdνdφ=a2(sin h2 u+sin2 ν)1/2 cos h u cos νdνdφ
q=ε
0∫−π/2π/2∫02πaK cos νdνdφ
q=ε0∫−π/2π/2 2πaK cos νdν=ε02πKa[sin ν]−/2π/2=ε04πaK
K=q/4πraε0
The potential on the surface is
C=8aε0
where ρ=a cos ν
General Solution of Laplace's Equation
In the cylindrical symmetry case ∂φΨ=0 and separation of variables Ψ=Φ(ν)K(u) The above equation reduces to
and
The solution in ν is the standard Legendre Polynomials
Φ(ν)=Pl(ν)
and
K(u)=Pl(iu)
In our case, the second
The verifying the solution in u is the
This patent application is a division of (1) pending patent application entitled DIPOLE MOMENT TERM FOR AN ELECTRICALLY SMALL ANTENNA, Serial No. 13/076,488, filed Mar. 31, 2011, now U.S. Pat. No. 8,368,156, which is a continuation-in-part of pending patent applications (2) Ser. No. 11/959,715, filed Dec. 19, 2007, entitled “Quasi-Static Design Approach For Low Q Factor Electrically Small Antennas”, now U.S. Pat. No. 8,121,821, issued Feb. 21, 2012 (NC 098,163), and (3) Ser. No. 12/854,955, filed Aug. 12, 2010, entitled “Analytic Antenna Design for a Dipole Antenna” (NC 100,570), all of which are assigned to the same assignee as the present application, and the details of which are hereby incorporated by reference.
This invention (Navy Case No. 102,179) was developed with funds from the United States Department of the Navy. Licensing inquiries may be directed to Office of Research and Technical Applications, Space and Naval Warfare Systems Center, San Diego, Code 72120, San Diego, Calif., 92152; telephone (619)553-5118; email: ssc_pac_t2@navy.mil.
Number | Name | Date | Kind |
---|---|---|---|
6107901 | Crouch | Aug 2000 | A |
6329955 | McLean | Dec 2001 | B1 |
7215292 | McLean | May 2007 | B2 |
8121821 | Jones | Feb 2012 | B1 |
8847840 | Diaz | Sep 2014 | B1 |
9053268 | Jones, III | Jun 2015 | B1 |
20130048499 | Mayer | Feb 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 13076488 | Mar 2011 | US |
Child | 13687032 | US |