The invention relates to a method for determining load size and/or setting a water level in a washing machine. For a wash process of a washing machine, the water level in the tub is typically set based on the size of a fabric load and, sometimes, the fabric type of the fabric load. The size of the fabric load may be manually input by the user through a user interface or may be automatically determined by the washing machine. For manual input by the user, the user may oftentimes overestimate or underestimate the load size, thereby resulting in too much or too little water, respectively, for the wash process. Too much water is wasteful, and too little water may lead to an insufficient wash performance. Many methods are known for the washing machine to automatically determine the load size and/or fabric type, such as by employing an output of the motor that drives the drum within the tub and the agitator within the drum. However, some lower end washing machines have motors that do not provide output useful for determining load size or have other limitations that preclude or make undesirable known methods for automatically determining load size.
A method according to one embodiment for determining a size of a fabric load in a washing machine comprising a wash tub, an agitator for agitating a fabric load in the tub, and a pressure sensor for sensing a level of water in the tub comprises determining a first qualitative load size of the fabric load based on a volume of water supplied to the tub to reach a first level in the tub, and, if the volume of water supplied is not indicative of the first qualitative load size, determining a second qualitative load size of the fabric load based on a variation in an output of the pressure sensor during agitation the fabric load with water in the tub.
In the drawings:
Referring now to the figures,
The washing machine 10 includes a cabinet or housing 12, an imperforate tub 14, a perforated basket or drum 16 mounted within and rotatable relative to the tub 14, an agitator 18 mounted within and rotatable relative to and/or with the basket 16, and an electrically driven motor 20 operably connected via a transmission 22 to the agitator 18 and/or the basket 16. The transmission 22 may be a gear driven direct drive. The motor may be a brushless permanent magnet (BPM) motor direct drive, which may be coupled to and drive the transmission. An openable lid 24 on the top of the cabinet 12 provides access into the basket 16 through the baskets' open top. A user interface 28, which may be located on a console 30, may include one or more knobs, switches, displays, and the like for communicating with the user, such as to receive input and provide output.
A spraying system 40 may be provided to spray liquid (water or a combination of water and one or more wash aids) into the open top of the basket 16 and on top of any fabric load placed within the basket 16. The spraying system 40 may be configured to supply water directly from a household water supply and/or from the tub and spray it onto the fabric load. The spraying system 40 may also be configured to recirculate liquid from the tub, include a sump in the tub, and spray it onto the top of the fabric load. Other embodiments of the invention may use other water delivery techniques known to those skilled in the art.
As illustrated, the spraying system 40 may have one or more spray heads 42 directed into the open top of the basket 16. A liquid supply line (not shown) supplies liquid to a distribution manifold 46 integrated with the balancing ring to effect the supply of liquid to the spray heads 42. The supply line may be fluidly coupled to either or both of the household water supply or the tub as previously described. When liquid is supplied to the supply line from either the household supply or the tub, the liquid is directed to the spray heads 42 through the manifold 46 and is then emitted through the spray heads 42 into the open top of the basket 16 and onto any fabric load in the basket 16.
If the number, location, and coverage of the spray heads 42 is insufficient to substantially cover the basket 16, the basket may be rotated so that the fabric load is rotated beneath the spray heads for a more even wetting. However, the spray heads 42 as illustrated may be located and their spray coverage controlled such that they sufficiently evenly wet the fabric load in the basket without the need for rotating the basket, which likely reduces the cost and complexity of the motor, transmission, and controller.
Referring now to
A controller 38 communicates with several working components and/or sensors in the washing machine 10, such as the motor 20, the user interface 28, the water supply control 32, the pressure sensor 34, and the flow meter 36, to receive data from one or more of the working components or sensors and may provide commands, which may be based on the received data, to one or more of the working components to execute a desired operation of the washing machine 10. The commands may be data and/or an electrical signal without data. The controller 38 may also convert the data from the flow meter 36 to volume of water supplied to the tub 14 if the volume of water supplied to the tub 14 is not directly provided by the flow meter 36. The washing machine 10 may further include a timer to provide time data to the controller 38 to assist in the conversion of the flow rate data to volume of water supplied to the tub 14. Many known types of controllers may be used for the controller 38. The specific type of controller is not germane to the invention.
The washing machine 10 shown in the figures and described herein is a vertical axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally vertical axis relative to a surface that supports the washing machine. However, the rotational axis need not be vertical; the drum may rotate about an axis inclined relative to the vertical axis. Typically, the drum is perforate or imperforate and holds fabric items and a fabric moving element, such as an agitator, impeller, pulsator, infuser, nutator, ribbing or baffles on the interior wall of the basket or drum 16, and the like, that induces movement of the fabric items to impart mechanical energy directly to the fabric articles or indirectly through wash water in the drum for cleaning action. The clothes mover is typically moved in a reciprocating rotational movement, although non-reciprocating movement is also possible.
Although the washing machine 10 is a vertical axis washing machine, the methods described below may be employed in any suitable washing machine having a fabric moving element, including washing machines other than vertical axis washing machines. As used herein, “agitator” refers to any type of fabric moving element and is not limited to the structure commonly associated with an agitator, such as the structure shown in
Typically, a washing machine performs one or more manual or automatic operation cycles, and a common operation cycle includes a wash process, a rinse process, and a spin extraction process. Other processes for operation cycles include, but are not limited to, intermediate extraction processes, such as between the wash and rinse processes, and a pre-wash process preceding the wash process, and some operation cycles include only a select one or more of these exemplary processes. Regardless of the processes employed in the operation cycle, the methods described below relate to determining a size of the fabric load and/or setting an operational water level for a process in the operation cycle.
The flow chart in
On the other hand, if the volume of water supplied is not indicative of the first qualitative load size, then the method 100 proceeds with a determination at a step 106 of whether a variation in output of the pressure sensor 34 during agitation is indicative of a second qualitative load size greater than the first qualitative load size. If the volume of water supplied is indicative of the first qualitative load size, then the operational water level is set at a step 108 to a second operational water level. In one embodiment, as with the first qualitative load size, the second qualitative load size may include multiple load sizes, each having a corresponding operational water level, and the method 100 may further include steps of selecting the second operational load size and/or second operational water level from the multiple load sizes/operational water levels. An example of selecting the second qualitative load size and/or second operational water level from the multiple load sizes/operational water levels is provided below.
Alternatively, if the variation in the output of the pressure sensor 34 during agitation is not indicative of the second qualitative load size, then the load size is determined at step 110 to be a third qualitative load size, and the operational water level is set to a third operational water level. When the first qualitative load size includes the multiple load sizes, the third qualitative load size may be one of the multiple load sizes, an example of which is provided below. After the load size is determined and/or the operational water level is set, the process associated with the method 100 continues in any desired manner.
The term operational water level is used to reference the level of water in the tub corresponding to a volume of water for implementing one or more steps of a wash cycle. The term operational water level is to be distinguished from the term water level, which is used to reference any water level in the tub and expressly includes operational water levels.
Referring generally to
There may not an exact correlation between the initial supplied volume and the load size because of environmental factors. For example, if the load is small enough, it may not cover the bottom of the basket 16 and the water would pass directly from the spraying system 40 and into the tub. This may be referred to as the water bypassing the clothing, which tends to result in the initial supplied volume indicating a smaller load than is present. The fabric load may also be placed in the basket 16 in such a way that water will pool on the fabric and not be absorbed, which tends to result in the initial supplied volume indicating a larger load than is present. The mix of fabrics in the fabric load may also affect the initial supplied volume. For example, a fabric load of synthetic fabrics typically absorbs less water than the same size fabric load of cotton fabrics; thus, the initial supplied volume may be less for the synthetic fabric load than for the cotton fabric load. These potential errors in the accuracy of the time to fill and the actual load size may be addressed by the selection of operational water levels that span any anticipated error.
While the initial supplied volume may be determined by filling to any water level, to minimize the cycle time, the initial supplied volume determination may be measured until the pressure sensor first begins to sense water in the tub, which is sometimes referred to as the first meaningful output from the pressure sensor 34. The first meaningful output of the pressure sensor typically corresponds to a water level in the tub. That is, it is the first sensed water level that the pressure sensor can sense. This first sensed water level depends, at least in part, on the configuration of the washing machine 10, such as the location of the pressure sensor 34. Alternatively, the first sensed water level may correspond to a predetermined output from the pressure sensor 34, which is indicative of a water level above the first sensed water level. However, determining the initial spayed volume at a water level above the first sensed water level will increase the overall cycle time. The first sensed water level may be less than, equal to, or greater than a level of water for a wash process of an operation cycle of the washing machine 10. As one example, the first sensed water level may be about 1 inch of water in the tub 14. For purposes of this description, the initial supplied volume will be described in the context of the reaching the first water level, with it being understood that any water level may be used as the level for determining the initial supplied volume. Therefore, the term initial supplied volume will be used to generically refer to the water level reaches the first water level that is used for testing, which for the illustrated embodiment is the first water level that can be sensed, with it being understood that this term may apply to any water level and not limited by the manner in which the water level is sensed.
The relationship between load size and initial supplied volume is illustrated in
Each plot line has the same general shape where the pressure remains constant (horizontal portion) and then, at an inflection point, trends upwardly (angled portion). The horizontal portion represents the when water is being added to the basket 16 but the pressure sensor does not yet sense any water in the tub. Most of the water during this time is being absorbed by the fabric load. The inflection point represents the time when the sensor first senses water in the tub and is when the initial supplied volume is determined. After the inflection point is reached, most of the additional water is not absorbed by the fabric load and goes into the tub, resulting in an increase in the water level, which results in an increased pressure sensed by the pressure sensor.
In comparing the various plots, it can be seen that for a given fabric load type, the supplied volume of water necessary to reach the inflection point, i.e., the initial spray volume, increases with load size. This is true for either the blend load type or the all cotton load type. Therefore, the initial spray volume may be used to determine relative load sizes.
It can also be seen that in some instances the absolute nature of the correlation does not hold true if there is when there is a large difference in the absorbency of the fabric types. For example, the 3 lb cotton load reaches its inflection point about the same time as the 8 lb blend load, and the 8 lb cotton load reaches its inflection point after the 13 lb blend load. To address the variation attributable to the absorbency variation of the load types, the initial spray volume and corresponding operation water level may be selected to obtain the best/desired wash performance. For example, in a vertical axis machine, operational water levels are usually set based on the weight of the fabric load and it is generally considered better to have too much water for a given load weight than too little water because it minimizes the wear on the clothing from the agitator and has better wash performance. Therefore, the inflection points for the blend loads may be used as indicators for the cotton loads to ensure that enough water is added when setting the operational water level.
With this background, an exemplary implementation of the method in
Because the initial supplied volume may be indicative of whether the fabric load is relatively small and/or relatively large, the method 100 employs the initial supplied volume to determine whether the fabric load is relatively small and/or relatively large. In particular, for this example, the initial supplied volume is compared to three empirically determined predetermined volumes to determine whether the initial supplied volume is indicative of the first qualitative load size/the first operational water level. The initial supplied volume is compared to a first predetermined volume at a step 124, and if the initial supplied volume is less than the first predetermined volume, the fabric load is determined to be an extra small size and/or the operational water level is set to an extra low operational water level at a step 126. If the extra low operational water level is greater than the first level, then the water may be supplied to the extra low operational water level in a step 128. On the other hand, if the initial supplied volume is not less than the first predetermined volume, then the volume of water supplied is compared to a second predetermined volume, which is greater than the first predetermined volume, at a step 130. If the initial supplied volume is less than the second predetermined volume, the fabric load is determined to be a small size and/or the operational water level is set to a low operational water level at a step 132, and the water may be supplied to the low operational water level in a step 134. However, if the initial supplied volume is not less than the second predetermined volume, then the volume of water supplied is compared to a third predetermined volume, which is greater than the second predetermined volume, at a step 136. If the volume of water supplied is greater than the third predetermined volume, the fabric load is determined to be an extra large size and/or the operational water level is set to an extra high operational water level at a step 138, and the water may be supplied to the extra high operational water level in a step 140.
In this example, the first qualitative load size may be the extra small, small, and extra large size loads, each having a corresponding operational water level. Examples of the operational water levels include: extra low of about 7 inches, low of about 7.7 inches, and extra high of about 14 inches. These exemplary operational water levels are provided for illustrative purposes only and are not intended to limit the invention. Further, it is contemplated that the initial water supply to the first level, initial supplied volume, in the step 120 and the water supply to one of the first operational water levels, such as the extra low, low, and extra high operational water levels in the steps 128, 134, and 140 may be continuous or discrete. In other words, the evaluations at the steps 124, 130, and 136 may be made while the water supply continues or may be made while ceasing the water supply.
If it is determined that the initial supplied volume is not indicative of the first qualitative load size (in this example, the initial supplied volume is not less than the second predetermined volume and not greater than the third predetermined volume—i.e., between the second and third predetermined volumes), then the method 100 continues with supply of water in a step 142 to a second level. The second level may be any water level greater than the first level, and, in one embodiment, the second level may be about 7.4 inches of water in the tub 14. Further, the supply of water through the first level and to the second level may be continuous, such that the decisions in the steps 124, 130, and 136 occur while water is being supplied, or discrete, such that the water supply ceases while the decisions are made. At the second level, the agitator 18 (or other clothes mover) rotates to agitate the fabric load and the water in the tub 14 during a step 144. Additionally, an output from the pressure sensor 34 may be monitored and employed for determining whether the fabric load is the second qualitative load size. The agitation may occur for any suitable time, and an exemplary agitation time is about 15 seconds. The agitator 18 may rotate at any suitable speed, and, if the agitation comprises reciprocal rotation of the agitator 18, the agitator 18 may rotate in each direction for any suitable time.
Variation in the output signal from the pressure sensor 34 during agitation of the fabric load and the water in the tub 14 may be indicative of the load size. As the agitator 34 rotates, the fabric load moves, the water in the tub 14 moves and may splash, and the tub 14 itself may move or wiggle. One or more of these effects may result in a ripple or variation in the output from the pressure sensor 34, and the magnitude of the ripple or variation increases with increasing load size. This behavior can be seen in
Because the magnitude of the variation in the output from the pressure sensor 34 is indicative of the load size, the method 100 employs the variation to determine whether the fabric load is the second qualitative load size. In particular, for this example, the variation determined at the step 144 is compared to two empirically determined reference variations to determine whether the variation in the output of the pressure sensor 34 is indicative of the second qualitative load size/the second operational water level. Referring now to
In one embodiment, the variation may be modified and compared to a reference modified variation. For example, the variation may be multiplied by a value representative of the volume of water supplied to the tub 14, such as a count of the flow meter, to achieve a better resolution of the data and, thereby, improve the assessment of load size and/or operational water level.
In this example, the second qualitative load size may be the medium, large, and extra large size loads, each having a corresponding operational water level. The extra large size, therefore, may be included in both the first and second qualitative load sizes for this example. Examples of the operational water levels include: medium of about 10 inches, high of about 12 inches, and extra high of about 14 inches. These exemplary operational water levels are provided for illustrative purposes only and are not intended to limit the invention.
After the load size is determined and/or the operational water level is set during one of the steps 126, 132, 138, 148, and 154, and, optionally, water supplied to the corresponding operational water level during one of the steps 128, 134, 140, 150, and 156, the process associated with the method 100 continues in any desired manner.
It is within the scope of the invention to utilize means other than or means in combination with the flow meter for determining the volume of water supplied to the tub 14 to reach the first level. By using the flow meter or other similar device, as compared to a more simple washing machine 10 lacking a flow meter or other similar device, more information may be available for determining load sizes and/or setting operational water levels. The information related to volume of water supplied enables the method 100 to employ a greater number of load sizes and/or operational water levels compared to a machine without the ability to determine the volume of water supplied to the tub 14.
In the method 100, the operational water level may be set without a corresponding determination of load size and vice-versa. It is contemplated that the method 100 may be employed only for setting the operational water level, in which case the determination of the load size may not be necessary. It is also contemplated that the method 100 may be employed for only determining the load size, and the determined load size may thereafter be employed to determine other parameters for the operation cycle. It is also contemplated for the method 100 to both determine the load size and set the operational water level. Further, the method 100 may be adapted for determining more or less than five load sizes, and, similarly, setting more or less than five operational water levels.
When the method 100 is employed for determining load size, the determined load size may be a qualitative load size wherein the fabric load is assigned to a category, such as small, medium, and large, of load size based on the qualities of the fabric load. That is, the size of the load is not weighed or otherwise to directly measured to obtain a quantitative or numerical measurement. While the qualitative load size does not correlate with a direct numerical measurement of the weight or volume of the fabric load, an estimated or empirical weight or weight range may be associated to the qualitative load size (e.g., a medium load size may be described as an 8-12 pound load size). Further, a qualitative load size, which, as described above, may be indicative of both the weight of the fabric load and the type of fabric load.
The volume of water supplied and the variation of the output from the pressure sensor 34 may be employed directly as a volume and a pressure level for the decisions made in the steps 124, 130, 136, 146, and 152 or may be modified in any suitable manner. In other words, the volume of water supplied and/or the pressure sensor output may be altered, such as by being multiplied by another variable, to refine the variables.
The method 100 may be adapted for use with different washing machines and differing water flow rates. Various aspects, such as the predetermined volumes and reference variations and number of load sizes and operational water levels, may depend on the configuration of the washing machine 10 and the external water supply. The particular shape of a curve of pressure level as a function of volume of water supplied may change for differing configurations of washing machines, but the relative behavior of pressure level as a function of volume of water supplied for a group of given fabric load weights and fabric types using a given washing machine configuration and a given water flow rate should remain the same or at least similar enough so that the method 100 may be applied regardless of the washing machine configuration and water flow rate.
The method 100 may be used for an automatic water level control system in lower end washing machine having simple electromechanical components, such as the flow meter. The method 100 may also be combined with a flow restrictor, alternate fill method, and/or inputs by the user, such as fabric type.
The above description and the figures refer to the supply of water to the tub 14. The water may be water alone or water in combination with an additive, such as a wash aid, including, but not limited to a detergent, a bleach, an oxidizer, a fabric softener, etc. Any additive supplied to the tub 14, either through a detergent dispenser or manually added directly into the basket 16 or the tub 14, may affect the output of the pressure sensor 34, and the empirically determined predetermined time and variation(s) may be set to account for such effects.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
Number | Name | Date | Kind |
---|---|---|---|
4303406 | Ross | Dec 1981 | A |
4321809 | Bochan | Mar 1982 | A |
4400838 | Steers et al. | Aug 1983 | A |
4503575 | Knoop et al. | Mar 1985 | A |
4528709 | Getz et al. | Jul 1985 | A |
4697293 | Knoop | Oct 1987 | A |
4733547 | Honda | Mar 1988 | A |
4835991 | Knoop et al. | Jun 1989 | A |
4862710 | Torita et al. | Sep 1989 | A |
5144819 | Hiyama et al. | Sep 1992 | A |
5161393 | Payne et al. | Nov 1992 | A |
5230228 | Nakano et al. | Jul 1993 | A |
5577283 | Badami et al. | Nov 1996 | A |
5768728 | Harwood et al. | Jun 1998 | A |
5768729 | Cracraft | Jun 1998 | A |
6023950 | Battistella | Feb 2000 | A |
6151742 | Dausch et al. | Nov 2000 | A |
6292966 | Lim et al. | Sep 2001 | B1 |
6460381 | Yoshida et al. | Oct 2002 | B1 |
20030041390 | Kim et al. | Mar 2003 | A1 |
20050257575 | Kang et al. | Nov 2005 | A1 |
20060283214 | Donadon et al. | Dec 2006 | A1 |
20080189875 | Czyzewski et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
30 30 491 | Feb 1982 | DE |
3309101 | Sep 1984 | DE |
3837202 | May 1990 | DE |
3842996 | Jul 1990 | DE |
41 22 307 | Jan 1993 | DE |
4122307 | Jan 1993 | DE |
4242414 | Jun 1994 | DE |
10 2006 030 891 | Jan 2008 | DE |
0644291 | Mar 1995 | EP |
2051413 | Jan 1981 | GB |
64-087000 | Mar 1980 | JP |
61-094684 | May 1986 | JP |
63-040596 | Feb 1988 | JP |
02-164396 | Jun 1990 | JP |
02-286197 | Nov 1990 | JP |
05-084393 | Apr 1993 | JP |
05-168790 | Jul 1993 | JP |
08-173681 | Jul 1996 | JP |
08-323089 | Dec 1996 | JP |
2001-137592 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20090241271 A1 | Oct 2009 | US |