1. Field of the Invention
This invention generally relates to method for fabricating a micro-lens and a mold cavity thereof and a light emitting device, and more specifically to a method for fabricating a micro-lens capable of enabling a light source to generate uniform light, and mold cavity thereof and a light emitting device.
2. Description of Related Art
A light emitting diode (LED) is a semiconductor optoelectronic element capable of emitting light, wherein the principle of light emission thereof is that in the combining process of electrons and so-called holes at the PN interface, energy is released in the form of photons sufficient for forming a light source. The light emitting element of an LED is encapsulated by a lens surface, wherein proper reflection of the lens will effectively radiate the light source and achieve a light illumination effect. An LED has many advantages, such as small size, light weight, high light emission efficiency, and so on. LEDs are widely adopted in illumination applications and as message indications. However, light emitted by the light emitting element of an LED through an integrated substrate is radiated in a scattered pattern, and thus such a light source does not radiate a concentrated beam. Therefore, the perceived brightness of LEDs does not achieve the desired effect in certain applications. Also, excessive heat is generated due to light scattering. Hence, it is a highly desirable issue in the industry to develop a way to enable such a light source to be more even and optimized, thereby enhancing light emission efficiency.
There are many designs and processing techniques for even and optimized light sources. Many of the techniques are applied in backlight modules, such as a diffusion filter for optical filters in a backlight module. For example, a plurality of single or multi-chip packaged light emitting element lenses can be used to provide light source distribution. Also, a secondary lens can be utilized to adjust the light source direction. However, such optimized designs are rarely done with the aim of increasing light emission quantity and evenness of the light source. In other words, light emission efficiency has a higher priority in most designs of light emitting elements, and light distribution is subsequently adjusted by design of light distribution device.
For example, a distributed Bragg reflector (DBR) structure comprising multiple alternating layers of high and low refractive index materials is disclosed in US Pat. No. 6,155,699, wherein the DBR structure performs as a reflecting layer for a light emitting diode for enhancing light emission efficiency of the light emitting diode.
Using a related principle, a dielectric stacking structure of high reflectivity is formed on a mesa wall of a reverse chip LED as disclosed by Taiwanese Patent No. 541,728, wherein the dielectric stacking structure is comprised of alternating layers of high and low refractive index layers, in which the high refractive index layers will reflect the majority of the guided light inside a light emitting diode chip radiating onto the coated mesa wall, so as to reduce the amount of light that would otherwise be consumed in the mesa wall. However, according to the above-mentioned patent, the high refractive dielectric stacking layers are formed only on the surface of the light emitting diode mesa wall. As such, light consumption still occurs on other sides.
According to the conventional light emitting structures utilized in light emitting diodes, no matter if such a structure is a DBR structure or an optically reflecting film structure, only part of light or the light of a particular wavelength can be reflected. Both designs need to include a secondary lens for adjusting the light source direction, so that such technologies involve complicated lithography processes or other manufacturing steps. Therefore, fabrication costs are rather high.
In addition, compared with the conventional design of a light source emission lens, the aforementioned design is restricted in terms of the geometry and structural size, as well as by difficulty in developing the related mold. Therefore, it is limited in effectively enhancing evenness and brightness of light emission. Moreover, since the fabrication method for the light emission lens of such a light emitting diode has higher cost, there are few products on the market employing the technique.
Hence, it is a highly critical issue in the industry to provide a method for fabricating a micro-lens and mold cavity thereof, wherein the method is capable of decreasing the consumption of material and power, reducing the required fabrication equipment, and generating mass refraction to provide more even illumination and more extensive light distribution, thereby effectively solving the drawbacks of the prior arts.
In view of the disadvantages of the prior art mentioned above, the present invention provides a method for fabricating a micro-lens and a mold cavity thereof and light emitting device that are capable of generating mass refraction, thereby providing more even illumination and more extensive light distribution.
The present invention further provides a method for fabricating a micro-lens and a mold cavity thereof and light emitting device that consume less material and power and rely on less fabrication equipment.
The present invention further provides a method for fabricating a micro-lens and a mold cavity thereof and light emitting device that have a simple and fast fabrication process and provide a high time-cost benefit as well.
In accordance with the present invention the fabrication method of the micro-lens mold cavity comprises the steps of: providing a substrate having a first surface; disposing and arranging a plurality of micro nanometer structures on the first surface; depositing a metallic thin film layer on the first surface and the micro nanometer structures of the substrate, and also partially exposing each of the micro nanometer structures from the metallic thin film layer; and removing each of the micro nanometer structures to form a mold cavity comprising a second surface.
According to the fabrication method of the mold cavity of the present invention, the fabrication method of the micro-lens of the present invention comprises the steps of: mixing micro nanometer particles into a moldable micro-lens material, and pouring the micro-lens material mixed with the micro nanometer particles onto the second surface of the mold cavity; and removing the micro-lens material mixed with the micro nanometer particles after solidifying and being shaped, so as to form a micro-lens comprising a micro nanometer lenticular face array.
According to said fabrication method, each of the micro nanometer structures is disposed and arranged in a gas or liquid phase, and control parameters are selected from the group consisting of applied external electric field, magnetic field, pH of solution, and temperature.
According to the fabrication method, each of the micro nanometer structures is selected made of macromolecular materials or ceramic materials, such as silicon oxide, silicon dioxide, titanium oxide, titanium dioxide, polystyrene, PMMA, barium oxide, barium titanate, barium sulfate or aluminum oxide.
According to the fabrication method, the size of each of the micro nanometer structures is between 0.01 μm and 5 μm.
According to the fabrication method, the micro nanometer structures are not restricted to a regular matrix arrangement. In other words, they can be in a face-centered cubic arrangement, hexahedral stacked arrangement, alternately-spaced arrangement without gaps, or alternately-spaced arrangement with gaps, wherein the spacing distance between adjacent two micro nanometer structures is between 0.001 μm and 10 μm.
The micro-lens material and micro nanometer structure particles of fixed density are mixed evenly in a specified ratio.
The fabrication method further comprises the steps of fabricating a micro-lens of a multi-layered structure. The fabrication method of said micro-lens of a multi-layered structure comprises the steps of: providing a substrate having a first surface; disposing and arranging a plurality of micro nanometer structures on the first surface; depositing a metallic thin film layer on the first surface and the micro nanometer structures of the substrate, and also partially exposing each of the micro nanometer structures from the metallic thin film layer; removing each of the micro nanometer structures to form a first mold cavity comprising a second surface; mixing moldable micro-lens material with micro nanometer particles, and pouring the micro-lens material mixed with the micro nanometer particles onto the second surface of the first mold cavity; removing the micro-lens material mixed with the micro nanometer particles after solidifying and being shaped to form a micro-lens comprising a micro nanometer lenticular face array; fabricating a second mold cavity according to the steps of forming the first mold cavity, wherein the second mold cavity comprises a third surface comprising the lenticular face; pressing down the micro nanometer lenticular face array of the micro-lens toward a third surface of the second mold cavity, thereby forming a gap between the micro nanometer lenticular face array of the micro-lens and the third surface of the second mold cavity; pouring micro-lens material into the gap; and after the micro-lens material poured into the gap solidifies into the desired shape, removing the micro-lens from the second mold cavity. The micro-lens of a multi-layered structure is thus formed.
In the micro-lens of a multi-layered structure, each layered structure of the micro-lens is made of material selected from the group consisting of silica gel, acrylic, glass, epoxy resin, silicone, and others. The refraction indices of the materials of each layer structure of the micro-lens are in a regularly or irregularly decreasing or increasing sequence. Also, the thickness of the material of each layered structure of the micro-lens is between 0.01 μm and 10 μm.
The light emitting device of the present invention comprises a substrate; a light emitting element disposed on the substrate; and a micro-lens disposed to encapsulate the substrate for packaging the light emitting element, wherein the micro-lens comprises a light emission face comprising a micro nanometer lenticular face.
In another embodiment of the light emitting device of the present invention, the micro-lens is comprised of a plurality of stacked micro-lenses comprising a micro nanometer lenticular face.
In summary, the method of fabricating a micro-lens and mold cavity thereof and light emitting device in the present invention provides a substrate comprising a first surface for a plurality of micro nanometer structures of integrated single grains to be disposed and arranged thereon; next, a metallic thin film layer is deposited on the first surface of the substrate and micro nanometer structures, and then each of the micro nanometer structures is partially exposed from the metallic thin film layer; then, subsequently, each of the micro nanometer structures is removed to form a mold cavity comprising a second surface, and then the mold cavity is used for further forming micro-lenses comprising a micro nanometer lenticular face array, thereby enabling light of the light source to generate mass refraction through the micro nanometer structures, and thus providing more even illumination and more extensive distribution. By such a method, the present invention is also capable of reducing the use of material and power, as well as the degree of reliance on fabrication equipment, and is further capable of forming a multi-layered micro-lens for providing a more even illumination by using a micro-lens materials of various refraction indices, thereby enabling a plurality of light sources of high brightness to approach a more ideal single light source.
The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
The following illustrative embodiments are provided to illustrate the disclosure of the present invention. These and other advantages and effects can be readily understood by those skilled in the art after reading the disclosure of this specification. The present invention can also be performed or applied by other differing embodiments. The details of the specification may be presented on the basis of specific points and applications, and numerous modifications and variations can be devised without departing from the spirit of the present invention.
Please refer to
Please refer to
As shown in
As show in
As show in
Subsequently, as shown in
Please refer to
As shown in
As shown in
Subsequently, as shown in
As shown in
Please refer to
Please refer to
A first mold cavity (not shown in the figures) is fabricated by the steps of the second embodiment of the present invention for fabricating a micro-lens mold cavity as illustrated by said
As shown in
Further, as shown in
As shown in
Similarly, a third micro-lens layer can be formed through the steps as illustrated by
Furthermore, according to the method for fabricating a micro-lens mold cavity in the present invention, the distribution of the micro nanometer structures 30 on the substrate is not restricted to regular matrix arrangement, e.g. a face-centered cubic arrangement without gaps as shown in
In summary, the method for fabricating a micro-lens and a mold cavity thereof in the present invention mainly provides a substrate comprising a first surface for disposing and arranging a plurality of micro nanometer structures thereon; a metallic thin film layer is deposited on the first surface and the micro nanometer structures of the substrate, and each of the micro nanometer structures is partially exposed from the metallic thin film layer; subsequently, each of the micro nanometer structures is removed to form a mold cavity comprising a second surface, and then a micro-lens comprising a micro nanometer lenticular face array is formed by using said mold cavity, wherein the method of the present invention is capable of reducing consumption of material and cost and using less equipment as well, and also producing a mass refraction for providing more even illumination and more extensive light distribution; and each of the micro-lenses is stacked to form a multi-layered micro-lens, and then by using micro-lenses of various refraction indices, light emission evenness can be more complete for enabling a plurality of light sources of high brightness to become an ideal single light source.
The foregoing descriptions of the detailed embodiments are only illustrated to disclose the features and functions of the present invention and are not restrictive of the scope of the present invention. It should be understood by those skilled in the art that various modifications and variations according to the spirit and principle in the disclosure of the present invention should fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
097125165 | Jul 2008 | TW | national |