The present invention relates to magnetoresistive read sensors for reading signals recorded in a magnetic medium, and more particularly, this invention relates to improving gap layers of a magnetoresistive read sensor to optimize operating characteristics.
Computer systems generally utilize auxiliary memory storage devices having media on which data can be written and from which data can be read for later use. A direct access storage device (disk drive) incorporating rotating magnetic disks is commonly used for storing data in magnetic form on the disk surfaces. Data is recorded on concentric, radially spaced tracks on the disk surfaces. Magnetic heads including read sensors are then used to read data from the tracks on the disk surfaces.
In high capacity disk drives, magnetoresistive read sensors, commonly referred to as MR heads, are the prevailing read sensors because of their capability to read data from a surface of a disk at greater linear densities than thin film inductive heads. An MR sensor detects a magnetic field through the change in the resistance of its MR sensing layer (also referred to as an “MR sensor”) as a function of the strength and direction of the magnetic flux being sensed by the MR layer.
An MR read head is typically mounted to a slider which, in turn, is attached to a suspension and actuator of a magnetic disk drive. The slider and edges of the MR sensor and other layers of the read head form an air bearing surface (ABS). When a magnetic disk is rotated by the drive, the slider and one or more heads are supported against the disk by a cushion of air (an “air bearing”) between the disk and the ABS. The air bearing is generated by the rotating disk. The read head then reads magnetic flux signals from the rotating disk.
There are two critical dimensions of the MR head, namely the trackwidth and resolution of the MR head. The capability of the MR head to read data recorded at high areal densities is determined by its trackwidth and its resolution.
The trackwidth of the MR read head is the length of the active or sensing region for the MR sensor and is typically defined by the photolithography and subtractive or additive processing. The trackwidth is defined by the recess generated by the photoresist PR used during a photolithography process.
Resolution, on the other hand, is determined by the gap of the read head which is the distance between the first and second shield layers at the ABS. Accordingly, this distance is the total of the thicknesses of the MR sensor and the first and second gap layers G1 and G2. When the first and second gap layers G1 and G2, which separate the MR sensor from the first and second shield layers S1 and S2, become thinner, the linear resolution of read head becomes higher. A serious limitation on the thinness of the gap layers of the read head is the potential for electrical shorting between the lead layers and the first and second shield layers. The thinner a gap layer, the more likely it is to have one or more pinholes which expose a lead layer to a shield layer. Pinholes can significantly reduce the yield of a production run of MR read heads.
It is important to note that the only place where the gap layers have to be thin is in an MR region where the MR sensor is located. The gap layers can be thicker between the lead layers and the first and second shield layers. Accordingly, it is desirable if each gap layer could be thin in the MR region to provide high linear resolution and thick outside of the MR region to provide good insulation between the lead layers and the shield layers.
The MR read head of
Next, a very thin second gap layer G2 is deposited. The MR region is then masked and a second gap pre-fill layer G2P is deposited. After lifting off the mask, the G2P layer is located everywhere except in the MR region. The result is that very thin G1 and G2 layers are in the MR region at the bottom and top of the MR sensor to provide the MR head with a high linear resolution, the G1 and G1P layers are located between the leads and the first shield layer S1 to prevent shorting between the lead layers and the first shield layer S1, and the G2 and G2P layers are located between the lead layers and the second shield layer S2 to prevent shorting between the lead layers and the second shield layer S2.
As such, the present device is capable of providing a read head which has a very thin gap layer at the MR region, and yet will prevent shorts between lead layers and the first and second shield layers.
Despite this, the MR read head of
First, the beveled edges cause reflective notching due to light scattering. See arrows in
Prior art devices have attempted to overcome the foregoing disadvantages through the addition of antireflective layers and planarization. Unfortunately, antireflective layers are only partially effective and introduce complications associated with their removal.
There is therefore a need for an MR read head with an improved gap layer which utilizes planar surfaces to avoid adversely affecting the MR region, while providing a thin gap layer adjacent to the MR region and a thick gap layer between lead layers and the first and second shield layers.
It is an object of the present invention to disclose a magnetoresistive (MR) read head with an improved gap layer which does not adversely affect the MR region.
It is another object of the present invention to disclose an MR read head which has a very thin gap layer adjacent to the MR region.
It is still another object of the present invention to disclose an MR read head which has a very thick gap layer between lead layers and the first and second shield layers of the MR read head.
It is still yet another object of the present invention to disclose an MR read head which has gap layers that are planar to avoid the negative ramifications of reflective notching and the swing effect.
These and other objects and advantages are attained in accordance with the principles of the present invention by disclosing an MR read head including a shield layer with a recessed portion and a protruding portion defined by the recessed portion. Also included is an MR sensor located in vertical alignment with the protruding portion of the shield layer. Further provided is at least one gap layer situated above and below the MR sensor. At least one of such gap layers is positioned in the recessed portion of the shield layer.
In one embodiment of the present invention, the gap layers may include a first gap layer located on top of the recessed portion of the shield layer. Such first gap layer may include an upper surface substantially level with an upper surface of the protruding portion of the shield layer. As an option, the recessed portion of the shield layer may be formed by an etching process.
The gap layers may further include a second gap layer located on top of the first gap layer and the protruding portion of the shield layer. The MR sensor may be located on top of the second gap layer. As a result of the aforementioned underlying structure, an upper surface of such second gap layer may be planar to avoid the negative ramifications of reflective notching and the swing effect.
In addition to the first and second gap layers, a third gap layer may be located on top of the MR sensor.
To this end, a combined thickness of the first gap layer, second gap layer, and third gap layer is thinner adjacent to the MR sensor and the protruding portion of the shield layer than the recessed portion of the shield layer for insulation purposes.
In yet another embodiment, a method is provided for fabricating the MR read head. Initially, a shield layer is deposited. Thereafter, a recessed portion is etched in an upper surface of the shield layer. Such recessed portion of the shield layer defines a protruding portion of the shield layer. A first gap layer is deposited on top of the recessed portion of the shield layer, and a second gap layer is deposited on top of the first gap layer and the protruding portion of the shield layer. Next, an MR sensor is positioned on top of the second gap layer in vertical alignment with the protruding portion of the shield layer. First and second lead layers are subsequently positioned on top of the second gap layer. The first and second lead layers are positioned such that they are connected to the MR sensor. A third gap layer is then deposited on top of the second gap layer, the MR sensor, and the first and second lead layers.
For a fuller understanding of the nature and advantages of the present invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings.
The following description is the best embodiment presently contemplated for carrying out the present invention. This description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein.
Referring now to
At least one slider 313 is positioned on the disk 312, each slider 313 supporting one or more magnetic read/write heads 321 where the head 321 incorporates the MR sensor of the present invention. As the disks rotate, slider 313 is moved radially in and out over disk surface 322 so that heads 321 may access different portions of the disk where desired data are recorded. Each slider 313 is attached to an actuator arm 319 by way of a suspension 315. The suspension 315 provides a slight spring force which biases slider 313 against the disk surface 322. Each actuator arm 319 is attached to an actuator 327. The actuator 327 as shown in
During operation of the disk storage system, the rotation of disk 312 generates an air bearing between slider 313 and disk surface 322 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 315 and supports slider 313 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 329, such as access control signals and internal clock signals. Typically, control unit 329 comprises logic control circuits, storage and a microprocessor. The control unit 329 generates control signals to control various system operations such as drive motor control signals on line 323 and head position and seek control signals on line 328. The control signals on line 328 provide the desired current profiles to optimally move and position slider 313 to the desired data track on disk 312. Read and write signals are communicated to and from read/write heads 321 by way of recording channel 325.
The above description of a magnetic disk storage system of the present invention, and the accompanying illustration of
Next provided is a first gap layer G1 located on top of the recessed portion 402 of the shield layer S1. The first gap layer G1 includes an upper surface 405 substantially level with an upper surface 406 of the protruding portion 404 of the shield layer S1. The first gap layer G1 and the remaining gap layers may be constructed utilizing alumina, aluminum oxide, or any other desired insulating material. Moreover, such gap layers may be deposited utilizing any desired process such as sputtering or the like.
As an option, the upper surface 405 of the first gap layer G1 may reside slightly below the upper surface 406 of the protruding portion 404 of the shield layer S1. In such embodiment, a chemical-mechanical polishing process or the like may be utilized to achieve planarity. It is preferred that the upper surface 405 of the first gap layer G1 be planar and level with the upper surface 406 of the protruding portion 404 in order to avoid reflective notching and the swing curve effect.
With continuing reference to
Located on top of the second gap layer G2 is an MR sensor that is positioned in vertical alignment with the protruding portion 404 of the shield layer S1. In one embodiment, the size and shape of the protruding portion 404 of the shield layer S1 is similar to that of the MR sensor. Preferably, the size of the protruding portion 404 of the shield layer S1 is slightly larger than that of the MR sensor. The MR sensor may be constructed utilizing Permalloy (nickel iron) or any other desired material. Moreover, the MR sensor may be deposited utilizing any desired process such as sputtering, vacuum deposition, plating or the like.
Also located on top of the second gap layer G2 are first and second lead layers which are connected to the MR sensor. The first and second lead layers may be constructed utilizing copper or any other conductive material. Similar to the MR sensor, the first and second lead layers may be deposited utilizing any desired process such as sputtering, vacuum deposition, plating or the like.
A third gap layer G3 is located on top of the MR sensor, the first and second lead layers, and the second gap layer G2. While not shown, it should be noted that another shield layer S2 and other layers may be deposited on top of the third gap layer G3, as is well known to those of ordinary skill. In use, the gap layers provide insulation between the lead layers and the shield layers S1 and S2.
By this design, a combined thickness of the first gap layer G1, second gap layer G2, and third gap layer G3 is thinner adjacent to the MR sensor and the protruding portion 404 of the shield layer S1 than the recessed portion 402 of the shield layer S1. As such, the lead layers enjoy the increased combined thickness of the gap layers. This is important to reduce the chance of a short occurring between the lead layers and shield layers S1 and S2.
Moreover, beveled edges and nonplanarity are avoided by maintaining planar gap layer surfaces through use of the recessed portion 402 of the shield layer S1. To this end, the detrimental ramifications of reflective notching and the swing curve effect are avoided.
Subsequently, the first gap layer G1 is deposited on top of the recessed portion 402 of the shield layer S1. Note operation 606. As an option, a chemical-mechanical polishing process may be carried out on the upper surfaces of the first gap layer G1 and the recessed portion 402 of the shield layer S1. Such chemical-mechanical polishing process serves to remove any residual nonplanarity around the protruding portion 404 of the shield layer S1.
In operation 608, the second gap layer G2 is deposited on top of the first gap layer G1 and the protruding portion 404 of the shield layer S1. Next, in operation 610, the MR sensor is positioned on top of the second gap layer G2 in vertical alignment with the protruding portion 404 of the shield layer S1.
First and second lead layers are subsequently positioned on top of the second gap layer G2. Note operation 612. The first and second lead layers are positioned such that they are connected to the MR sensor. The third gap layer G3 is then deposited on the second gap layer G2, the MR sensor, and the first and second lead layers, as indicated in operation 614. While not shown, another shield layer S2 may be deposited on top of the third gap layer G3 in addition to any remaining layers that are well known to those of ordinary skill.
It should be understood that the order of operations in the method 600 of fabrication may vary per the desires of the user. For example, the shield layer S1 and first gap layer G1 may both be deposited before the patterning and etching processes are carried out to form the recessed portion 402 of the shield layer S1. Thereafter, the second gap layer G2 and the MR sensor may be deposited. While this and other variations are possible, the method 600 of fabrication is preferred since the MR sensor is deposited on a more pristine surface.
Next, the MR sensor is positioned on top of the second gap layer G2 in vertical alignment with the protruding portion 404 of the shield layer S1 in accordance with operation 610 of
To this end, the combined thickness of the gap layers is increased to reduce the chance of a short occurring between the lead layers and shield layers S1 and S2. Further, beveled edges and nonplanarity are avoided by maintaining planar gap layer surfaces. To this end, the detrimental ramifications of reflective notching and the swing curve effect are avoided.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The present application is a divisional of U.S. application Ser. No. 09/875,405 which was filed on Jun. 5, 2001, now U.S. Pat. No. 6,628,484 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5168409 | Koyama et al. | Dec 1992 | A |
5283942 | Chen et al. | Feb 1994 | A |
5458908 | Krounbi et al. | Oct 1995 | A |
5568335 | Fontana et al. | Oct 1996 | A |
5613293 | Slade et al. | Mar 1997 | A |
5648885 | Nishioka et al. | Jul 1997 | A |
5657192 | Cohen et al. | Aug 1997 | A |
5752309 | Partee et al. | May 1998 | A |
5761013 | Lee et al. | Jun 1998 | A |
5793207 | Gill | Aug 1998 | A |
5793279 | Nepela | Aug 1998 | A |
5828531 | Gill | Oct 1998 | A |
5828598 | Chen et al. | Oct 1998 | A |
5869963 | Saito et al. | Feb 1999 | A |
5880913 | Gill | Mar 1999 | A |
5898612 | Chen et al. | Apr 1999 | A |
5955211 | Maeda et al. | Sep 1999 | A |
5968676 | Araki et al. | Oct 1999 | A |
5993566 | Lin | Nov 1999 | A |
6118621 | Ohsawa et al. | Sep 2000 | A |
6333842 | Nobuyuki et al. | Dec 2001 | B1 |
6342993 | Sato | Jan 2002 | B1 |
6381107 | Redon et al. | Apr 2002 | B1 |
6525913 | Mauri et al. | Feb 2003 | B1 |
6563678 | Sato | May 2003 | B1 |
6598289 | Sasaki | Jul 2003 | B1 |
6729012 | Sasaki | May 2004 | B1 |
6751071 | Yazawa et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
07262591 | Oct 1995 | JP |
2001034918 | Feb 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040085680 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09875405 | Jun 2001 | US |
Child | 10601021 | US |