This application claims priority to Korean Patent Application No. 10-2011-0019553, filed on Mar. 4, 2011, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which in its entirety is hereby incorporated by reference.
The disclosure herein relates to a method for driving an electrophoresis display device, and more particularly, to a method for driving an electrophoresis display device that clearly displays multiple steps of gradation.
Generally, a liquid crystal display (“LCD”) displays an image using optical characteristics of liquid crystal, and is thinner than a cathode ray tube display device. However, since an LCD is provided with a backlight assembly for supplying light to liquid crystal, manufacturing thin and lightweight LCDs may be limited.
An electrophoresis display device displays an image using an electrophoresis phenomenon where electrically charged electrophoresis particles are moved due to an electric field generated between a pair of substrates. An electrophoresis display device is a reflection-type display device which displays an image by reflecting or absorbing light incident from the outside through the electrophoresis particles, and thus, an electrophoresis display device may display images without a light source. Therefore, an electrophoresis display device is typically thinner and lighter than an LCD.
The disclosure provides a method for driving an electrophoresis display device capable of clearly displaying multiple steps of gradation.
Embodiments of the invention provide methods for driving an electrophoresis display device including: applying a reset voltage having a first polarity to a electrophoresis material of the display device for at least one frame period to display a reset image, applying a first gradation voltage having a second polarity opposite to the first polarity to the electrophoresis material for one frame period to display a first grey image, after the reset image is displayed, applying a second gradation voltage having the second polarity to the electrophoresis material corresponding to at least one pixel region of the display device for at least two frame periods to display a second grey image, after the first grey image is displayed; and applying a third gradation voltage having the first polarity to the electrophoresis material corresponding to at least one pixel region for one frame period to display a third grey image, after the second grey image is displayed, where the display device includes a first substrate including a plurality of pixel regions, a second substrate disposed opposite to the first substrate, and the electrophoresis material disposed between the first substrate and the second substrate and corresponding to each of the pixel regions.
In an exemplary embodiment, the second gradation voltage may be applied for k frame periods, where k is an even number greater than or equal to 2.
In an exemplary embodiment, the second grey image may be divided into a plurality of images having different gradations based on a time period during which the second gradation voltage is applied to the electrophoresis material corresponding to each of the pixel regions.
In an exemplary embodiment, the reset voltage may have a voltage level substantially the same as a voltage level of the first gradation voltage, a voltage level of the second gradation voltage and a voltage level of the third gradation voltage.
In an exemplary embodiment, the reset voltage may be applied for a time period obtained by adding the frame periods for which the first gradation voltage, the second gradation voltage and the third gradation voltage are applied, respectively.
In an exemplary embodiment, the method may further include applying a first reverse voltage having the second polarity to the electrophoresis material corresponding to at least one of the pixel regions to display a first reverse image having a gradation opposite to a gradation of the reset image, after the third grey image displayed.
In an exemplary embodiment, the method may further include applying a second reverse voltage having the first polarity to the electrophoresis material corresponding to at least one of the pixel regions to display a second reverse image having a gradation substantially the same as a gradation of the reset image, after the third grey image is displayed, and applying a third reverse voltage having the second polarity to the electrophoresis material to display a third reverse image having a gradation opposite to the gradation of the second reverse image, after the second reverse image is displayed.
In an exemplary embodiment, the electrophoresis material may include a plurality of first electrophoresis particles having a polarity, a plurality of second electrophoresis particles having a polarity opposite to the polarity of the first electrophoresis particles, and a dielectric solvent in which the first and second electrophoresis particles are dispersed.
In an exemplary embodiment, the electrophoresis display device may further include a separation wall a separation wall disposed between the first substrate and the second substrate, wherein the separation wall divides a space between the first substrate and the second substrate into a plurality of pixel spaces corresponding to the pixel regions.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the invention and, together with the description, serve to explain principles of the invention. In the drawings:
The invention now will be described more fully hereinafter with reference to the accompanying drawings. The invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
It will be understood that when an element or layer is referred to as being “on”, “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms, “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
All methods described herein can be performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention as used herein.
Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings.
Referring to
The first substrate 112 includes a display region AR and a non-display region NR. The display region AR is provided with a plurality of pixels PX corresponding to the pixel regions PR, and an image is displayed on the display region AR. The non-display region NR is disposed around the display region AR. In an exemplary embodiment, the non-display region NR is disposed surrounding the display region AR. In an exemplary embodiment, embodiment, the first substrate 112 includes a transparent member such as a glass substrate, a plastic substrate and a silicon substrate, for example.
The first substrate 112 includes a plurality of gate lines GL disposed thereon and a plurality of data lines DL crossing the gate lines GL. In an exemplary embodiment, the first substrate 112 including the gate lines GL, the data lines GL and the pixels PX defines the array substrate 110.
Since each of the pixels PX has a same structures and same functions, a single pixel will be described in detail for convenience of description, and the same elements in the pixels will be referred to as the same reference characters. Each of the pixels PX includes a thin film transistor (“TFT”), which switches a pixel voltage corresponding to an image, and a pixel electrode PE (or first electrode) electrically connected to the TFT.
As illustrated in
A protective layer 116 including an insulation layer is disposed on the gate dielectric 114 covering the source electrode SE, the drain electrode DE and the exposed active layer AL. The pixel electrode PE, electrically connected to the drain electrode DE through a contact hole, is disposed on the protective layer 116 in each pixel PX.
In an exemplary embodiment, an over coat layer 118, which covers the pixel electrode PE and provides a planar surface, is disposed on the protective layer 116. The over coat layer 118 may include an insulation layer or a color filter. In such an embodiment, the over coat layer 118 may include a color filter pattern of red, green or blue corresponding to the pixel region.
The second substrate 122 is disposed on the first substrate 112. The second substrate 122 facing the first substrate 112 may include a material substantially the same as a material of the first substrate 112. A common electrode 124 (or second electrode) is provided on an opposing surface of the second substrate 122, which faces the first substrate 112. The common electrode 124 may be provided covering an entire opposing surface of the second substrate 122. The second substrate 122 provided with the common electrode 124 is defined as an opposing substrate 120. In an exemplary embodiment, in which the over coat layer 118 includes an insulation layer, the second substrate 122 may further include a color filter disposed facing the first substrate 112.
The electrophoresis material 130 is disposed between the first substrate 112 and the second substrate 122. In one exemplary embodiment, for example, the electrophoresis material 130 is provided in a form of a micro capsule in each pixel region PR. The electrophoresis material 130 may include a dielectric solvent 136 and a plurality of electrophoresis particles dispersed in the dielectric solvent 136. The electrophoresis particles may have predetermined colors.
In an exemplary embodiment, the electrophoresis particles may include a plurality of first electrophoresis particles 132 having a polarity, and a plurality of second electrophoresis particles 134 having a polarity opposite to the polarity of the first electrophoresis particles 132. The first electrophoresis particles 132 and the second electrophoresis particles 134 may have predetermined colors. In one exemplary embodiment, for example, the first electrophoresis particles 132 may have a negative polarity and a white color, and the second electrophoresis particles 134 may have a positive polarity and a black color. In an alternative exemplary embodiment, polarities or colors of the first electrophoresis particles 132 and the second electrophoresis particles 134 may be changed.
In an exemplary embodiment, a separation wall 140 may be further included between the first substrate 112 and the second substrate 122. The separation wall 140 divides a plurality of pixel spaces PV such that each of the pixel spaces corresponds to one pixel region PR. In such an embodiment, the electrophoresis material 130 may fill each of the pixel spaces PV.
The electrophoresis display device displays a different image based on arrangements of the first and second electrophoresis particles 132 and 134. In an exemplary embodiment, the electrophoresis display device may display an image having a different gradation. The arrangements of the first and second electrophoresis particles 132 and 134 is affected by a level, a polarity or applying time of a driving voltage applied to the electrophoresis material 130, and the arrangements of the first and second electrophoresis particles 132 and 134 will be described in greater detail referring to
In an exemplary embodiment, polarities of driving voltages applied to the electrophoresis material 130 may be determined with respect to a value obtained by subtracting the pixel voltage from the common voltage.
In
Firstly, referring to
As illustrated in
In such an embodiment, a grey image of different gradation is displayed based on a level and a time period during which the driving voltage of negative polarity is applied. In one exemplary embodiment, for example, since a time period during which the driving voltage of negative polarity is applied to the electrophoresis material 130 in the electrophoresis display device illustrated in
In an exemplary embodiment, when the driving voltage of negative polarity is applied to the electrophoresis material 130 during a time period longer time than a certain time, the first electrophoresis particles 132 corresponding to each pixel region PR are arranged closer to the pixel electrode PE, and the second electrophoresis particles 134 are arranged closer to the common electrode 124 as illustrated in
Performance of the electrophoresis display device is determined according to how many steps of gradation may be displayed and according to whether each gradation is clearly displayed. That is, the performance of the electrophoresis display device is determined according to how many steps of the grey image described above referring to
Hereinafter, an exemplary embodiment of a method for driving the electrophoresis display device according to the invention will now be described referring to
In such an embodiment, the driving method is described based on the exemplary embodiment of the electrophoresis display device illustrated in
According to an exemplary embodiment of the method for driving the electrophoresis display device, firstly, a reset voltage VR is applied to the electrophoresis material 130 for a reset period TR to thereby display a reset image as illustrated in
After the reset image is displayed on the electrophoresis display device, gradation voltages VG1 to VG9 are applied to the electrophoresis material 130 for a grey period TG. The gradation voltage VG1 to VG9 may include a first gradation voltage VG1, second gradation voltages VG2 to VG8, and a third gradation voltages VG9. The first gradation voltage having a second polarity, opposite to the first polarity of the reset voltage VR, is applied to the electrophoresis material 130 for a predetermined time period TG1 to thereby display a first grey image. In an exemplary embodiment, the first gradation voltage is applied to the electrophoresis material 130 for one frame period TF. As illustrated in
After the first grey image is displayed on the electrophoresis display device, the second gradation voltages VG2 to VG8 having the same polarity as the first gradation voltage are applied to the electrophoresis material 130 corresponding to at least one pixel region PR for a predetermined time period TG2 to TG8 to thereby display a second grey image. In an exemplary embodiment, one of the second gradation voltages VG2 to VG8 is applied for at least two frame periods TF. As illustrated in
When the second gradation voltages VG2 to VG8 are applied to the electrophoresis material 130 corresponding to a portion of the pixel regions PR, the first grey image illustrated in
In one exemplary embodiment, for example, as illustrated in
In an exemplary embodiment, when the second gradation voltages VG2 to VG8 are applied during k frame periods (k is an even number greater than or equal to 2), a difference of gradation may be constant on the images having different steps of gradation. As illustrated in
After the second grey image is displayed on the electrophoresis display device, the third gradation voltage VG9 having the first polarity, opposite to the second polarity of the first gradation voltage VG1, is applied to the electrophoresis material 130 corresponding to at least one pixel region PR for a predetermined time period TG9 to thereby display a third grey image. In an exemplary embodiment, the third gradation voltage VG9 is applied for one frame period TF. As illustrated in
When the third gradation voltage VG9 is applied to the electrophoresis material 130 corresponding to a portion of the pixel regions PR, the second grey image illustrated in
More detailed description will be given referring to
After the third grey image is displayed the predetermined time period TG9, the electrophoresis display device may repeat the above-described processes such as applying the reset voltage and applying the gradation voltages to thereby provide various images to a user.
In an exemplary embodiment, for uniformly controlling movement of the first and second electrophoresis particles 132 and 134 with respect to the time periods during which the driving voltage is applied, the reset voltage VR may have a voltage level V1 substantially the same as the voltage level of the first to third gradation voltages.
In an exemplary embodiment, the reset voltage VR is applied during a reset period TR (see
According to an exemplary embodiment of the method for driving the electrophoresis display device, multiple steps of gradation is more clearly displayed compared to a method where the gradation voltage is selectively applied to the electrophoresis material 130 corresponding to the at least partial pixel region during 15 frame periods to display an image having 16 steps of gradation.
In an exemplary embodiment as illustrated in
The first blank period TB1 provides an additional movement time for the first and second electrophoresis particles 132 and 134 to form an arrangement by an electric field generated by the second gradation voltage. Therefore, the second grey image has a substantially clear gradation.
In an exemplary embodiment, as illustrated in
As illustrated in
When the first reverse voltage VRV1 is applied, a first reverse image is displayed. In such an embodiment, since a polarity of the first reverse voltage VRV1 is opposite to the polarity of the reset voltage VR, the first reverse image is a black image as illustrated in
When the first reverse image is displayed on the electrophoresis display device, a reset voltage VR is applied again, and the above-described gradation voltages are applied to thereby display another third grey image having the different information.
In such an embodiment, for uniformly controlling movement of the first and second electrophoresis particles 132 and 134 with respect to the time period, during which the driving voltages are applied, the first reverse voltage has a voltage level V1 substantially the same as the voltage level of the first to third gradation voltages.
In such an embodiment, the first reverse voltage VRV1 is applied during the grey period TG obtained by adding the time periods during which the first to third gradation voltages are applied. In an exemplary embodiment, the first reverse period TC1 and the grey period TG illustrated in
In such an embodiment, after the third grey image is displayed, the first reverse voltage VRV1 is applied after a second blank period TB2 during which a voltage is not applied to the electrophoresis material. The second blank time TB2 provides an additional movement time for the first and second electrophoresis particles 132 and 134 to be in an arrangement for displaying the black image.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, when the first reverse voltage VRV2 is applied, the first reverse image is displayed. In such an embodiment, since the polarity of the first reverse voltage VRV2 is the same as the polarity of the reset voltage VR, the first reverse image is also a white image, as illustrated in
When the second reverse image is displayed on the electrophoresis display device, a reset voltage VR is applied again, and the above-described gradation voltages are applied to thereby display another third grey image having the different information.
In an exemplary embodiment, for uniformly controlling movement of the first and second electrophoresis particles 132 and 134 with respect to the time periods during which the driving voltages are applied, the first reverse voltage VRV2 may have a voltage level V1 substantially the same as the voltage level of the first to third gradation voltages, and the second reverse voltage VRV3 may have a voltage level substantially the same as the voltage level of the first reverse voltage VRV2.
In an exemplary embodiment, the first reverse voltage VRV2 is applied during a grey period TG obtained by adding the time periods during which the first to third gradation voltages are applied. In an exemplary embodiment, the first reverse period TC2 and the grey period TG illustrated in
After the third grey image is displayed, the first reverse voltage VRV2 is applied after a third blank period TB3 during which a voltage is not applied to the electrophoresis material. The third blank time TB3 provides an additional movement time for the first and second electrophoresis particles 132 and 134 to be in an arrangement for displaying the white image. In such an embodiment, after the first reverse image is displayed, the second reverse voltage VRV3 may be applied after another blank period, during which a voltage is not applied to the electrophoresis material.
As described above, multiple steps of gradation are substantially clearly displayed using an exemplary embodiment of the method for driving an electrophoresis display device. In an exemplary embodiment, multiple steps of gradation are substantially clearly displayed without increasing the time frame and the driving voltage.
According to an exemplary embodiment of the method for driving an electrophoresis display device, an afterimage phenomenon is effectively prevented by displaying a reverse image having a gradation substantially the same as a gradation of a reset image or having a reversed image when an image is changed.
The above-disclosed subject matter is to be considered illustrative and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the invention. Thus, to the maximum extent allowed by law, the scope of the invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0019553 | Mar 2011 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
8174492 | Kim et al. | May 2012 | B2 |
20020005832 | Katase | Jan 2002 | A1 |
20050001812 | Amundson et al. | Jan 2005 | A1 |
20050179641 | Zhou et al. | Aug 2005 | A1 |
20060066558 | Zhou et al. | Mar 2006 | A1 |
20060290650 | Johnson et al. | Dec 2006 | A1 |
20070139358 | Sakamoto | Jun 2007 | A1 |
20070296690 | Nagasaki | Dec 2007 | A1 |
20090040201 | Kim et al. | Feb 2009 | A1 |
20090046114 | Lee et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
2010026159 | Feb 2010 | JP |
1020080041356 | May 2008 | KR |
1020080079383 | Sep 2008 | KR |
1020090018270 | Feb 2009 | KR |
1020120043246 | May 2012 | KR |
Number | Date | Country | |
---|---|---|---|
20120223928 A1 | Sep 2012 | US |