1. Field of the Invention
The present invention relates to the field of integrated circuits and more specifically to the fabrication of an NPN transistor.
In patent application Ser. No. 08/968,598 filed on Nov. 13, 1997 under attorney docket number S1022/7945, now U.S. Pat. No. 5,953,600 and incorporated herein by reference, a method for fabricating a bipolar transistor compatible with a BICMOS technology (that is, a technology enabling the simultaneous fabrication of bipolar transistors and of complementary MOS transistors) is described.
2. Discussion of the Related Art
An example of NPN transistor obtained by using this technology is shown in
This NPN transistor is formed in an epitaxial layer 2 which is above a buried layer 3 formed in a P-type silicon substrate (not shown). The transistor is formed in a window made in a thick oxide layer 5. References 21 and 22 designate thin silicon oxide and silicon nitride layers which are not necessary for the description of the bipolar transistor. Region 23 is a P-type doped polysilicon layer called the base polysilicon since the base contact diffusion 32 is formed from this silicon layer. Polysilicon layer 23 is coated with an encapsulation silicon oxide layer 24. A central emitter-base opening is formed in layers 22 and 23 altogether. A thin silicon oxide layer 31 covers the sides of polysilicon layer 23 and the bottom of the opening. In this opening, an N-type high energy implant 30 meant for the forming of a sub-collector region with a selected doping level is performed. The walls of the emitter-base opening are coated with a silicon nitride layer 44. Polysilicon lateral spacers 43 are formed on the sides of the opening. Before the forming of silicon nitride region 44 and of polysilicon spacers 43, an intrinsic base implant 33 is formed. After the spacers have been formed, a highly-doped N-type polysilicon layer 46 from which is formed emitter region 49 is deposited. Polysilicon layer 46 is coated with an encapsulation oxide layer 47. The general structure is coated with an insulating and planarizing layer 51 through which are formed emitter contact openings 55 joining polysilicon layer 46 and base contact openings 56 joining polysilicon layer 23. Further, a collector contact (not shown) is made via an N-type drive-in towards buried layer 3.
Referring to
Actually, the depth of the penetration is not precisely controlled and can for example vary of ±20 nm around a provided value of 30 nm according to slight variations of the fabrication parameters. This results in variable characteristics for the NPN transistor, having a variable distance between the extrinsic base and the intrinsic base and thus having a fluctuating resistance of access to the base. Further, the bottom surface area of the opening—emitter surface area—results from an end of doped polysilicon etching and risks of being of poor quality, which is also prejudicial to the stability of the characteristics of the transistor.
An object of the present invention is to provide an NPN transistor of the same type as that of
Another object of the present invention is to provide such a transistor wherein the stray capacitance between the extrinsic base and the collector is reduced.
Another object of the present invention is to provide such a transistor wherein the stray capacitances and the resistance of access to the base are adjustable.
To achieve these and other objects, the present invention provides a transistor of NPN type implemented in an epitaxial layer within a window defined in a thick oxide layer, including an opening formed substantially at the center of the window, this opening penetrating into the epitaxial layer down to a depth of at least the order of magnitude of the thick oxide layer, the walls of the opening being coated with a layer of silicon oxide and with a layer of silicon nitride; a polysilicon spacer formed on the lateral walls and a portion of the bottom wall of the opening; an N-type highly-doped polysilicon layer formed in the opening and in contact with the epitaxied layer at the bottom of the opening within the space defined by the spacer; an N-type doped region at the bottom of the opening; a first P-type doped base region at the bottom of the opening; a second lightly-doped P-type region on the sides of the opening; and a third highly-doped P-type region formed in the vicinity of the upper part of the opening, this third region being in contact with an N-type doped polysilicon layer, the three P-type regions being contiguous and forming the base of the transistor.
According to an embodiment of the present invention, the transistor further includes a fourth P-type doped intermediary region between the third and second regions.
According to an embodiment of the present invention, the collector is formed vertically of a portion of the epitaxied layer, of an overdoped region resulting from an implant in the opening and of a buried layer.
The present invention also provides a method for fabricating an NPN transistor in an epitaxial layer of type N, including the steps of defining a window in a thick oxide region; depositing a polysilicon layer and a silicon oxide layer; substantially opening at the center of the window the silicon oxide and polysilicon layers; performing a thermal oxidation; forming in the opening an insulating layer of a first material which is selectively etchable with respect to the silicon oxide; forming spacers in a second material which are selectively etchable with respect to the silicon oxide and to the first material; opening the bottom of the opening within the area defined by the spacers; depositing an N-type doped polysilicon layer; and after the step of opening of the polysilicon and silicon oxide layers, the step of further opening to a determined depth the epitaxial layer and of implanting a P-type doping in the epitaxial layer at the bottom of the opening and on the walls thereof.
According to an embodiment of the present invention, the implant step is a step of oblique implant under low incidence.
According to an embodiment of the present invention, the method further includes a second step of oblique implant under strong incidence and at high dose of a P-type doping.
According to an embodiment of the present invention, the method includes, after the step of formation of an opening in the epitaxial layer, the step of implanting an N-type doping to form in the epitaxial layer an N-type collector region at a higher doping level close to a buried layer of type N+ formed under this epitaxial layer.
According to an embodiment of the present invention, the first material is silicon nitride.
According to an embodiment of the present invention, the second material is polysilicon.
The present invention also aims at a transistor obtained by this method.
These objects, characteristics and advantages as well as others, of the present invention, will be discussed in detail in the following non-limiting description of specific embodiments of the present invention, in relation with the accompanying drawings.
At the step illustrated in
As an example of numeric values, in an embodiment adapted to the fabrication of submicron dimensioned integrated circuits, the thickness of thick layer 102 can be around 500 nm, the thickness of P-type silicon oxide layer 105 around 200 nm, the thickness of silicon oxide layer 106 around 300 nm, and the thickness of resist layer 108 around 1000 nm (1 μm).
Then, an opening is made by photolithography in masking layer 108. This opening is disposed substantially centrally in the window formed in thick oxide layer 102. If the window in thick oxide layer 102 has a width of around 1200 nm, the opening in the resist layer has a width of around 400 to 800 nm, for example 600 nm.
At the step illustrated in
According to an aspect of the present invention, an anisotropic etching of the monosilicon of epitaxial layer 101 is also performed. This etching is continued for a determined duration to reach a selected depth of penetration into the silicon. This depth will for example be around 300 to 1000 nm, for example 600 nm. It should be noted that this depth is far from being negligible and is of the order of magnitude of thick oxide layer 102 (500 nm). As will be seen hereafter, the choice of this depth enables selection of desired characteristics for the NPN transistor.
At the step illustrated in
At the following step illustrated in
The first implant is performed under oblique incidence at an angle from 1 to 10 as the wafer turns with respect to the axis of implant. A doped area which, after the annealing, has the shape illustrated in the drawing, and includes a deeper implanted area 114 at the bottom of the opening and a shallower implanted area 115 on the sides of the opening is thus obtained. This first implant is for example a boron implant performed under 5 keV with a dose of 2.1013 at./cm2.
The second implant is also performed under oblique incidence, as the wafer is rotated, but with a larger angle of incidence than the preceding angle, from 30 to 50, for example 45, to implant a doping only in an upper part of the sides of the opening formed in epitaxied layer 101. An implanted region 117, the doping level of which is intermediary between the level of doping of regions 114–115 and that of region 112 is thus obtained. This second implant is for example an implant performed from a boron fluoride (BF2) under high energy (45 keV) and with a relatively high dose, for example 1014 atoms/cm2.
The implementation of this second implant, although constituting a preferred embodiment of the present invention, is optional.
The collector part of the bipolar transistor according to the present invention which has not been shown in
On the assumption that the thickness of the epitaxial layer is around 1.4 *m (1400 nm) and that the bottom of the opening is at 600 nm from the surface, the thickness of region 125 can be around 60 nm, the total thickness of region 114 under the bottom of the opening can be around 120 nm, the thickness of the epitaxial layer free of overdoping can be around 200 nm, and the thickness of the adapted doping collector region 130 can be around 200 nm.
An essential characteristic of the present invention is to provide an opening of non-negligible depth in epitaxial layer 101 and to provide several levels of base doping around and at the bottom of this opening. Thus, the doping level of intrinsic base region 114 can be set as desired and the resistance of the extrinsic base including regions 115 and 117 towards base contact region 112 can be adjusted as desired to optimize the base resistance, to reduce the base-emitter and base-collector capacitances, and to improve the reverse characteristics of the emitter-base junction. Indeed, these base-emitter and base-collector capacitances essentially depend on the distance between the more doped part 112 and emitter region 114 on the one hand, and the more doped regions of collector 130 on the other hand. The depth of the opening and the base doping levels can be adjusted according to the desired results.
Of course, the present invention is likely to have various alterations, modifications, and improvements which will readily occur to those skilled in the art. In particular, the base contact, emitter contact and collector contact recoveries have not been described but can be performed in the way described in relation with
To avoid any risk of short-circuit between base polysilicon region 105 and emitter polysilicon region 123, the deposition of a silicon nitride layer may be provided at the interface between polysilicon layer 105 and silicon oxide layer 106. The apparent edge, on the side of the opening of this additional silicon nitride layer, will weld with silicon nitride layer 120 upon deposition thereof. Thus, any risk of penetration of etching agent or any etching during a plasma etching at the interface between the edges of silicon oxide layer 106 and the external wall of silicon nitride layer 120 is avoided.
Several numeric values have been indicated as an example, to show that the invention applies to structures of very small dimensions, but the present invention also applies more generally to the implementation of NPN transistors of different dimensions wherein it is desired to optimize the resistances and stray capacitances. Similarly, the use of specific dopings and implant modes has been indicated as an example. Those skilled in the art may use several known variants for the implementation of the dopings.
Several variants of materials can also be performed. For example, other materials may be used for silicon nitride layer 120 and polysilicon layer 121. These two materials only have to be etched selectively with respect to each other and with respect to the silicon oxide, and the second material has to be etchable so as to form spacers.
Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.
Number | Date | Country | Kind |
---|---|---|---|
96 14411 | Nov 1996 | FR | national |
This application is a continuation of prior application Ser. No. 10/435,718, filed May 8, 2003 now abn, which in turn is a continuation of prior application Ser. No. 10/301,560, filed Nov. 21, 2002 now abn, which in turn is a continuation of prior application Ser. No. 09/649,251, filed Aug. 28, 2000 now abn, which in turn is a division of prior application Ser. No. 08/969,800, filed Nov. 13, 1997 Pat. No. 6,156,616, entitled METHOD FOR FABRICATING AN NPN TRANSISTOR IN A BICMOS TECHNOLOGY, which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4215418 | Muramatsu | Jul 1980 | A |
4232439 | Shibata | Nov 1980 | A |
4276543 | Miller et al. | Jun 1981 | A |
4752589 | Schaber | Jun 1988 | A |
4960726 | Lechaton et al. | Oct 1990 | A |
4980302 | Shimizu | Dec 1990 | A |
5008207 | Blouse et al. | Apr 1991 | A |
5015594 | Chu et al. | May 1991 | A |
5017990 | Chen et al. | May 1991 | A |
5045484 | Yamada et al. | Sep 1991 | A |
5100815 | Tsubone et al. | Mar 1992 | A |
5137840 | Desilets et al. | Aug 1992 | A |
5192992 | Kim et al. | Mar 1993 | A |
5238850 | Matsunaga et al. | Aug 1993 | A |
5321650 | Kikuchi et al. | Jun 1994 | A |
5416031 | Miwa | May 1995 | A |
5429959 | Smayling | Jul 1995 | A |
5439832 | Nakamura | Aug 1995 | A |
5471085 | Ishigaki et al. | Nov 1995 | A |
5478760 | Yang | Dec 1995 | A |
5488003 | Chambers et al. | Jan 1996 | A |
5512497 | Ikeda et al. | Apr 1996 | A |
5512785 | Haver et al. | Apr 1996 | A |
5705410 | Guegan | Jan 1998 | A |
5753957 | Watabe | May 1998 | A |
5773349 | Ham | Jun 1998 | A |
5880000 | Gris | Mar 1999 | A |
5953600 | Gris | Sep 1999 | A |
6156616 | Gris | Dec 2000 | A |
20040164378 | Gris | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
A-0 495 329 | Jul 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20040164378 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08969800 | Nov 1997 | US |
Child | 09649251 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10435718 | May 2003 | US |
Child | 10785667 | US | |
Parent | 10301560 | Nov 2002 | US |
Child | 10435718 | US | |
Parent | 09649251 | Aug 2000 | US |
Child | 10301560 | US |