The invention relates to a method for determining an inner diameter of a sounding tube, which, for measuring the fill level of a fill substance located in a process space of a container, extends into the process space or is placed beside the container and is connected with the process space.
In automation technology, especially in process automation technology, field devices are often applied, which serve for registering and/or influencing process variables. Serving for registering process variables are sensors, which are installed, for example, in fill level measurement devices, flow measuring devices, pressure- and temperature measuring devices, pH redox-potential measuring devices, conductivity measuring devices, etc., which register the corresponding process variables, fill level, flow, pressure, temperature, pH-value, redox potential, and conductivity, respectively. Serving for influencing process variables are actuators, such as, for example, valves or pumps, via which, respectively, the flow of a liquid in a section of pipeline or the fill level in a container can be changed. Referred to as field devices are, in principle, all devices, which are applied near to the process and deliver, or process, process relevant information. In connection with the invention, the terminology, field devices, thus also includes remote I/Os, radio adapters, and, in general, all electronic components arranged at the field level. A great number of such field devices are manufactured and sold by the firm, Endress+Hauser.
Used for fill level measurement of fill substances in containers are contactless measuring methods. They offer the advantages of robustness and low-maintenance. A further advantage is their ability to measure the fill level virtually continuously, thus with a very high resolution. Applied in the field of continuous fill level measurement are primarily radar-based measuring methods. An established measuring principle, in such case, is the pulse travel time measuring principle, also known under the name, pulse radar. In such case, a microwave pulse is transmitted toward the fill substance and the travel time measured until receipt of the echo pulse. Using this measuring principle, pulse radar-based fill level measuring devices can be implemented comparatively without great circuit complexity. However, the resolution of this measuring device type is limited. Among the reasons for this is that the emitted microwave pulses cannot be infinitesimally short. Thus, the accuracy of measurement of the travel time is reduced and, so, also, the accuracy of measurement of the fill level.
To the extent that a more complex circuit technology can be tolerated, also FMCW (Frequency Modulated Continuous Wave) can be used as the measuring principle for radar-based fill level measurement. This principle enables a still higher resolution than possible with the pulse travel time measuring principle. The measuring principle of the FMCW-based radar distance measuring method rests on continuously transmitting a high-frequency microwave signal. In such case, the frequency of the signal lies in a fixed frequency band in the region of a standardized center frequency (f0). According to standard, here frequency bands in the 6 GHz band, the 26 GHz band, or the 79 GHz band are used. Characteristic for the FMCW method is that the transmitted frequency is not constant, but, instead, varies periodically within a frequency band. The frequency change can, in such case, be linear and have a sawtooth or triangular shape. A sinusoidal variation can, however, also be used, depending on application.
As in the case of pulse radar, there is also in the case of the FMCW-based fill level measuring method a special challenge in detecting the measurement signal free of doubt as to the correctness of the identification when disturbance signals are present. Thus, defective measured values can be generated, based on which the functional ability of the fill-level measuring device is degraded. A significant cause, in such case, is the receipt of disturbance echo signals, which arise not on the surface of the fill substance, but, instead, by reflection of the transmitted signal on disturbing bodies, such as stirrers or objects installed in the container.
In the interim, many technical approaches have been proposed, in order to identify, or filter out, these types of disturbance echo signals. Thus, known from Published International Application, WO 2012/139852 A1 is a method for calibration of FMCW-based fill-level measuring devices, in the case of which an unequivocal calibration-signal is generated by means of an oscillating reference reflector positioned between measuring device and fill substance.
An opportunity for preventing the registering of echo signals from disturbing bodies from the outset is provided by the application of a sounding tube or bypass tube. In such case, the sounding tube is placed in the container, for instance, vertically within the process space. In such case, atmosphere can flow in and out of the sounding tube in such a manner that the fill level of the fill substance within the sounding tube agrees with the fill level within the remaining process space.
In the case of a bypass tube, such is placed alongside the container, wherein it also, in this case, is connected with the process space in such a manner that also here the fill level in the bypass-pipe equals the fill level in the process space.
In the case of application of a sounding- or bypass tube, the fill-level measuring device is not, such as otherwise usual, arranged in such a manner that the antenna of the fill level measuring device is facing directly into the process space of the container, in which the fill substance is located. Rather, the fill-level measuring device is so placed on the upper end of the sounding tube that the antenna of the fill level measuring device transmits the microwave signal along the sounding tube toward the fill substance.
Fill level measuring devices, which are arranged on sounding tubes of round inner diameter, are calibrated, as a rule, using the tube inner diameter of the later used sounding tube. In the case of applications in the oil- and gas industry, calibration is frequently based on a reference inner diameter according to the standard DIN EN ISO 6708, for example, DN 100.
A problem occurs when the tube inner diameter of the sounding tube, on which the fill-level measuring device is placed in later use, does not exactly agree with the reference inner diameter of the calibration tube. This frequent case is disadvantageous to the extent that even a small difference between the inner diameters causes a significant measurement error in the fill level measurement and accordingly leads to a very inexact fill level measurement.
An object of the invention, therefore, is to provide a method, with which FMCW-based fill level measuring devices, which are used on sounding tubes or bypass tubes, can measure fill level exactly, in spite of not exactly known tube inner diameter.
The invention achieves this object by a method for determining an inner diameter of a sounding tube, which, for measuring the fill level of a fill substance located in a process space of a container, extends in the process space or is placed alongside the container and connected with the process space. For this, the method of the invention comprises method steps as follows:
The periodic frequency change used, as a rule, in the FMCW method is preferably a sawtooth-shaped or triangular change of the electrical signal. In such case, the fill level is determined based on the intermediate frequency and/or the base phase shift.
A central advantage of the method of the invention is that the measuring of the fill level can be recalibrated based on the so ascertained, tube inner diameter. This enables an exact determining of the fill level, even when the tube inner diameter was not previously exactly known.
A simple ascertaining of the phase shift is possible, for example, by means of a fast Fourier transformation (FFT) of the difference signal. Alternatively, naturally, also an ordinary type of Fourier transformation could be used.
Preferably, the tube inner diameter is determined based on the change of the phase difference as a function of the fill level. In this case, it is especially advantageous when the tube inner diameter (D) is calculated using the formula
In such case, c is the free-field wave propagation velocity. Frequency fc is the previously known limit frequency in a calibration tube having the reference inner diameter (D0). Frequency fr is a reference frequency, for example, the center frequency of the electrical signal.
The change
can be ascertained, for example, by any type of linear regression.
According to the invention, the base phase shift can be ascertained in a number of ways, especially by a theoretical calculation, a simulation, and/or based on calibration data. For the case, in which base phase shift is ascertained based on calibration data, the calibration, on which the calibration data is based, is preferably performed using a calibration tube, which has the reference inner diameter. It is advantageous when the reference inner diameter is about equal to the later tube inner diameter.
Furthermore, the object of the invention is achieved by a fill-level measuring device for performing the method described in at least one of the preceding variants. Such fill-level measuring device comprises:
In the case of fill level measuring devices of the state of the art, the evaluating unit includes a further processing unit for digitizing and/or for filtering and/or for amplifying the difference signal. In order to be able to isolate the difference signal as much as possible from possible disturbance signals, it is advantageous, when the further processing unit includes a bandpass filter, which is especially transmissive for the intermediate frequency of the difference signal.
Depending on field of application of the fill level measuring device, it is advantageous, when the tube inner diameter ascertained by the method of the invention can be displayed for service- or maintenance personnel. Therefore, it is advantageous when the fill-level measuring device includes a display unit for display of the tube inner diameter. In this case, there are the options that the fill-level measuring device recalibrates itself based on the tube inner diameter either automatically or only upon request by service- or maintenance personnel.
In this recalibration, the fill-level measuring device adopts the tube inner diameter ascertained according to the invention and determines therefrom based on a theoretical calculation a corresponding propagation velocity of the microwave signal in a tube with the ascertained tube inner diameter. Formulas for this calculation are known and belong to the state of the art. The determining of the fill level from the signal travel time occurs then using the calculated propagation velocity.
The invention will now be explained in greater detail based on the appended drawing, the figures of which show as follows:
Alternatively to insertion of the sounding tube 11 within the container 2, another option is that the sounding tube 11 is placed alongside the container 2. Also in this case, the sounding tube 11 would be connected in such a manner with the process space 4 that the fill level L there reigns likewise in the sounding tube 11.
As a rule, the fill-level measuring device 1 is connected via a bus system, for instance, a PROFIBUS, HART or Wireless HART bus system, with a superordinated unit 5, for example, a process control system. In this way, on the one hand, information concerning the operating state of the fill level measuring device 1 can be communicated. Also information concerning the fill level L can be transmitted, in order, in given cases, to control inlets 21 and/or outlets 22 present on the container 2.
Sounding tube 11 has in practice an inner diameter D, which, as a rule, is not exactly known, or deviates from its nominal value. Moreover, the fill-level measuring device 1 is usually calibrated on a calibration tube 16 having a reference inner diameter D0, which does not exactly correspond to the tube inner diameter D. A reason for this can be, for example, deposits in the sounding tube or differing manufacturing methods. The result is that the fill-level measuring device 1 cannot determine the fill level L exactly. Thanks to the method of the invention, it is, however, possible, based on the reference inner diameter D0, to ascertain the tube inner diameter D exactly. By means of the exactly ascertained tube inner diameter D, it is then possible to recalibrate the fill-level measuring device 1 based on the tube inner diameter D, so that an exact measurement of the fill level L can be performed.
If the fill-level measuring device 1 has a display unit or has access to a display unit, it is additionally possible to display the exactly ascertained tube inner diameter D on such display unit. In this connection, an embodiment provides that the fill-level measuring device 1 does not perform the recalibration automatically, but, instead, only after consent of service- or service personnel, to the extent that it is considered necessary due to the indicated tube inner diameter D.
An example of a circuit of the fill level measuring device 1 for performing the method of the invention is shown in
As shown in
Signal production unit 12 can be, for example, a voltage controlled oscillator, which includes a quartz oscillator suitable for such purpose.
In the fill-level measuring device, which is shown in
The echo signal E is converted by the antenna unit 13 into an electrical, received signal e. In measurement operation, then the received signal e is mixed in a mixer 14 with the transmitted signal s. By mixing the received signal e with the transmitted signal s, a difference signal IF is formed, wherein the intermediate frequency fIF of the difference signal IF is derived from the difference between the instantaneous frequency of the transmitted signal s and the instantaneous frequency of the received signal e.
For ascertaining the intermediate frequency fIF of the difference signal IF as well as the phase shift ϕactual(L) between the difference signal IF and the electrical signal s, the fill-level measuring device includes an evaluating unit 15. The ascertaining of these two values fIF, ϕactual(L) is performed, in such case, per fast Fourier transformation by a calculational unit 152 provided for this. As usual in the case of processing this data, this happens based on digitized signals. Therefore, in the case of the evaluating unit 15 illustrated in
Based on the intermediate frequency fIF as well as the phase shift ϕactual(L), such as is usual in the case of FMCW-based fill-level measuring devices, the fill level L is ascertained by a microcontroller 153.
According to the invention, based on a difference forming, the phase shift ϕactual(L) is compared with a base phase shift ϕbase(L). In the case of the fill-level measuring device illustrated in
Forming the difference leads to a phase difference Δϕ(L). A characteristic phase difference Δϕ(L) as a function of fill level L is shown in
with increasing distance h-L.
Based on the slope
the exact tune inner diameter D can be determined. This is calculated via the relationship:
The calculating occurs in the case of the fill-level measuring device 1 illustrated in
such as shown in
By exactly determining the tube inner diameter D, the fill-level measuring device 1 can correspondingly recalibrate itself and then determine the fill level L exactly. With regard to the phase difference Δϕ(L), the recalibration has the result that the phase shift ϕactual(L) approximately matches the base phase shift ϕactual(L) (see curve b in
Number | Date | Country | Kind |
---|---|---|---|
10 2016 105 419 | Mar 2016 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4641139 | Edvardsson | Feb 1987 | A |
5099244 | Larson | Mar 1992 | A |
6054946 | Lalla | Apr 2000 | A |
6915689 | Edvardsson | Jul 2005 | B2 |
20080156108 | Matt | Jul 2008 | A1 |
20080223147 | Deutscher | Sep 2008 | A1 |
20140028492 | Mayer | Jan 2014 | A1 |
20150233750 | Malinovskiy | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
10 2013 108 490 | Feb 2015 | DE |
10 2014 101 904 | Aug 2015 | DE |
10 2014 112 228 | Mar 2016 | DE |
0 955 528 | Nov 1999 | EP |
Entry |
---|
German Search Report, German PTO, Munich, Jan. 31, 2017. |
Number | Date | Country | |
---|---|---|---|
20170276536 A1 | Sep 2017 | US |