This invention relates generally to vapor compression systems and, more particularly, to detection of a loss of refrigerant in a refrigerant vapor compression system.
Conventional vapor compression systems typically include a compressor, a heat rejection heat exchanger, a heat absorption heat exchanger, and expansion device, commonly an expansion valve, disposed upstream with respect to working fluid flow, of the heat absorption heat exchanger and downstream of the heat rejection heat exchanger. These basic system components are interconnected by working fluid lines in a closed circuit, arranged in accord with known vapor compression cycles.
In some vapor compression systems, capacity modulation capability may be added by incorporating a flash tank economizer into the working fluid circuit between the heat rejection heat exchanger and the evaporator. In such case, the working fluid leaving the heat rejection heat exchanger is expanded through an economizer expansion device, such as a thermostatic expansion valve or an electronic expansion valve, prior to entering the flash tank wherein the expanded fluid separates into a liquid component and a vapor component. The vapor component is thence directed from the flash tank into an intermediate pressure stage of the compression process of a multi-stage compression device, while the liquid component is directed from the flash tank through the system's main expansion valve prior to entering the evaporator.
Refrigerant vapor compression systems are commonly used for conditioning air to be supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. Refrigerant vapor compression system are also commonly used for refrigerating air supplied to display cases, merchandisers, freezer cabinets, cold rooms or other perishable/frozen product storage areas in commercial establishments. Refrigerant vapor compression systems are also commonly used in transport refrigeration systems for refrigerating air supplied to a temperature controlled cargo space of a truck, trailer, container or the like for transporting perishable/frozen items by truck, rail, ship or intermodal.
Refrigerant vapor compression systems used in connection with transport refrigeration systems are generally subject to more stringent operating conditions than in air conditioning or commercial refrigeration applications due to the wide range of operating load conditions and the wide range of outdoor ambient conditions over which the refrigerant vapor compression system must operate to maintain product within the cargo space at a desired temperature. The desired temperature at which the cargo needs to be controlled can also vary over a wide range depending on the nature of cargo to be preserved. The refrigerant vapor compression system must not only have sufficient capacity to rapidly pull down the temperature of product loaded into the cargo space at ambient temperature, but also operate efficiently at low load when maintaining a stable product temperature during transport. Additionally, transport refrigerant vapor compression systems are subject to cycling between an operating mode and standstill mode, i.e. an idle state.
In all refrigerant vapor compression systems, the system must be filled with a refrigerant in an amount sufficient to ensure an adequate amount of refrigerant within the system, commonly referred to as the refrigerant charge, under all operating conditions. An inadequate refrigerant charge can reduce system performance and can lead to system malfunction and damage to system components such as the compressor. It is possible for the refrigerant charge in the system to be initially too low due to human error in filling the system with refrigerant at the manufacturing site or during field installation. It is also possible for the refrigerant charge to be reduced during operation of the system due to leaks which, if undetected and unaddressed, result in the refrigerant charge dropping low enough that system performance is adversely affected and system components damaged.
The refrigerant charge within a refrigerant vapor compression system is monitored for early detection of refrigerant charge loss in the refrigerant vapor compression system. In an aspect of the method, a control initiates either a service alarm or a shut down alarm depending on the degree of loss of the refrigerant charge.
A method is provided for detecting in real-time a refrigerant charge loss in a refrigerant vapor compression system. If both a sensed evaporator outlet superheat exceeds a target evaporator outlet superheat by at least a preset amount of superheat and a sensed degree of openness of an electronic expansion valve exceeds a preset degree of openness for a preset time of period, and a sensed air temperature of either a flow of supply air having traversed the evaporator or a flow of return air returning to the evaporator is changing at a rate less than preset air temperature rate of change, a service alarm is generated indicating a loss of charge warning.
In a further aspect of the method, a sensed air temperature of either a flow of supply air having traversed the evaporator or a flow of return air returning to the evaporator is changing at a rate less than preset air temperature rate of change, a sensed suction pressure of refrigerant passing to a suction inlet to the compression device is compared to a preset low suction pressure limit. If the sensed suction pressure of refrigerant passing to a suction inlet to the compression device is less than the preset low suction pressure limit for a preset period of time, a shut down alarm is generated warning an urgent system refrigerant recharge is required.
For a further understanding of the disclosure, reference will be made to the following detailed description which is to be read in connection with the accompanying drawing, wherein:
Referring initially to
Each of the refrigerant vapor compression systems 10 includes a refrigerant compression device 20, a refrigerant heat rejection heat exchanger 30, a refrigerant heat absorption heat exchanger 50, and an electronic expansion valve 55 operatively associated with the refrigerant heat absorption heat exchanger 50, with refrigerant lines 2, 4 and 6 connecting the aforementioned components in a refrigerant circuit in accordance with a conventional refrigeration cycle. The refrigerant vapor compression systems 10 are filled, i.e. charged, with a total amount of refrigerant predetermined to provide sufficient refrigerant within the system to ensure proper performance of the system under most contemplated operating conditions, herein referred to as the refrigeration charge.
The refrigerant vapor compression systems 10 depicted in
The refrigeration system 10 depicted in
The compression device 20 functions to compress refrigerant vapor from a lower suction pressure to a higher discharge pressure and to circulate refrigerant through the primary refrigerant circuit. In the embodiments depicted in
In the embodiment depicted in
In the refrigerant heat rejection heat exchanger 30, hot, high pressure refrigerant vapor discharged from the compression device 20 passes in heat exchange relationship with a cooling medium, such as for example, but not limited to ambient air or water, and is cooled either to a low lower temperature vapor (transcritical cycle) or condensed to a liquid (subcritical cycle). In the depicted embodiments, the refrigerant heat rejection heat exchanger 30 includes a finned tube heat exchanger 32, such as for example a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger, through which the refrigerant passes in heat exchange relationship with ambient air being drawn through the finned tube heat exchanger 32 by the fan(s) 34 associated with the gas cooler 30.
Whether the refrigerant vapor compression system 10 is operating in a transcritical cycle or a subcritical cycle, the refrigerant heat absorption heat exchanger 50 serves an evaporator wherein refrigerant liquid or a mixture of refrigerant liquid and vapor is passed in heat exchange relationship with a fluid to be cooled, most commonly air, drawn from and to be returned to a temperature controlled environment, such as the cargo box 200 of a refrigerated transport truck, trailer or container, or a display case, merchandiser, freezer cabinet, cold room or other perishable/frozen product storage area in a commercial establishment, or to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. In the depicted embodiments, the refrigerant heat absorption heat exchanger 50 comprises a finned tube heat exchanger 52 through which refrigerant passes in heat exchange relationship with air drawn from and returned to the refrigerated cargo box 200 by the evaporator fan(s) 54 associated with the evaporator 50. The finned tube heat exchanger 52 may comprise, for example, a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger.
As the amount of refrigerant circulating through the refrigerant circuit of the refrigerant vapor compression system will vary with the operating conditions to which the system is subjected, the refrigerant charge will amount to more refrigerant than is actually required under some operating conditions. Thus, it is customary to provide a buffer vessel in the refrigerant for holding refrigerant that is excess of the amount of refrigerant circulating under the then prevailing operating conditions. In the subcritical cycle systems depicted in
The refrigerant vapor compression system 10 depicted in
The refrigerant vapor injection line 14 establishes refrigerant flow communication between an upper portion of the separation chamber 42 of the flash tank economizer 40 and an intermediate stage of the compression process. A vapor injection flow control device 43 may be interdisposed in vapor injection line 14. The vapor injection flow control device 43 may be a flow control valve selectively positionable between an open position wherein refrigerant vapor flow may pass through the refrigerant vapor injection line 14 and a closed position wherein refrigerant vapor flow through the refrigerant vapor injection line 14 is blocked, such as for example, but not limited to, a two-position solenoid valve of the type selectively positionable between a first open position and a second closed position.
In the exemplary embodiment of the refrigerant vapor compression system depicted in
The refrigerant vapor compression system 10 also includes a control system operatively associated therewith for controlling operation of the refrigerant vapor compression system 10. The control system includes a controller 100 that determines the desired mode of operation in which to operate the refrigerant vapor compression system 10 based upon consideration of refrigeration load requirements, ambient conditions and various sensed system operating parameters and controls operation of various system components, including but not limited to the compression device 20, the fans 34 and 54, and the electronic expansion valve 55. As in conventional practice, the controller 100 also includes various sensors operatively associated with the controller 100 and disposed at selected locations throughout the system for monitoring various operating parameters by means of various sensors operatively associated with the controller, such as by way of example, but not limitation, a temperature sensor 103 and a pressure sensor 104 for sensing the refrigerant suction temperature and pressure, respectively, a temperature sensor 105 and a pressure sensor 106 for sensing refrigerant discharge temperature and pressure, respectively, and an ambient air temperature sensor (not shown) for sensing outdoor air temperature, all not shown. On a refrigerant vapor compression system 10 equipped with a variable speed drive 27 for driving the compression device 20 at multiple speeds, the control system further includes a sensor 102 for sensing the speed of the compression drive 20 and a sensor 108 for sensing the current drawn by the compression device 20.
In the refrigerant vapor compression system disclosed herein, the controller 100 is configured to detect and diagnose, in real time, a refrigerant charge loss in accordance with the method disclosed herein. The controller 100 is further configured to flag an alarm in the event a refrigerant charge loss is detected. The controller 100 may be configured to flag either a service alarm or a shut down alarm, depending upon the degree of the detected refrigerant charge loss. In response to the alarm, appropriate action may be taken to prevent a resultant loss in cooling capacity and to protector the compression device 20 and other components of the refrigerant vapor compression system 10 from damage as a result as continued operation with an inadequate refrigerant charge.
To detect a refrigerant charge loss, the controller 100 monitors the amount of superheat in the refrigerant vapor leaving the evaporator 50, referred to herein as the evaporator outlet superheat, EOSH, and the degree of openness of the electronic expansion valve 55, 100% representing a fully open valve condition and 0% representing a fully closed valve condition. The degree of openness of the electronic expansion valve 55 is an output signal from the electronic expansion valve 55 that is recorded by the controller 100. The controller 100 uses the refrigerant suction temperature sensed by temperature sensor 103 and the refrigerant suction pressure sensed by pressure sensor 104 to calculate the evaporator outlet superheat according to conventional techniques.
Referring now to
To determine the current operating mode of the refrigerant vapor compression system, at block 114, the controller 100 determines the then current rate of change of at least one of the temperature, TS, of the supply air having traversed the evaporator 50 and being supplied to the climate controlled space, which in the depicted embodiments is cargo space 200, or the temperature, TR, of the return air returning from the climate control space to pass through the evaporator 50. The transport refrigerant vapor compression system 100 includes at least one of or both of, a sensor 107 for sensing the temperature, TS, of the supply air and a sensor 109 for sensing the temperature, TR, of the return air. The controller is configured to monitor the sensors 107 and 109 and calculate the rate of change of at least one of TS and TR over a specified period of time. If the rate of change TS or TR per minute, ΔTS or ΔTR, is less than a preset rate of temperature change, ΔTair, for example 0.5° F. (0.28° C. per minute, the refrigerant vapor compression system 10 is operating in a steady state mode to maintain the air temperature within the cargo space 200 at a preset temperature. However, if the rate of change ΔTS or ΔTR is more than a preset rate of temperature change, ΔTair, the refrigerant vapor compression system 10 is operating in a pulldown mode to rapidly reduce the air temperature within the cargo space 200.
If the controller 100 determines that the refrigerant vapor compression system 10 is operating in a steady state mode with the sensed evaporator outlet superheat EOSHSENSED being greater than EOSHTARGET by at least the preset amount ΔEOSH and the sensed degree of openness, OPENSENSED, of the electronic expansion valve 55 being greater than OPENLIMIT, the controller 100 understands that the sensed evaporator outlet superheat and the degree of openness of the electronic expansion valve 55 are excessive and therefore indicative of a loss of refrigerant charge resulting in an inadequate refrigerant charge. Having determined that a loss of refrigerant charge has occurred, the controller 100 at block 116 generates a service alarm flagging the need for a refrigerant recharge.
If the refrigerant vapor compression system 10 is equipped with a constant speed compressor 20, the controller 100 next proceeds as further depicted in
If the refrigerant vapor compression system 10 is equipped with a variable speed compressor 20, the controller 100 next proceeds as further depicted in
However, if the controller 100 determines at block 117 that the compressor 20 has been operating at maximum speed for the predetermined tine interval, t3, the controller 100 will, at block 119, check the current being drawn by the compressor 20 in comparison a maximum current draw limit. If the sensed compressor current draw is greater than a preset percentage, Y %, of the maximum current draw limit, the controller 100, at block 121, reduces the speed of the compressor 20 in a series of step reductions until the sensed current draw drops below the preset percentage, Y %, of the maximum current draw limit. If at block 119, the controller 100 determines that the sensed current draw is not greater than the preset percentage, Y %, of the maximum current draw limit, the controller 100 returns to block 112 and repeats the method.
In a further aspect of the disclosure, the controller 100 may be configured to calculate the actual refrigerant charge level. If the ambient air temperature is higher than 87° F. (30.5° C.) and the compressor 20 has been off for more than a sufficient time to permit the refrigerant within the refrigerant vapor compression system 10 to migrate to an equilibrium condition, for example more than twenty minutes, the controller 100 may initiate a refrigerant charge calculation. At the equilibrium condition, the refrigerant pressure is substantially equalized throughout the system and the refrigerant will be at ambient temperature. To calculate the actual refrigerant charge, the controller 100 first calculates the refrigerant density based on the sensed discharge pressure and the ambient air temperature, and then multiplies the calculated refrigerant density with the internal volume of the system 10, thereby determining the weight of refrigerant currently resident within the system 10, i.e. the actual refrigerant charge. The controller 100 may also be configured to compare the calculated system refrigerant charge to a design system refrigerant charge, for example a factory installed system refrigerant charge, and to generate an alarm flagging a loss of refrigerant charge is the calculated is less than a specified percent of the preferred system refrigerant charge, for example less than 85% of the design system refrigerant charge. In an embodiment, the controller 100 is configured to initiate a refrigerant charge calculation upon completion of an evaporator defrost cycle before restarting the compression device 20 to return the system 10 to operation in a cooling mode.
The terminology used herein is for the purpose of description, not limitation. Specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as basis for teaching one skilled in the art to employ the present invention. Those skilled in the art will also recognize the equivalents that may be substituted for elements described with reference to the exemplary embodiments disclosed herein without departing from the scope of the present invention.
While the present invention has been particularly shown and described with reference to the exemplary embodiments as illustrated in the drawing, it will be recognized by those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed as, but that the disclosure will include all embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/024575 | 2/4/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/119489 | 8/15/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2160276 | McKee | Apr 1937 | A |
2893217 | Nigro | Oct 1955 | A |
3491544 | Webber | Apr 1968 | A |
4008755 | Vandamme | Feb 1977 | A |
4633681 | Webber | Jan 1987 | A |
RE32451 | Proctor et al. | Jul 1987 | E |
4711096 | Krantz | Dec 1987 | A |
4798057 | Okamoto | Jan 1989 | A |
4856288 | Weber | Aug 1989 | A |
5009076 | Winslow | Apr 1991 | A |
5079930 | Beaverson et al. | Jan 1992 | A |
5174125 | Duncan | Dec 1992 | A |
5186014 | Runk | Feb 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5243829 | Bessler | Sep 1993 | A |
5264833 | Jeffers et al. | Nov 1993 | A |
5323847 | Koizumi et al. | Jun 1994 | A |
5337576 | Dorfman et al. | Aug 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5351500 | Morrow | Oct 1994 | A |
5457965 | Blair et al. | Oct 1995 | A |
5539385 | Duff et al. | Jul 1996 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5713213 | Nobuta et al. | Feb 1998 | A |
5860286 | Tulpule | Jan 1999 | A |
6073455 | Tachigori et al. | Jun 2000 | A |
6098412 | Porter et al. | Aug 2000 | A |
6122955 | Hoog et al. | Sep 2000 | A |
6425253 | Gale et al. | Jul 2002 | B1 |
6446505 | Wieszt et al. | Sep 2002 | B1 |
6460354 | Yabuki | Oct 2002 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6826948 | Bhatti et al. | Dec 2004 | B1 |
6868678 | Mei et al. | Mar 2005 | B2 |
6981384 | Dobmeier et al. | Jan 2006 | B2 |
7076373 | Munsterhuis et al. | Jul 2006 | B1 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7377118 | Esslinger | May 2008 | B2 |
7380404 | Kang et al. | Jun 2008 | B2 |
7386985 | Concha et al. | Jun 2008 | B2 |
7389649 | Pham et al. | Jun 2008 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7512523 | Johnson et al. | Mar 2009 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7712319 | Braun, II et al. | May 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7905098 | Pham | Mar 2011 | B2 |
8024937 | Minor | Sep 2011 | B2 |
8037700 | Shah et al. | Oct 2011 | B2 |
20020121100 | Yabuki | Sep 2002 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050086951 | Dobmeier et al. | Apr 2005 | A1 |
20050092070 | Bhatti | May 2005 | A1 |
20050103029 | Kawahara et al. | May 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20060042276 | Doll, Jr. et al. | Mar 2006 | A1 |
20060042277 | Sadegh et al. | Mar 2006 | A1 |
20070256436 | Hayashi | Nov 2007 | A1 |
20080104976 | Guglielmetti et al. | May 2008 | A1 |
20090019875 | Fink et al. | Jan 2009 | A1 |
20090107157 | Dube | Apr 2009 | A1 |
20090241573 | Ikegami et al. | Oct 2009 | A1 |
20100300129 | Bean, Jr. et al. | Dec 2010 | A1 |
20110112814 | Clark | May 2011 | A1 |
20110174059 | Yonemori et al. | Jul 2011 | A1 |
20110277541 | Kadle et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
101504177 | Aug 2009 | CN |
100549574 | Oct 2009 | CN |
4008877 | Oct 1991 | DE |
1475588 | Nov 2004 | EP |
2797038 | Feb 2001 | FR |
2428896 | Feb 2007 | GB |
S58198632 | Nov 1983 | JP |
S6137725 | Feb 1986 | JP |
01300170 | Dec 1989 | JP |
H1183246 | Mar 1999 | JP |
H1194408 | Apr 1999 | JP |
2000105032 | Apr 2000 | JP |
2002039649 | Feb 2002 | JP |
2007092636 | Apr 2007 | JP |
20003060400 | Jul 2003 | WO |
2005124325 | Dec 2005 | WO |
2007022779 | Mar 2007 | WO |
2007142920 | Dec 2007 | WO |
2010062923 | Jun 2010 | WO |
Entry |
---|
English Translation of JP 2007092636. |
Chinese First Office Action and Search for application CN 201380008779.5, dated Feb. 26, 2016, 7 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2013/024575, dated Dec. 6, 2013, 20 pages. |
International Preliminary Report on Patentability for application PCT/US2013/024575, dated Aug. 12, 2014, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20150007591 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61597275 | Feb 2012 | US |