The present invention is generally related to the method for driving liquid crystal display (LCD) and, more particularly, to an improved polarity reversion driving method for thin film transistor liquid crystal display (TFT-LCD).
For improving the quality of displaying images from the LCD display panel, the alternating current (AC) driving approach is often utilized for preventing the liquid crystal molecules from being constantly polarized. Several driving approaches are often utilized, such as frame inversion, line inversion, dot inversion, etc. When frame inversion driving approach is utilized, several shortcomings, such as flicking and unbalance of images, are often accompanied due to all the LCD capacitors being charged with the same polarity in each frame. For overcoming the above-mentioned shortcomings, line inversion and dot invention driving approaches have been developed by the industry. For example, in a line inversion driving approach, because capacitors along every two neighboring lines in a frame are charged in opposite polarities of voltage, the flicking problem is alleviated by the averaging effect. In a dot inversion driving approach, because capacitors at every two neighboring dots are charged in opposite polarities, a better averaging effect than which provided by the frame inversion for lowering the flicking problem is thus provided. However, although the dot inversion driving approach provides a best averaging effect and a lowest flicking problem among the above-mentioned approaches, it consumes the electric power most. Therefore, the dot inversion approach may have problems when being applied to, for example, a portable device, for shortcomings of lower endurance of electric power and/or a larger volume and weight of the expected and needed batteries.
As it faces a trade-of between the electric power consumption and the averaging effect, the prior art provides a multi-line inversion technique, for trying to decrease the times of inversions and thus to lower the electric power consumption. However, the multi-line inversion technique does not overcome the shortcoming of undercharging (insufficiency of charging) occurred at the inversion positions. Therefore, several problems, such as the lines with unbalanced brightness and flicking images, are thus generated.
Nowadays, the “1 line” inversion and the “1+2 line” inversion modes are relatively common utilized in the industries, and their timing diagrams are illustrated in
Furthermore, when the line inversion driving approach is applied with “1×1” checker board signals which are generally utilized as testing signals in industries, a green color shift problem is occurred, as illustrated in
Therefore, it is needed to provide a method for driving LCD, for overcoming the existed problem of brightness unbalance and the problem of green color shift under the checker board testing signals, which providing unexpected effect in view of the prior art.
In one aspect of the embodiments, the present invention provides a method for driving liquid crystal display, utilizing a timing controller to send polarity control signals to a plurality of source drivers in a display panel. The method comprises: step (a), setting value of K; step (b), setting each of first pixels of 1 to R horizontal lines of frames F(2R−2) as first polarity, setting each of first pixels of R+1 to R+K horizontal lines of the frames F(2R−2) as second polarity, and alternating polarity of each of first pixels of every K horizontal lines thereafter of the frames F(2R−2) as alternate the first polarity and the second polarity, wherein R is natural number from 1 to K, and K is natural number which is smaller or equal to number of the horizontal lines subtracting 1; setting each of first pixels of 1 to R horizontal lines of frames F(2R−1) as the second polarity, setting each of first pixels of R+1 to R+K horizontal lines of the frames F(2R−1) as the first polarity, and alternating polarity of each of first pixels of every K horizontal lines thereafter of the frames F(2R−1) as alternate the second polarity and the first polarity; step (c), repeating step (b) while substituting R from 1 to K with interval of 1; and step (d), displaying the frames F(2R−2) and F(2R−1) according to sequence generated by comparing values of 2R−2 and 2R−1 substituted with different R.
In preferred embodiments of the present invention, the sequence is ascending order or descending order sequence.
In preferred embodiments of the present invention, the polarity control signals are AC control signals.
In preferred embodiments of the present invention, the method further comprises a frame initial position setting step, to present the frames F(2R−2) and F(2R−1) as F(n+(2R−2)) and F(n+(2R−1)), for identifying frame initial positions.
In preferred embodiments of the present invention, the method further comprises a frame recurring step, to reiteratively display frames for satisfying a renew frequency M while M>K.
In preferred embodiments of the present invention, the method further comprises a horizontal line pixel distribution step, to set polarities of second pixels of each of the horizontal lines of the frames F(2R−2) and F(2R−1) as opposite to polarities of the first pixels, to set polarities of third pixels as opposite to the polarities of the second pixels, and to set polarities of pixels thereafter with the same pattern, for generating polarity distribution comprising alternate the first polarity and the second polarity; wherein if the first pixels are set as the first polarity, then the second pixels are set as the second polarity.
In preferred embodiments of the present invention, the method further comprises a polarity distribution setting step, for assigning add ones and even ones of the plurality of source drivers with polar driving signals and reverse polar driving signals.
In preferred embodiments of the present invention, the method further comprises an undercharging improving step, for changing the polarity of polarity control signals to be the same with polarity of the first pixels before the polarity of first pixels are generated.
In preferred embodiments of the present invention, the method further comprises an undercharging improving step comprising: providing a plurality of data storage unit; providing a data enable signal (or data initiating signal); storing polarity data of the first pixels of the first horizontal lines of the frames F(2R−2) and (2R−1) into first data storage unit of the plurality of data storage unit; setting first pixels of next horizontal lines of the frames F(2R−2) and F(2R−1) as identical to the first pixels of the first horizontal lines and storing into the first data storage unit; delaying start pulse vertical signal one unit time according to the data enable signal; storing polarity data of first pixels of second horizontal lines of the frames F(2R−2) and (2R−1) into second data storage unit of the plurality of data storage unit; transmitting data stored in the first data storage unit to the plurality of source drivers when the starting pulse vertical signal is started; transmitting data stored in the second data storage unit to the plurality of source drivers in next timing unit; and reiteratively storing polarity data of first pixels of horizontal lines thereafter to the plurality of data storage units, and transmitting the polarity data of first pixels of horizontal lines thereafter to the plurality of source drivers in the next timing unit.
In another aspect of the embodiments, the present invention provides a storage medium readable by a timing controller. The storage medium stores a program of instructions executable by the timing controller to perform a method for driving a panel of a liquid crystal display, for sending polarity control signals to a plurality of source drivers in the panel. The method comprises the steps mentioned above.
In the embodiments of the present invention, an improved driving method for TFT-LCD is provided. The method utilizes a timing controller to transmit polarity control signals to a plurality of source drivers, for changing the polarity distribution of the liquid crystal molecules within the panel. An AC power is coupled to the timing controller for generating AC control signals.
The description above may be alternatively represented as frames of F(2R−2) and F(2R−1), wherein R is natural number from 1 to K, and K is natural number which is smaller or equal to the horizontal line number of the panel minus one. This can be implemented by a method comprising: step (a), setting value of K; step (b), setting each of first pixels on 1 to R horizontal lines of frame F(2R−2) as positive polarity, setting each of first pixels on R+1 to R+K horizontal lines of frame F(2R−2) as negative polarity, and setting each of first pixels on every K lines thereafter as alternate positive and negative polarities; setting each of first pixels on 1 to R horizontal lines of frame F(2R−1) as negative polarity, setting each of first pixels on R+1 to R+K horizontal lines of F(2R−1) as positive polarity, and setting each of first pixels on every K lines thereafter as alternate negative and positive polarities; in step (c), repeating the step (b) while substituting R from 1 to K with interval of 1; and in step (d), displaying the frames F(2R−2) and F(2R−1) by sequence of comparing values of 2R−2 and 2R−1 substituted with different R. Further, via a frame initial position setting step (may be implemented as a frame initial position setting module), the frame initial position mark “n” is brought into frames F(2R−2) and F(2R−1) and represented as F(n+(2R−2)) and F(n+(2R−1)), for identifying initial positions of the frames. Furthermore, if the renew frequency of a TFT-LCD is setting as M (M>K) frames per second, then the method further comprises a frame recurring step, to display the frames reiteratively for satisfying the renew frequency. The method may further comprise a horizontal line pixel distribution step (may be implemented by a horizontal line pixel distribution module), for setting the polarities of other pixels according to the first pixels of each of horizontal lines. For example, the polarity of the second pixel is opposite to the first pixel, the polarity of the third pixel is opposite to the second pixel, and so on. A distribution with alternate positive and negative polarities is generated. However, in other embodiments of the present invention, all the pixels on one horizontal line can be alternatively with the same polarity as omitting the above step.
In the embodiments of the present invention, a relative smaller K brings relative more times of polarity inversions, and the electric power consumption becomes higher. Therefore, in preferred embodiments of the present invention, a relative larger K, such as K≧50, is chosen for reducing the inversion times, for lowering the electric power consumption and the heat generated. However, it should be noted that in conditions of choosing relative larger K, the positions except for the polarity inversion positions (referring to continuous portions of the polarity inversion signal curve) may exhibit the behavior similar to those in line inversion approach. For preventing the green color shift problem under the checker board testing signals, in other embodiments of the present invention, the source drivers in an improved TFT-LCD are implemented as combinations of power of line (POL) and power of line reverse (POLR) polarity control signals. For example, the plurality of source drivers can be classified as odd source drivers and even source drivers, and the odd source drivers and the even source drivers may be provided with polar driving signals and reverse polar driving signals (may be implemented by coupling a NOT gate to part of the ends of the timing controller, for providing polar source drivers and reverse polar source drivers), respectively.
In other embodiments of the present invention, the undercharging problem at the first lines, marked as “1” in the RGB data 313, 323, 333, 343, 353, and 363, are solved by coupling two horizontal storage units, such as memories, to the timing controller, while the undercharging problem at other lines can be solved by the dynamically polarity inversion method mentioned above. Taking “1+K” polarity mode and the frame F(n+0) as example, the exemplary timing diagrams for improving the undercharging problem are shown in
From the above description, it should be appreciated that the embodiments of the present invention implement a driving method by a driving device, for solving problems existed in driving circuit of the conventional LCD panel. For example, the brightness unbalance of lines, the green color shift problem with checker board testing signals, and the undercharging problem at the first horizontal lines can be solved. In addition, according to the embodiments of the present invention, the driving device does not cause apparently additional electric power consumption. Taking a 37″ TFT-LCD with resolution of “1920×1080” for example, if the total impedance of wiring of the source drivers is about 8.5 kohm, the total capacitance is about 200 nF, the number of source driver channels is about 720, and the driving voltage is room temperature (about 25° C.), the electric power consumption comparisons of the embodiment of the present invention to the conventional approaches are listed in TAB. 1.
In some embodiments, a storage medium readable by a timing controller is provided. The storage medium stores a program of instructions executable by the timing controller to perform a method for driving a panel of a liquid crystal display, for sending polarity control signals to a plurality of source drivers in the panel. The method comprises the steps mentioned above.
The description above provides the preferred embodiments of the present invention. The present should be thoroughly understood by ordinary skill in the art via the teachings. However, it should be noted that the description above and the accompanying figures may not illustrate all the details, such as the detailed conventional components. However, it should be appreciated that the driving device for implementing the driving method should comprise but not limit to a control chip, an assembly of touch panel, a housing, and/or other related components. Relative software, hardware, and/or firmware should also be included. Some of them are not described in detail for purpose of being easier to be understood of the embodiments of the present invention. Furthermore, the scope of the present invention is intended to be defined by the following claims and the equivalents.
Number | Date | Country | Kind |
---|---|---|---|
98125439 A | Jul 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6166725 | Isami et al. | Dec 2000 | A |
20020089485 | Youn | Jul 2002 | A1 |
20020175907 | Sekiya et al. | Nov 2002 | A1 |
20030090602 | Kim | May 2003 | A1 |
20040032386 | Pai | Feb 2004 | A1 |
20040263466 | Song et al. | Dec 2004 | A1 |
20050219190 | Lee et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20110025664 A1 | Feb 2011 | US |