This invention relates to a method for filling and a method for emptying a liquid tank of a spreading material device for winter service vehicles, and to a spreader for winter service vehicles that is accordingly arranged for carrying out said methods, and to a winter service vehicle as such that is equipped with such a spreader.
German laid-open application DE 10 2010 029 142 A1 discloses a spreader for winter service vehicles which combines three different spreading methods, namely dry salt spreading, wet salt spreading and pure brine spreading. Normally the brine for wet salt spreading and pure brine spreading is located in an additional tank which is mounted for example laterally of the spreading material container in which the spreading salt is kept. Since the additional tanks are too small for spreading pure brine over a standard spreading path of approx. 50 km, DE 10 2010 029 142 A1 proposes utilizing the spreading material container electively as a further tank container for receiving brine. The additional tanks are retained in case wet salt is to be spread and the spreading material container is required for receiving solid thawing materials. Instead of employing the spreading material container itself as a further tank container, there can alternatively be provided a tank sack insertable into the spreading material container. The brine required for pure brine spreading is conveyed out of the additional tanks in the conventional manner here, and the additional tanks are automatically refilled with brine from time to time from the spreading material container or the tank sack received therein. This is done using a pump which pumps into the additional tanks the brine received in the spreading material container or tank sack via a hose protruding thereinto. The pump used may be a suction pump 51, as represented in
The use of the pumps for automatically filling the additional tanks has turned out to be trouble-prone, however.
The object of the present invention is hence to overcome this disadvantage of the prior art.
This object is achieved by a method for filling and a method for emptying a liquid tank of a winter service spreader and by an accordingly adapted spreader having the features of the independent claims. Claims dependent thereon state advantageous developments and embodiments of the invention.
The core of the invention is to be seen in that the automatic refilling of the additional tanks with brine from the spreading material container or the tank sack inserted therein is obtained substantially solely through hydrostatic forces. By means of the solution according to the invention it is not only possible to refill the additional tanks during operation, however, but it is likewise possible to couple the first-time filling of the additional tanks with the filling of the spreading material container or the tank sack received therein such that this can be effected in one step. The different tank containers thus no longer need to be filled separately, which means a considerable facilitation and time saving.
Accordingly, the method according to the invention, for filling a liquid tank which comprises as a first tank container e.g. the spreading material container or the tank sack received therein and as one or more second tank containers e.g. the above-mentioned additional tanks, provides that the first tank container is connected to the second tank container or containers via a liquid line such that the first tank container is first filled with liquid, for example with brine, up to a moment as of when the liquid filled into the first tank container begins to flow through the liquid line into the at least one second tank container, with the filling of the second tank container or containers with liquid from the first tank container being effected through the liquid line following this moment.
This can now be effected in principle in two different ways. Either one attaches the liquid line in a lower region of the spreading material container to the latter or the tank sack received therein and connects it preferably leading constantly downward to the additional tank or tanks, so that the liquid begins to flow directly into the additional tanks upon filling of the main tank, i.e. the spreading material container or the tank sack received therein. When the height of the main tank overlaps with the height of the additional tank or tanks and the liquid level in the main tank rises, the liquid level also rises in the additional tanks until the latter are completely filled. Subsequently, the main tank can be filled further up to the maximum filling volume. Upon later emptying of the liquid tank through removal of the liquid from the additional tanks, the liquid level in the main tank first sinks until it has reached the highest level of the additional tanks, whereupon the liquid level in the main and additional tanks drops uniformly upon further emptying.
This first possibility of hydrostatically filling and emptying the liquid tank is relatively easy to realize when the spreading material container itself is utilized as the first tank container, i.e. as the main tank. For in this case the liquid line can be attached to the front sides of the main and additional tanks in a relatively simple manner. This is more problematic, however, when there serves as the first tank container or main tank e.g. a tank sack inserted in the spreading material container. For then the tank sack must be attached to the spreading material container walling or be guided therethrough in a lower region of the spreading material container. This lower region of the spreading material container is poorly accessible, however, in particular when a tank sack is located therein. Since the employment of a tank sack as a main tank is to be preferred to the use of the spreading material container itself, the second possibility for hydrostatically filling and emptying the liquid tank to be described hereinafter offers certain advantages.
According to this second possibility, the liquid line possesses a highest point between the two line openings at the respective ends of the liquid line. This highest point preferably lies at the height of an upper region of the first tank container (main tank) or thereabove, so that the step of filling the second tank container or containers (additional tanks) only begins when the first tank container is completely or at least almost completely filled. For the filling of the second tank container or containers only begins after the liquid in the liquid line has reached the highest point, and thereafter the filling of the second tank container or containers with liquid from the first tank container continues automatically through the liquid line exploiting hydrostatic forces, namely as long as the line opening of the liquid-line end protruding into the second tank container (additional tank) lies below the liquid level of the first tank container (main tank). This second possibility is not restricted to the employment of a tank sack as the first tank container, but can also be used, if certain basic conditions are heeded which are to be explained hereinafter, when e.g. the spreading material container itself is utilized as the first tank container (main tank).
Preferably, the (first) line opening of the liquid line lies near the bottom of the first tank container, in order for the first tank container to empty as completely as possible upon emptying. For the same reason, the (second) line opening of the liquid-line end attached to the second tank container (additional tank) or protruding thereinto lies at a place below the (first) line opening of the opposing liquid-line end attached to the first tank container (main tank) or protruding thereinto, in order for the first tank container to empty as deeply as possible upon emptying of the liquid tank. Hence, the (second) line opening preferably lies below the bottom of the first tank container.
The liquid line can be guided over an upper edge of the spreading material container. The highest point of the liquid line then lies above the spreading material container or a tank sack received therein. On the one hand, this offers the advantage that the maximum filling volume of the first tank container (spreading material container or tank sack received therein) can be completely filled with liquid without any problems before the filling of the second tank container through the liquid line begins. However, it is problematic that in this case, upon the employment of a tank sack as the first tank container, an excess pressure must be built up in the tank sack in order to urge the liquid out of the tank sack through the liquid line beyond the highest point of the liquid line. It is also important here that the liquid is pumped into the first tank container at a volume flow rate such that the liquid not only spills over the highest point, but fills the liquid line completely. For it is only with a closed liquid column in the liquid line that one achieves the goal of the liquid being dragged from the first tank container into the second tank container automatically due to hydrostatic forces.
When, in contrast, the first tank container is not formed by a tank sack but e.g. by the spreading material container itself, the production of an excess pressure in the first tank container is not possible. In this case there can for example be provided a suction pump on the liquid line, with which the liquid is sucked beyond the highest point of the liquid line once. Subsequently, the suction pump can be switched off and the further filling operation takes place automatically solely due to hydrostatic forces.
The excess pressure problem can be avoided when the liquid line is guided, not around the upper edge of the spreading material container, but in an upper region through the walling of the spreading material container. Then the filling of the second tank container begins when the first tank container is almost completely filled, and continues automatically provided it is ensured that a closed liquid column forms in the liquid line at the start of the independent filling operation, as previously explained.
In the upper region of the spreading material container the walling of the spreading material container is relatively well accessible even in the presence of a tank sack, so that the liquid line can be readily guided to the tank sack through the walling of the spreading material container at this place, or the tank sack can be attached at the corresponding place to an opening in the spreading material container, on the opposing side of which a hose leading to the additional tank is then attached.
The filling of the first tank container can be ended as soon as the second tank container automatically fills due to the acting hydrostatic forces. The first tank container then empties to the extent that the second tank container fills. Hence, it is preferred to fill the first tank container further while the second tank container is automatically filling with liquid from the first tank container until both tank containers are completely filled.
When, in the later operation of the spreader, one empties the liquid tank by liquid being diverted from the second tank containers (additional tanks), the liquid level in the first liquid tank (main tank, that is, spreading material container or tank sack) first sinks until its liquid level has sunk to the height of the highest second tank container (additional tank). Subsequently, the liquid levels in the two tank containers sink to the same extent until the (first) line opening in the first tank container protrudes over the liquid level. At this moment the liquid column in the liquid line breaks. When the diameter of the liquid line is small and the capillary forces sufficiently great, the liquid column located in the liquid line is dragged upon the further emptying of the second tank container. This effect is familiar to everyone in connection with drinking straws. Hence, it can be expedient to form the liquid line from a bundle of lines with a sufficiently small cross section in order to promote this effect.
Preferably, vent openings are provided on the first and second tank containers, so that the air located therein can escape to the extent that the corresponding tank container fills with liquid. Furthermore, a fill level limiter can be provided in the second tank container or in the first tank container, depending on the selected filling principle, which sends a stop signal to the filling apparatus when a specified fill level is reached.
Hereinafter the invention will be described by way of example with reference to the accompanying drawings. Therein are shown:
Represented in
Further additional tanks 10 can be provided for example before the spreading material container 3. In particular, the additional tanks 10 can be of considerably smaller size than represented in
The functions of pure brine spreading, dry salt spreading and wet salt spreading can be obtained with the pump 16 and suitable valves 11.2. By means of the valve 11.2 configured as a three-way cock (for example ball cock), the pump 16 can be connected to the spraying device 17 or to the downpipe 5 in order to switch over between pure brine spreading and wet salt spreading. If dry salt is to be spread, i.e. without the admixture of brine from the additional tanks 10, either the pump 16 can be switched off or the three-way cock 11.2 be so swiveled that the route from the pump 16 both to the spraying device 17 and to the spreading device 6 is interrupted. On the other hand, it is also possible with the position of the three-way cock 11.2 represented in
To now increase the brine receiving capacity of the spreader 1, a liquid tank 40 is inserted in the spreading material container 3 and connected to the additional tanks 10 via a liquid line 50. The liquid tank 40 can be filled with brine via a filling port 42.
In addition to the filling port 42 there is provided a feed-through port 43 through which the liquid line 50 is guided into the liquid tank 40 with a hose extension 50A. The hose extension 50A reaches down to the bottom of the liquid tank 40. Thus, the liquid tank 40 can be completely emptied through the liquid line 50 and the liquid be supplied to the additional tanks 10, that is, in the concrete exemplary embodiment according to
In the exemplary embodiment according to
The tank sack 40A fills only half of the spreading material container 3. In the remaining other half there can be received a second tank sack 40A or else dry spreading material which is then conveyed through below the tank sack 40A to the spreading device 6. If a second tank sack 40A is provided, an overflow between the tank sacks can be provided which, for easier operability, is disposed as far upward as possible. The overflow of the second tank sack then in turn has a hose extension attached thereto which reaches to the bottom of the second tank sack.
With reference to
In
Upon further filling of the tank sack 40A (
As soon as the liquid column has fallen below the lowest point of the tank sack 40A, liquid from the tank sack 40A automatically flows through the liquid line 50 into the right-hand additional tank 10 and via the connecting line 15 also into the left-hand additional tank 10.
For emptying the liquid tank, the blocking valve 18 is opened or the pump 16 operated accordingly. Liquid is then removed from the additional tanks 10 through the suction line 15 and, to the same extent, liquid flows from the tank sack 40A into the additional tanks 10 through the liquid line 50, as represented in
Instead of the vent pipes 30, the additional tanks 10 can also be equipped with vent valves 31, as represented in
Via lines 19 the additional tanks 10 are coupled to a distributor 20 which feeds the liquid out of the additional tanks 10 electively to the spreading device 6 or to a further distributor 21 with which the liquid can be allocated to a plurality of spray heads 17A, 17B, 17C.
Instead of the spreading material container 3, another tank can also serve as the main tank or “first tank”. The previously described principles, in particular the employment of a connecting line 50 passing through a highest point, are applicable thereto in the same way.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/063237 | 7/6/2012 | WO | 00 | 7/10/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/005648 | 1/9/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2481813 | Bede | Sep 1949 | A |
3640461 | Koll | Feb 1972 | A |
3918604 | Kersten | Nov 1975 | A |
4583318 | Richardson | Apr 1986 | A |
5186396 | Wise | Feb 1993 | A |
5236507 | Brown | Aug 1993 | A |
5332312 | Evanson | Jul 1994 | A |
5361711 | Beyerl | Nov 1994 | A |
5501403 | van Vooren | Mar 1996 | A |
5819776 | Kephart | Oct 1998 | A |
5927617 | Musso, Jr. | Jul 1999 | A |
6451270 | Killian | Sep 2002 | B1 |
7201333 | Yoshikawa | Apr 2007 | B2 |
7370818 | Ward | May 2008 | B2 |
10138609 | Boschung | Nov 2018 | B2 |
20060078412 | Hagemann | Apr 2006 | A1 |
20070084946 | Neville | Apr 2007 | A1 |
20110039961 | Matsumoto | Feb 2011 | A1 |
20120087736 | Tikalsky | Apr 2012 | A1 |
20130200007 | O'Konek | Aug 2013 | A1 |
20150040628 | Parrish | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
4008630 | Sep 1991 | DE |
19624189 | Jan 1998 | DE |
102010029142 | Jun 2011 | DE |
2667335 | Apr 1992 | FR |
10-317348 | Dec 1998 | JP |
2007-130621 | May 2007 | JP |
1189375 | Nov 1985 | SU |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion dated Jan. 6, 2015 from corresponding International Patent Application No. PCT/EP2012/063237; 11 pgs. |
International Search Report dated Apr. 24, 2013, as issued in corresponding International Patent Application No. PCT/EP2012/063237, filed Jul. 6, 2012; 2 pgs. |
KR office action dated Nov. 3, 2015 from corresponding Patent Application No. 10-2014-7027298; 20 pgs. |
Number | Date | Country | |
---|---|---|---|
20150129689 A1 | May 2015 | US |