Method for fabricating side shields in a magnetic writer

Information

  • Patent Grant
  • 9001467
  • Patent Number
    9,001,467
  • Date Filed
    Monday, June 9, 2014
    10 years ago
  • Date Issued
    Tuesday, April 7, 2015
    9 years ago
Abstract
A method and system provide a magnetic transducer having an air-bearing surface (ABS) location, a pole and a gap. The pole has a bottom and a top wider than the bottom. The gap is on the top of the pole and at least as wide as the top of the pole such that an overhang is formed between a top edge of the gap and a bottom edge of the bottom of the pole. The method includes providing a plurality of bottom antireflective coatings (BARCs). The plurality of BARCs form a BARC layer that fills the overhang. A shield photoresist mask is provided on at least a portion of the BARC layer. The shield, which includes at least one side shield, is provided.
Description
BACKGROUND


FIG. 1 depicts a conventional method 10 for fabricating side shields for a conventional magnetic recording head. The method starts after a main pole and top gap have been provided. Any material adjacent to the side gap and top gap may also have been removed. A single bottom antireflective coating (BARC) layer is provided, via step 12. Step 12 includes spin coating an organic BARC layer such that the BARC layer covers at least the main pole and the region around the pole.


A photoresist mask is provided on the BARC layer, via step 14. Step 14 may include providing a photoresist layer, selectively exposing portions of the photoresist layer to light, and using a developer to remove portions of the photoresist layer. The photoresist mask has an aperture for the side shields. The side shield(s) may then be provided, via step 16. Step 16 may include plating the magnetic materials, such as NiFe, for the shields. The side shields may be part of a wraparound shield.



FIG. 2 depicts an ABS view of a conventional magnetic recording head 50 formed using the method 10. The magnetic recording transducer 50 may be a perpendicular magnetic recording (PMR) head. The conventional magnetic recording transducer 50 may be a part of a merged head including the write transducer 50 and a read transducer (not shown). Alternatively, the magnetic recording head may be a write head including only the write transducer 50. The conventional transducer 50 includes an underlayer 52, side gap 54, main pole 60, side shields 70, top (write) gap 62, and optional top (trailing) shield 72.


The main pole 60 resides on an underlayer 52 and includes sidewalls. The underlayer 52 may also include a leading shield. The sidewalls of the conventional main pole 60 form an angle with the down track direction at the ABS and may form a different angle with the down track direction at the distance recessed from the ABS. The width of the main pole 60 may also change in a direction recessed from the ABS.


The side shields 70 are separated from the main pole 60 by a side gap 54. The side shields 70 extend a distance back from the ABS. The trailing shield 72 is separated from the main pole by gap 62. The side shields 70 and trailing shield 72 may be considered to form a wraparound shield.


Although the conventional magnetic recording head 50 functions, there are drawbacks. In particular, the conventional magnetic recording head 50 may suffer from issues due to photoresist residue. For example, resist residue 80 may reside under the top gap 62. The resist residue 80 may remain after fabrication because the photoresist may be difficult to develop under the top gap 62. The presence of the resist residue 80 may adversely affect reliability and performance. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording head.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a flow chart of a conventional method for fabricating a magnetic recording head.



FIG. 2 depicts a conventional magnetic recording transducer.



FIG. 3 depicts a flow chart of an exemplary embodiment of a method for providing shields for a magnetic recording transducer.



FIG. 4 depicts an exemplary embodiment of a disk drive.



FIGS. 5A and 5B depict ABS and apex views of an exemplary embodiment of a magnetic recording transducer.



FIG. 6 depicts a flow chart of another exemplary embodiment of a method for providing a magnetic recording transducer.



FIG. 7 depicts a flow chart of another exemplary embodiment of a method for providing a magnetic recording transducer.



FIGS. 8-14 depict ABS views of an exemplary embodiment of a magnetic recording transducer fabricated using the method.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 3 depicts an exemplary embodiment of a method 100 for providing a magnetic recording transducer. For simplicity, some steps may be omitted, interleaved, combined, have multiple substeps and/or performed in another order unless otherwise specified. The method 100 is described in the context of providing a magnetic recording disk drive and transducer. However, the method 100 may be used to fabricate multiple magnetic recording transducers at substantially the same time. The method 100 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 100 also may start after formation of other portions of the magnetic recording head. For example, the method 100 may start after a read transducer, return pole/shield and/or other structure have been fabricated. The method 100 may start after the main pole and write/trailing gap have been formed. The pole has a bottom and a top wider than the bottom. The gap residing on the top of the pole and is at least as wide as the top of the pole. Consequently, overhangs are formed between the top edges of the gap and the bottom edges of the bottom of the pole. In addition, the nonmagnetic intermediate layer has also be removed in the region in which the shields are to be fabricated.


A plurality of bottom antireflective coatings (BARCs) are provided, via step 102. For example, step 102 may including spin coating multiple BARCs. For example, a first BARC may be spin coated. A second BARC may be spin coated on the first BARC. In some embodiments a third BARC may be spin coated on the second BARC, and so on. The BARCs can be considered to form a BARC layer. The BARC layer fills the overhangs. Stated differently, the region between the top edges of the gap and the bottom edges of the pole are filled by BARC layer. In some embodiments, the sides of the pole and bottom of the gap in the overhang may be considered to be sealed by the BARC. In some embodiments, each of the BARCs has a thickness of at least twenty nanometers and not more than sixty nanometers. In some such embodiments, each of the BARCs has the thickness of at least twenty-five nanometers and not more than thirty-five nanometers. The total thickness of the BARC layer formed from the BARCs is sufficient to fill the overhang. The BARCs may be organic BARCs. In some embodiments, the BARCs are developable BARCs. In such embodiments, the material used for the BARCs is removable using a developer, such as one which would be used in developing a photoresist mask.


After the BARC layer is provided from the multiple BARCs in step 102, a shield photoresist mask is provided, via step 104. The shield photoresist mask is on at least a portion of the BARC layer. The mask provided in step 104 has an aperture in the region in which the shields are to be formed. Thus, the aperture exposes a section of the BARC layer. Step 104 may include depositing a photoresist layer and selectively exposing a portion of the photoresist layer to light. A portion of the photoresist layer is then removed, forming the photoresist mask. For example, the photoresist layer may be immersed in a developer in order to remove part of the photoresist layer corresponding to the aperture. The developer may also remove a portion of BARC layer under the aperture. Thus, the region around the pole may be prepared for deposition of the shield material.


The shield(s) are provided, via step 106. The shield(s) includes side shields and may include a trailing (top) shield. Step 106 may include depositing a seed layer and plating a high permeability material, such as NiFe. If only side shields are desired or the trailing shield is desired to be separated from the side shields, then step 106 may also include removing a portion of the shield material above the main pole.


Using the method 100, a magnetic transducer having improved performance may be fabricated. Use of the BARC layer reduces or eliminates reflections from underlying topography that may adversely affect formation of the photoresist mask in step 104. Thus, a mask having the desired features may be formed. The desired geometry, and thus performance, of the transducer may be more readily achieved. Because the BARC layer fills the overhang, photoresist does not occupy any portion of the region under the overhang during formation of the photoresist mask in step 104. Further, the BARC layer may be removed by the developer or other method. This is in contrast to the photoresist, which may have to be exposed to light to be removable. As a result, photoresist residue under the overhang may be prevented. Performance and reliability of the transducer formed using the method 100 may thus be improved. Note that the BARC layer formed of multiple BARCs performs its functions better than a single BARC that is thick enough to fill the overhang. For example, a single BARC having a thickness that is the same as the BARC layer formed of multiple BARCs may not adequately fill the overhang. Thus, performance and reliability of the transducer formed using the method 100 may be improved without significantly complicating processing.


FIGS. 4 and 5A-5B depict various views of a disk drive and transducer formed using the method 100. FIG. 4 depicts a side view of an exemplary embodiment of a portion of a disk drive 200 including a write transducer 220. FIGS. 5A and 5B depict ABS and cross-sectional side (apex) views, respectively, of the transducer 220. For clarity, FIGS. 4, 5A and 5B are not to scale. For simplicity not all portions of the disk drive 200 and transducer 220 are shown. In addition, although the disk drive 200 and transducer 220 are depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 200 is not shown. For simplicity, only single components 202, 210, 220, 224, 230, 239240 and 245 are shown. However, multiples of each components 202, 210, 220, 224, 230, 239, 240, 245 and/or their sub-components, might be used. The disk drive 200 may be a perpendicular magnetic recording (PMR) disk drive. However, in other embodiments, the disk drive 200 may be configured for other types of magnetic recording included but not limited to heat assisted magnetic recording (HAMR).


The disk drive 200 includes media 202, a slider 210 and a write transducer 220. Additional and/or different components may be included in the disk drive 200. Although not shown, the slider 210 and thus the transducer 220 are generally attached to a suspension (not shown). The transducer 220 is fabricated on the slider 210 and includes an air-bearing surface (ABS) proximate to the media 202 during use. In general, the disk drive 200 includes a write transducer 220 and a read transducer (not shown). However, for clarity, only the write transducer 220 is shown. The transducer 220 includes a main pole 230, coils 240, shields 245, side gap 224 and top/write gap 232. In other embodiments, different and/or additional components may be used in the write transducer 220.


The coil(s) 240 are used to energize the main pole 230. Two turns 240 are depicted in FIG. 4. Another number of turns may, however, be used. Note that only a portion of the coil(s) 240 is shown in FIG. 4. If, for example, the coil(s) 240 form a helical coil, then additional portion(s) of the coil(s) 240 may be located on the opposite side of the main pole 230 as is shown. If the coil(s) 240 is a spiral, or pancake, coil, then additional portions of the coil(s) 222 may be located further from the ABS. Further, additional coils may also be used.


The main pole 230 includes a pole tip region 232 close to the ABS and a yoke region 234 recessed from the ABS. The pole tip region 232 is shown as having top and bottom bevels 231 and 233, respectively, near the ABS. The sidewalls and form sidewall angles with the down track direction.


Also shown are side gaps 224 and top gap 232 that separate the main pole 230 from the shield 245. As can best be seen in FIGS. 5A-5B, the gaps 224 and 232 may be formed separately or together. The gaps 224 and 232 are nonmagnetic and may include the same or different material(s). In the ABS view, the side gap 224 is conformal to the sidewalls of the pole 230. However, recessed from the ABS, the side gap 224 may not be conformal with the pole 230. The shield 245 is depicted as including a side shield portion 246 and a trailing shield 248. The side shields 246 are adjacent to the sides of the main pole 230 and the side gap 224. The trailing shield 238 is on top of the main pole and adjacent to the top gap 232. Because the gap 232 extends further in the cross track direction than the top of the main pole 230, there are overhangs 236 and 238 on the sides of the main pole 230. The overhangs 236 and 238 may be larger at their bottom of the main pole 230 because the top of the pole 230 is wider than the bottom.


The magnetic disk drive 200 may exhibit improved performance. As can be seen in FIG. 5A, the overhangs 236 and 238 are free of photoresist residue. Thus, the transducer 220 is less prone to the presence of resist residue that adversely affects performance and reliability. This may be achieved without significantly complicating processing of the transducer 200.



FIG. 6 depicts an exemplary embodiment of a method 110 for providing a magnetic recording transducer. For simplicity, some steps may be omitted, interleaved, performed in another order (unless otherwise indicated) and/or combined. The method 110 is described in the context of providing a magnetic recording disk drive 200 and transducer 220 depicted in FIGS. 4 and 5A-5B. However, the method 110 may be used to fabricate multiple magnetic recording heads at substantially the same time. The method 110 may also be used to fabricate other magnetic recording transducers. The method 110 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 110 also may start after formation of other portions of the magnetic recording head. For example, the method 110 may start after a read transducer, return pole/shield and/or other structure have been fabricated. Further, the method 110 may start after the pole 230, side gap 224 and top gap 232 are formed.


Referring to FIGS. 4, 5A-5B and 6, two or more coatings of developable BARC (DBARC) are provided, via step 112. Step 112 may including spin coating multiple BARCs. For example, a first DBARC may be spin coated. A second DBARC may be spin coated on the first DBARC, and so on. This process would be continued at least until the overhangs are filled. For example, if two DBARCs are used, in some embodiments, each of DBARC has a thickness of at least twenty nanometers and not more than sixty nanometers. In some such embodiments, each DBARC has the thickness of at least twenty-five nanometers and not more than thirty-five nanometers. For two DBARCs, the total thickness of the DBARC layer formed may be in the range of forty to one hundred twenty nanometers. In some such embodiments, the DBARC layer is at least fifty and not more than seventy nanometers thick. Such a thickness is sufficient to fill the overhang. The DBARCs may be organic.


A shield photoresist mask is provided, via step 114. Formation of the photoresist mask would use the developer that can remove the DBARC layer. Thus, the process that provides the aperture(s) in the photoresist mask would also remove the underlying DBARC layer. Step 114 may include depositing the appropriate photoresist and selectively exposing portion(s) of the photoresist layer to light. The photoresist layer would then be exposed to the developer. Thus, the photoresist and DBARC around the pole 230 may be removed. The underlayer/leading shield 222, gap 224 and top gap 232 may thus be exposed in the region the shield(s) are to be manufactured.


The shield(s) 245 are provided, via step 116. Step 116 may include depositing a seed layer (not shown in FIGS. 4, 5A and 5B) and plating a high permeability material. Thus, side shields 246 and trailing shield 248 may be formed. In some embodiments, the trailing shield 248 may be removed.


Using the method 110, a magnetic transducer having improved performance may be fabricated. Use of the DBARC layer not only improves fabrication of the photoresist mask by reducing or eliminating reflections, but also prevents or mitigates the presence of photoresist residue in the overhang regions 236 and 238. The desired geometry, performance, and reliability of the transducer 220 and disk drive 200 may be more readily achieved.



FIG. 7 depicts an exemplary embodiment of a method 150 for providing a magnetic recording transducer. For simplicity, some steps may be omitted, interleaved, performed in another order unless otherwise indicated and/or combined. FIGS. 8-14 depict ABS views of an exemplary embodiment of a transducer 250 during fabrication using the method 150. Referring to FIGS. 7-14, the method 150 may be used to fabricate multiple magnetic recording heads at substantially the same time. The method 150 may also be used to fabricate other magnetic recording transducers. The method 150 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 150 also may start after formation of other portions of the magnetic recording transducer. For example, the method 150 may start after a read transducer, return pole/shield and/or other structure have been fabricated. In addition, the method 150 starts after formation of the pole and gaps. For example, FIG. 8 depicts the transducer 250 before the first step of the method 150. An underlayer 252 that may include a leading shield is present. The main pole 260 and side gaps 254 have also been formed. The side gap 254 may be a seed layer deposited in a trench in an intermediate layer. The pole 260 is formed in the trench. The intermediate layer may then be removed at least in the region shown. In other embodiments, the pole may be formed from full film deposited pole material(s), which are then milled away or otherwise removed to form the pole 260. The top gap 266 is also shown. Overhangs 262 and 264 exist on the sides of the main pole 260 in part because the gap 266 is wider than the top of the pole 260 and in part because the bottom of the pole 260 is narrower than the top.


A first DBARC is spin coated, via step 152. In some embodiments, the first DBARC has a thickness of at least twenty nanometers and not more than sixty nanometers. In some such embodiments, the first DBARC is at least twenty-five nanometers and not more than thirty-five nanometers thick. However, other thicknesses are possible. FIG. 9 depicts an ABS view of the transducer 250 after step 152 is performed. Thus, a first DBARC 272 has been provided.


A second DBARC is spin coated on the first DBARC, via step 154. The second DBARC may be at least twenty nanometers and not more than sixty nanometers thick. In some such embodiments, the second DBARC is at least twenty-five nanometers and not more than thirty-five nanometers thick. However, other thicknesses may be used. FIG. 10 depicts an ABS view of the transducer 250 after step 154 is performed. Thus, a second DBARC 274 has been provided. Because both are DBARCs, the transition between DBARC 272 and DBARC 274 is shown as a dashed line. Further, the overhangs 262 and 264 have not been filled.


A third DBARC is optionally spin coated on the second DBARC, via step 156. The third DBARC may be at least twenty nanometers and not more than sixty nanometers thick. In some such embodiments, the third DBARC is at least twenty-five nanometers and not more than thirty-five nanometers thick. However, other thicknesses are possible. FIG. 11 depicts an ABS view of the transducer 250 after step 156 is performed. Thus, a third DBARC 276 has been provided. The transitions between the DBARCs 272, 274 and 276 are shown by dashed lines. The DBARCs 272, 274 and 276 form DBARC layer 278. The DBARC layer 278 fills the overhangs 262 and 264.


A photoresist layer is deposited, via step 158. FIG. 12 depicts an ABS view of the transducer 250 after step 158 is performed. Thus, a photoresist layer 280 is provided. For clarity, the DBARC layer 278 is shown without indicating the individual DBARCs that form the layer 278. The photoresist mask is developed by selectively exposing portion(s) of the photoresist layer 280 to light, via step 160. Consequently, the portion of the photoresist layer 280 that is in the location at which an aperture for the shields is to be formed may be removed. Consequently, this portion of the photoresist layer is removed by exposing the photoresist layer to a developer, via step 162. The photoresist mask is, therefore, formed. However, the DBARC is also removable by the developer. Consequently, the DBARC layer 278 under the aperture in the photoresist mask is also removed. FIG. 13 depicts an ABS view of the transducer 250 after step 162 is performed. Because the shields are to be formed near the pole around the ABS, the DBARC layer 178 and the photoresist layer 280 have been removed in this region. However, a portion of the photoresist layer that forms the mask and the DBARC 278 remain in other regions. Further, no photoresist remains under the gap 266.


The shield(s) are provided, via step 164. Step 164 may include depositing a seed layer and plating a high permeability material, such as NiFe. FIG. 14 depicts and ABS view of the transducer 250 after step 164 is performed. Thus, shield 290 is formed. Because of the way in which the shields 290 have been formed, no photoresist residue is present under the gap 266. If only side shields are desired or the trailing shield is desired to be separated from the side shields, then a portion of the shield 290 above the main pole 260 may be removed.


Using the method 150, a magnetic transducer having improved performance may be fabricated. Use of the DBARC layer not only improves fabrication of the photoresist mask by reducing or eliminating reflections, but also prevents or mitigates the presence of photoresist residue in the overhang regions 262 and 264. The desired geometry, performance, and reliability of the transducer 250 may be more readily achieved.

Claims
  • 1. A method for fabricating a shield for a magnetic transducer having air-bearing surface (ABS) location, a pole and a gap, the pole having a bottom and a top wider than the bottom, the gap residing on the top of the pole and being at least as wide as the top of the pole such that an overhang is formed between a top edge of the gap and a bottom edge of the bottom of the pole, the method comprising: providing a plurality of bottom antireflective coatings (BARCs), the plurality of BARCs forming a BARC layer, the BARC layer filling the overhang;providing a shield photoresist mask on at least a portion of the BARC layer; andproviding the shield, the shield including at least one side shield.
  • 2. The method of claim 1 wherein the shield is a wraparound shield including the at least one side shield and a trailing shield.
  • 3. The method of claim 1 wherein the step of providing the plurality of BARCs further includes providing at least two BARCs.
  • 4. The method of claim 1 wherein the step of providing the plurality of BARCs further includes: spin coating a first BARC;spin coating a second BARC on the first BARC.
  • 5. The method of claim 4 wherein the step of providing the plurality of BARCS further includes: spin coating a third BARC on the second BARC.
  • 6. The method of claim 4 wherein each of the first BARC and the second BARC has a thickness of at least twenty nanometers and not more than sixty nanometers.
  • 7. The method of claim 6 each of the first BARC and the second BARC has the thickness of at least twenty-five nanometers and not more than thirty-five nanometers.
  • 8. The method of claim 1 wherein the step of providing the photoresist mask further includes: depositing a photoresist layer;selectively exposing a portion of the photoresist layer to light; andremoving the portion of the photoresist layer.
  • 9. The method of claim 8 wherein the step of removing the photoresist layer further includes: exposing at least the photoresist layer to a developer.
  • 10. The method of claim 1 wherein the BARC layer is an organic BARC layer.
  • 11. The method of claim 1 wherein the BARC layer is a developable BARC layer removable by a developer.
  • 12. A method for fabricating a shield for a magnetic transducer having air-bearing surface (ABS) location, a pole and a gap, the pole having a bottom and a top wider than the bottom such that an overhang is formed between a top edge of the top of the pole and a bottom edge of the bottom of the pole, the gap residing on the top of the pole and being at least as wide as the top of the pole, the method comprising: spin coating a first developable bottom antireflective coating (BARC) over the pole and the gap;spin coating a second developable BARC on the first developable BARC, a developable BARC (DBARC) layer including the first developable BARC and the second developable BARC filling the overhang;depositing a photoresist layer on the DBARC layer;selectively exposing a portion of the photoresist layer to light;removing the portion of the photoresist layer using a developer to provide a shield photoresist mask, a portion of the DBARC layer being removed by the developer; andplating a shield layer for the shield.
  • 13. The method of claim 12 further comprising: spin coating a third developable BARC on the second developable BARC, the first developable BARC, the second developable BARC and the third developable BARC forming the DBARC layer filling the overhang.
  • 14. A magnetic transducer having air-bearing surface (ABS) comprising: a pole having a bottom and a top wider than the bottom;a write gap on the pole, the gap being at least as wide as the top of the pole such that an overhang is formed between a top edge of the gap and a bottom edge of the bottom of the pole, the overhang being free of photoresist residue;a side gap; anda shield including at least one side shield, the side gap separating the pole from the at least one side shield.
  • 15. The magnetic transducer of claim 14 wherein the shield further includes a trailing shield, the write gap being between the pole and the trailing shield.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional U.S. Patent Application Ser. No. 61/948,390, filed on Mar. 5, 2014, which is hereby incorporated by reference in its entirety.

US Referenced Citations (656)
Number Name Date Kind
4529860 Robb Jul 1985 A
5017459 McColgin May 1991 A
5332653 Cullen et al. Jul 1994 A
5661083 Chen et al. Aug 1997 A
5798303 Clampitt Aug 1998 A
5798897 Chang et al. Aug 1998 A
5994226 Kadomura Nov 1999 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6111724 Santini Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6309976 Lin et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6451706 Chu et al. Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6586560 Chen et al. Jul 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6627355 Levinson et al. Sep 2003 B2
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6649531 Cote et al. Nov 2003 B2
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6787475 Wang et al. Sep 2004 B2
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6900134 Shih et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6951823 Waldfried et al. Oct 2005 B2
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6984585 Ying et al. Jan 2006 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7253115 Tanaka et al. Aug 2007 B2
7265060 Tsai et al. Sep 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7297638 An et al. Nov 2007 B2
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7371507 Myung May 2008 B2
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7390753 Lin et al. Jun 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430095 Benakli et al. Sep 2008 B2
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7547669 Lee Jun 2009 B2
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7605006 Morijiri et al. Oct 2009 B2
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7674755 Egbe et al. Mar 2010 B2
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7700533 Egbe et al. Apr 2010 B2
7718543 Huang et al. May 2010 B2
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
20010022704 Hong Sep 2001 A1
20020034043 Okada et al. Mar 2002 A1
20030100190 Cote et al. May 2003 A1
20040214448 Chan et al. Oct 2004 A1
20050141137 Okada et al. Jun 2005 A1
20060044682 Le et al. Mar 2006 A1
20060216649 Paxton et al. Sep 2006 A1
20090029557 Kikuchi et al. Jan 2009 A1
20090098490 Pham et al. Apr 2009 A1
20090173977 Xiao et al. Jul 2009 A1
20090192065 Korzenski et al. Jul 2009 A1
20090246958 Burns et al. Oct 2009 A1
20100112486 Zhang et al. May 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20100302680 Hirata et al. Dec 2010 A1
20100321831 Demtchouk et al. Dec 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20110147222 Pentek et al. Jun 2011 A1
20110151279 Allen et al. Jun 2011 A1
20110233167 Pentek et al. Sep 2011 A1
20110262774 Pentek et al. Oct 2011 A1
20110273800 Takano et al. Nov 2011 A1
20110279926 Si et al. Nov 2011 A1
20120050915 Hong et al. Mar 2012 A1
20120111826 Chen et al. May 2012 A1
20120125885 Chen et al. May 2012 A1
20120127612 Shin et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130022840 Hsiao et al. Jan 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
Non-Patent Literature Citations (2)
Entry
Cameron et al., “Developable BARC (DBARC) Technology as a Solution to Today's Implant Lithography Challenges” Advances in Resist Materials and Processing Technology XVIII R. Allen, M. Somervell, Proc. of SPIE vol. 7972, 797214 1-10, Feb. 27, 2011.
Brewer Science, Inc., “ARC DS-K101 MSDS sheet”. 5 pages (Jan. 2009).
Provisional Applications (1)
Number Date Country
61948390 Mar 2014 US