The invention pertains to methods of electronic tracking of units originating from a common source, such as, for example, methods for electronic identification of meat units originating from a common animal carcass. The invention further pertains to particular transponder assemblies, such as transponders attached to meat spikes.
Radio frequency identification devices (RFID's) are commonly utilized for electronically identifying objects. In an exemplary application, a transponder is attached to an object which is to be identified. The transponder can be incorporated into a passive, read-only RFID system which comprises an interrogator used in conjunction with the transponder. The interrogator provides a carrier signal which powers (stimulates) the transponder and causes a signal to be transmitted from the transponder. The signal comprises data which identifies the object associated with the transponder. The signal is received by the interrogator, which is in data communication with a processing system configured to decode and interpret the data.
The interrogator commonly uses a coil antenna to stimulate the transponder. The transponder will frequently comprise a parallel resonant LC circuit, with such circuit being resonant at a carrier frequency of the interrogator.
An exemplary application of a passive, read-only RFID system is for identification of individual animals in a meat-processing plant. A reason for identifying individual animals in a meat-processing plant is to improve meat quality and/or farming processes. For instance, in modern farming practices it is desirable to track an animal throughout its entire lifetime up to, and including, slaughter to aid in understanding the factors that influence meat quality. To accomplish such tracking, an RFID transponder tag can be placed in an animal's ear at time of birth, and utilized to document events occurring within the animal's life. For instance, the RFID transponder can be utilized with interrogators to catalog the feed ingested by the animal, vaccinations provided to the animal, and any growth hormones administered to the animal. The transponder can further be utilized in combination with an interrogator at time of slaughter to catalogue the meat quality of the animal. Transponders can be utilized to track many (or even all) of the individual animals of a population, and information accumulated by the transponders can be studied to relate the effect, if any, of particular farming practices on meat quality.
In an exemplary use of a RFID in a meat-processing plant, transponders are provided on individual animal bodies within the plant to enable tracking of the bodies during processing to enable, for example, meat products from a particular body to be pulled in the event the body is found to be contaminated or diseased.
An exemplary system for utilizing passive, read-only RFID for identification and tracking of individual animals in a meat-processing plant is described with reference to
Carcass-transporting device 20 includes a trolley 22 having a hook 24 connected thereto. A track 28 is provided along which trolley 22 can be moved from processing station to processing station within the meat-processing plant. An animal body (carcass) 26 is shown connected with hook 24.
An RFID device is shown generally at 30 as being mounted directly on trolley 22. Device 30 includes a transponder which enables wireless communication to be conducted between device 30 and interrogator 32. Specifically, interrogator 32 can include suitable transmit and receive circuitry to both transmit signals to device 30, and receive signals transmitted from device 30. The wireless communication between interrogator 32 and device 30 can take place through, for example, RF transmissions. A suitable device for conducting RF communication between an interrogator and a transponder is disclosed in pending U.S. patent application Ser. No. 08/705,043, the disclosure of which is expressly incorporated herein by reference. Of course, other transponders and interrogators can be used.
The stage of meat processing shown in
An identifier of the live animal from which carcass 26 was obtained can also be provided on the database, and the coded signals of the transponders can be electrically associated with such identifier to link the coded signals of the transponders with the identifier in a program such as, for example, a spreadsheet program. Accordingly, information learned about conformation or meat quality during processing of the animal body can be related with other information obtained during the rearing of the live animal and displayed utilizing the program.
A typical slaughterhouse scenario for carcass 26 is as follows. The carcass is passed across a scale to determine a “hot weight” of the carcass. For cattle, such hot weight is determined after the full carcass has been halved into slabs. After the hot weight is determined, the carcass is placed in a first chiller, where it stays for 24 hours. The carcass is then transferred to a second chiller, where it stays for another 24 hours. The meat is passed through two chillers sequentially because such is a convenient way of processing and tracking large quantities of meat. In slaughterhouses wherein a small quantity of meat is processed, the meat may stay in a single chiller for the entire cooling period.
After the carcass has been chilled for a total of 48 hours (24 hours in the first chiller followed by 24 hours in the second chiller), the carcass is weighed to determine a so-called “cold weight” of the carcass and the meat of the carcass is graded by a meat inspector. A comparison of the cold weight to the hot weight can indicate an amount of meat shrinkage, and can be useful in determining a quality of the meat. After a plurality of carcasses are graded, they are divided by grade and sent to fabrication. At fabrication, the carcasses are subdivided into smaller units and packaged for distribution.
After slab 26 is split into units 36 and 38, a separate spike can be inserted into unit 36 to provide additional identifying information associated with unit 36.
Units 36 and 38 are conveyed to areas of the slaughterhouse wherein such units are subdivided into portions suitable for distribution, and then packaged. A common package will be a box containing particular cuts of meat, such as, for example, steaks or roasts. A single box will generally contain cuts of meat from several animal carcasses.
A difficulty of present meat processing methodologies is in tracking the meat through a slaughterhouse. Specifically, it can be desirable to track meat entirely from the time an animal enters a slaughterhouse until the animal is packaged, and to thereby have a record of exactly which packages the meat from the animal was distributed in. Then, if a problem is discovered with any of the meat from the animal, it can be a simple matter to recall all of the packages that contain other meat from the animal. For instance, if bacterial contamination of a meat product is discovered, it is desirable recall all meat originating from the same carcass as the contaminated meat product.
As another example of the desirability of tracking an animal carcass from the time it enters a slaughterhouse until the time it is packaged for distribution is a scenario wherein a meat product is found to have exceptional qualities. In such circumstances, it can be desirable to track the meat product back to the originating animal and the farming practices which developed such particular high quality product.
In a first aspect, a method for remotely sensing articles is disclosed. In one embodiment, the method comprises providing a source with at least one unit associated therewith, the source and at least one unit having a common identification; providing a first radio frequency identification (RFID) device associated with the source comprising a memory for persistently storing data including the common identification indicating the source; using a remote radio frequency interrogator, transmitting a radio frequency signal including a command interrogating the first RFID device to determine the common identification; receiving in response, a radio frequency signal communication from the first RFID device including the common identification; affixing to at least one unit physically associated with the source a second RFID device comprising a substrate, a radio frequency transceiver integrated circuit disposed adjacent the substrate comprising a radio frequency receiver, a radio frequency transmitter, control logic, a memory for persistently storing data, the radio frequency transceiver integrated circuit coupled to the one or more antennas, and a power source coupled to the radio frequency transceiver; transmitting to the second RFID device, from a radio frequency interrogator in remote proximity to the selected article a radio frequency signal including a second identification and a command to store the second identification in the memory within the second RFID device; storing the second identification in the memory of the second RFID device; and associating the common identification and the second identification in a database.
In a second aspect of the invention, a method is disclosed. In one embodiment, the method comprises providing a source and at least one unit from the source having a common identification, wherein the unit is packaged with the source; providing, on the source, a first radio frequency identification (RFID) device associated with the group of articles comprising a memory for persistently storing data including the common identification indicating the group; transmitting to the first RFID device, from a radio frequency interrogator in remote proximity to the group of article, a radio frequency signal including a command interrogating the first RFID device to determine the common identification; receiving in response, a radio frequency signal communication from the first RFID device including the common identification; affixing to a selected unit from the source a second RFID device comprising a substrate, a radio frequency transceiver integrated circuit disposed adjacent the substrate comprising a radio frequency, a radio frequency transmitter, control logic, a memory for storing data including a second identification, the radio frequency transceiver integrated circuited coupled to the one or more antennas, and a power source coupled to the radio frequency transceiver; transmitting to the second RFID device, from a radio frequency interrogator in remote proximity to the selected article, a radio frequency signal including a command interrogating the second RFID device to determine the second identification; receiving in response, a radio frequency signal communication from the second RFID device including the second identification; associating the common identification and the second identification in a database; associating the common identification of the source and the second identification of the unit, with information about the source and the unit in the database.
In an alternative embodiment, the method comprises receiving a source for at least one unit having a common identification, the source and unit are packaged together, wherein a first radio frequency identification (RFID) device is affixed to the source and is associated with the at least one unit, and at least a second RFID device is affixed to the at least one unit, wherein at least the first and second RFID device comprise a memory for storing identification data; transmitting to the first RFID device from a radio frequency interrogator in remote proximity to the source and at least one unit, a radio frequency signal including a command interrogating the first RFID device to determine the common identification; receiving in response, a radio frequency signal communication from the first RFID device including the common identification; accessing a database wherein the common identification is associated with at least the second identification in the database; transmitting to at least the second RFID device affixed to the at least one unit from the source, from a radio frequency interrogator in remote proximity to the selected article, a radio frequency signal including a command interrogating the second RFID device to determine the second identification; receiving in response, a radio frequency signal communication from the second RFID device including the second identification; accessing the database wherein at least the second identification of the at least one unit from the source is associated with information about the source; and separating the at least one unit from the source and redistributing the at least one unit.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
In one aspect, the invention is a recognition that a problem which occurs during the above-discussed processing of
One method of tracking meat units after they are split from a carcass is to physically associate one or more transponder units with such units during meat processing. Such method can be accomplished utilizing a meat spike and transponder assembly, such as the assembly 100 shown in
Meat spike 102 comprises a rod having a pair of opposing ends 110 and 112. End 110 is pointed, and end 112 comprises a holder in the shape of a loop. The substrate of transponder device 104 is slid over spike 102 and retained from sliding over end 112 by the loop of end 112.
The loop of meat spike 102 can enable prior art tags (such as, for example, tag 42 of
A method of the present invention is described with reference to
Transponder device 120 sends a code to interrogator 32. Preferably, interrogator 32 is in electrical communication with a database, and preferably the code from transponder 120 is electrically associated with both the code from transponder 30 and an identifier of slab 26 in the database. In a particular embodiment of the invention, a plurality of transponder assemblies 130 can be provided at a location in a meat processing plant wherein slabs are split into hind quarters and front quarters. A person could then retrieve one of the assemblies 130 from the plurality and interrogate the transponder device 120 with a interrogator device to register a code of the transponder device 120 within the interrogator. Preferably, the interrogator device would also be configured to ascertain a code from the transponder 30 previously associated with slab 26 and to link the transponder codes with one another in a database.
After the transponder codes are linked with one another in the database, a user can input a code from either transponder device 30 or transponder device 120 and ascertain the codes of other transponder devices which had been utilized to mark a portion of the animal body corresponding to slab 26. In preferred embodiments, an identifier of the live animal from which slab 26 was obtained will also be in the database, and the user will thus be able to utilize the code of either transponder device 30 or 120 to ascertain an identification of the animal from which slab 26 was obtained.
Transponder assembly 130 can be inserted into unit 36 either before, during, or after the splitting of unit 36 from slab 26. It is noted, however, that second transponder assembly 130 will generally be added after slab 26 has been hanging from hook 24, and therefore after slab 26 is physically associated with transponder unit 30. Accordingly, first transponder device 30 will be associated with slab 26 for a period of time during which second transponder assembly 130 is not physically associated with slab 26.
Although in the shown embodiment first transponder assembly 30 is shown associated with a trolley from which slab 26 is hung, it is to be understood that the invention encompasses other embodiments (not shown) wherein first transponder device 30 is physically associated with slab 26 through other methodologies. For instance, first transponder device 30 could be associated with a meat hook in an assembly analogous to that of assembly 130 and associated with slab 26 by inserting the meat hook into slab 26. In such embodiments, the first transponder device assembly could be inserted into either the hind quarter portion of slab 26 or the front quarter portion of slab 26 (the portion which becomes unit 36).
Although in the shown embodiment slab 26 is divided into two portions, it is to be understood that slab 26 could be divided into more than two portions. Preferably, regardless of the number of portions that slab 26 is divided into, transponder devices are provided to be physically associated with each of the portions, and all of the transponder devices have codes which are electrically associated with one another on a database.
Each of the units 36 and 38 of
The above-described methodology provides transponder devices physically associated with individual meat units formed from carcasses. Ultimately, such units will typically be packaged for subsequent commercial distribution. Preferably, the transponder devices are removed from the meat units prior to packaging the units. In particular embodiments of the invention, the transponder devices corresponding to meat units in a single package will be read with an interrogator, and the codes electrically linked with one another in a database, as well as being linked with an identification of the package. Accordingly, it will be possible for a user to access the database and determine which packages contained meat units of a particular carcass. Then, if a problem is discovered with any particular meat unit, all meat units obtained from the same carcass as the problem meat unit can be specifically tracked, even after the meat units have been packaged and distributed.
A method of reading the transponders associated with meat units in a particular package is to place all of the transponder devices removed from the meat units during packaging in a large tray and to interrogate the transponders utilizing so-called anti-collision methodology.
The meat spike assembly of
Spike 144 extends from surface 150. In a preferred embodiment, spike 144 and housing 142 both comprise plastic. Plastic is preferred over, for example, metal, in that plastic will not substantially interfere with radio frequency signals passed from a transponder in housing 142 to an interrogator outside of housing 142. In particular embodiments, housing 142 and spike 144 can consist essentially of plastic. Further, housing 142 and spike 144 can be comprised by a single piece of plastic. Spike 144 preferably extends to from about 1 inch to about 2 inches from housing 142, and can extend to, for example, about 1.5 inches from housing 142.
Spike 144 terminates in a bulbous end 152. Such bulbous end can assist in retaining assembly 140 within a piece of meat. Specifically, once spike 144 is inserted into the meat, bulbous end 152 can increase a force required to remove assembly 140 relative to, for example, the force required to remove a spike that terminated in a tapered end (shown in
Another configuration of a meat spike assembly is shown in
It is noted that although only one spike is shown extending from transponder housings in the shown embodiments of
Although the spikes shown in
It is noted that although the invention is described herein with reference to methodologies of forming meat, the invention can have application to other processes wherein it is desirable to track units originating from a common source. For instance, in some applications units are distributed as batches. Frequently, the batches will arrive in a large container (the common source) and will subsequently be subdivided into smaller units which are separately redistributed (for instance, electronic devices, such as, for example, stereos and televisions, can be distributed in crates comprising a plurality of separate devices). If a problem is found in a redistributed unit, it may be desirable to locate all of the units which originated from the same batch to specifically recall such units.
In methodology of the present invention, a first transponder 201 can be physically associated with the common source 200, and additional transponder devices 211a-b associated with units 210a-b as they are split from the common source as shown in
As is apparent from the discussion above, for purposes of the present invention a common source can be a plurality of separated units in a single container or an animal carcass, and in either event considered as comprising a plurality of units physically joined together (the meat carcass can be considered a union of individual meat units).
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,545,604. The reissue applications are the initial reissue application Ser. No. 11/102,887 filed Apr. 8, 2005 which issued on Aug. 24, 2010 as U.S. Reissue Pat. No. RE 41,562; a continuation reissue application Ser. No. 11/872,374 filed Oct. 15, 2007 which issued on Oct. 11, 2011 as U.S. Reissue Pat. No. RE 42,821; a continuation reissue application Ser. No. 11/872,382 filed Oct. 15, 2007 which issued on Oct. 12, 2010 as U.S. Reissue Pat. No. RE 41,815; a continuation reissue application Ser. No. 11/872,390 filed Oct. 15, 2007 which issued on Sep. 27, 2011 as U.S. Reissue Pat. No. RE 42,736; a continuation reissue application Ser. No. 11/872,397 filed Oct. 15, 2007, now abandoned, a continuation reissue application Ser. No. 13/269,853 filed Oct. 10, 2011, which is to issue on Aug. 6, 2013 as U.S. Reissue Pat. No. RE 44,409, and the present reissue application. This is a continuation of U.S. Reissue application Ser. No. 13/269,853, filed Oct. 10, 2011, which is to issue on Aug. 6, 2013 as U.S. Reissue Pat. No. RE 44,409, which is a continuation of U.S. Reissue application Ser. No. 11/872,374, filed Oct. 15, 2007, which issued on Oct. 11, 2011 as U.S. Reissue Pat. No. RE 42,821 which is a continuation of U.S. Reissue patent application Ser. No. 11/102,887, filed Apr. 8, 2005, which issued on Aug. 24, 2010 as U.S. Reissue Pat. No. 41,562; which is a reissue application of U.S. patent application Ser. No. 09/346,635, filed Jul. 1, 1999, now U.S. Pat. No. 6,545,604, each of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13269853 | Oct 2011 | US |
Child | 13959598 | US | |
Parent | 11872374 | Oct 2007 | US |
Child | 13269853 | US | |
Parent | 11102887 | Apr 2005 | US |
Child | 11872374 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09346635 | Jul 1999 | US |
Child | 11102887 | US |