1. Technical Field
The invention relates generally to a method for embedding an electronic device in a wearable apparatus. More particularly, the invention relates to a method for embedding an electronic device in a frame enclosure of a wearable apparatus, and a wearable apparatus using the method.
2. Related Art
In recent advances in technology, there have been significant trends toward wearable devices, such as smart watches and eyewear. However, when it comes to wearable electronic devices, such as smart eyewear worn by a participant in an activity so that the hands are free to participate in the activity, these tend to be bulky and unfashionable. Moreover, these wearable electronic devices may cause discomfort when electronics embedded in these devices cause the frames to be heavy or lopsided. Therefore, it may be desirable to have an effective method of embedding electronics in wearable apparatuses. It may also be desirable that a portion of the embedded electronics may be detachable in order to enhance the functional capabilities of the wearable devices without sacrificing the overall design aesthetics.
An embodiment of the invention provides a method for embedding an electronic device in a frame enclosure of a wearable apparatus, including: providing a substrate and heating the substrate into a melted state; shaping the melted substrate according to a first predetermined pattern; disposing the electronic device on the melted substrate before cooling; and cooling the melted substrate with the embedded electronic device.
An embodiment of the invention provides a method for embedding an electronic device in a frame enclosure of a wearable apparatus, including: providing a first substrate and a second substrate; shaping at least one of the first substrate or the second substrate according to a second predetermined pattern; disposing the electronic device between the first substrate and the second substrate; compressing the first substrate and the second substrate together, wherein the electronic device is sandwiched by the compression between the first substrate and the second substrate; and heating the assembly of the first substrate, the electronic device, and the second substrate.
An embodiment of the invention provides a wearable apparatus, including a frame and a plurality of capsules. The frame is configured to be wearable on a user, and the frame includes a bridge portion having a first mountable section, a first arm portion having a second mountable section, and a second arm portion having a third mountable section. The capsules are configured to be mounted on the first mountable section, the second mountable section, and the third mountable section of the frame. The first arm portion has a first end supported by an ear of the user, and the second arm portion has a second end supported by the other ear of the user. At least one of the first end or the second end is detachable from the frame. Furthermore, at least one of the first end or the second end embeds an electronic device by providing a substrate and heating the substrate into a melted state, shaping the melted substrate according to a first predetermined pattern, disposing the electronic device on the melted substrate before cooling, and cooling the melted substrate with the embedded electronic device.
An embodiment of the invention provides a wearable apparatus, including a frame and a plurality of capsules. The frame is configured to be wearable on a user, and the frame includes a bridge portion having a first mountable section, a first arm portion having a second mountable section, and a second arm portion having a third mountable section. The capsules are configured to be mounted on the first mountable section, the second mountable section, and the third mountable section of the frame. The first arm portion has a first end supported by an ear of the user, and the second arm portion has a second end supported by the other ear of the user. At least one of the first end or the second end is detachable from the frame. Moreover, at least one of the first end or the second end embeds an electronic device by providing a first substrate and a second substrate, shaping at least one of the first substrate or the second substrate according to a second predetermined pattern, disposing the electronic device between the first substrate and the second substrate, compressing the first substrate and the second substrate together, wherein the electronic device is sandwiched by the compression between the first substrate and the second substrate, and heating the assembly of the first substrate, the electronic device, and the second substrate.
In summary, through the methods for embedding electronic devices and the wearable apparatuses using these methods, embodiments of the invention minimize unnecessary bulk which affect the overall design aesthetics of the wearable apparatuses. Moreover, since these wearable apparatuses display no differences in size, discreetness can be ensured for users who do not want to draw attention to themselves during use of the wearable apparatuses.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the invention in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the invention.
Some embodiments of the present application will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the application are shown. Indeed, various embodiments of the application may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout.
However, the frame enclosure of
Alternative embedding methods are also possible according to other embodiments of the invention. For instance, the electronic device may be embedded in multiple substrate layers during the fabrication process, in which the substrate layers may be formed by materials such as acetate, although the invention is not limited thereto.
For example, a plurality of capsules 420, 430, and 440, as well as the first end 490 and the second end 480 may be detachable and mountable on the frame 410 of the wearable apparatus 400. For example, the capsule 430 embedded with an imaging unit and other components according to the methods described in earlier embodiments may be mounted on the bridge portion 450, the capsule 420 enclosing a controller and other components may be mounted on the first arm portion 460, and the capsule 440 enclosing a battery and other components may be mounted on the second arm portion 470.
Furthermore, the first end 480 and/or the second end 490 may be detachable units of the wearable apparatus 400, in which the first end 480 and/or the second end 490 have embedded electronic devices fabricated by the methods for embedding electronic device described earlier. For example, with reference to the blow-up portion of the first end 480 in
It should be noted that, the methods for embedding electronic devices in the application are not limited to the afore-described scenarios, and the methods may also embed various antennas to run through the substrate material, including running to the surface flush with the outside surface of the frame 410 of the wearable apparatus 400 and/or the extension modules (e.g. the detachable units and capsules) attached to the wearable apparatus 400. These methods allow for at least one antenna to be placed in locations where they do not create interference with the internal electronics. Furthermore, these antennas, when reaching the surface of the frame (e.g. frame 410), can be part of the overall ornamental design of the wearable apparatus, forming both an aesthetic ornamentation in addition to the function of maximum transmission performance while configured in locations to mitigate interference. Moreover, the antennas may provide functionalities such as 4G, LTE, wife, and GPS.
Moreover, LED lights and fiber optics may be embedded into the frame and either on the surface or slightly under the surface. When slightly under the surface, the method for embedding electronics provides no trace that the LEDs are there. However when the LEDs are activated, the proximity to the surface will allow the light to pass through the surface. This method further reduces bulk and maximizes the efficient use of space by using these components space requirements to simply displace density of what otherwise would be comprised of the frame substrate itself. Various heat sinks may also be embedded in various areas of the substrate to direct heat to the surface and outside the frame of the glasses in the most efficient manner possible.
In addition, thin touch panel sensor pads may be embedded at or near the surface of the substrate, which does not increase the need for thicker frames because the heat sinks are embedded into the normal frame thickness, displacing where otherwise would be normal frame material. Other examples of embedded components into the substrate include USB/SDIO connectors, buttons, swipe activation sensors, buzzers, microphones, micro SD card slots, and flexible printed circuits.
In view of the foregoing, through the methods for embedding electronic devices and the wearable apparatuses using these methods, embodiments of the invention minimize unnecessary bulk which affect the overall design aesthetics of the wearable apparatuses. Moreover, since these wearable apparatuses display no visible differences in size, discreetness can be ensured for users who do not want to draw attention to themselves during use of the wearable apparatuses.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application claims the priority benefits of U.S. provisional application Ser. No. 61/786,543, filed on Mar. 15, 2013. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
61786543 | Mar 2013 | US |