This application claims priority under 35 U.S.C. §§ 119(a)-(d) to European application no. EP 15 177 426.2 filed Jul. 20, 2015, which is hereby expressly incorporated by reference as part of the present disclosure.
The invention relates to methods for finish machining of a bevel gear in the region of the tooth head or heads and machines which are designed for machining bevel gears in the region of the tooth head or heads. It also relates to a correspondingly designed grinding tool.
There are areas of application for bevel gears which require special standards in the matter of geometry, accuracy, etc. While the formation of the head edge of bevel gears only plays a subordinate role in numerous applications, thus, for example, the bevel gear specifications for helicopters require an accurately defined transition between the tooth flanks and the tooth heads.
Thus, for example, these bevel gear specifications require a radius of the head edges in the range between 0.005″ (0.127 mm) and 0.015″ (0.381 mm). The production of bevel gears in the range mentioned as an example is complex and susceptible to errors.
Some embodiments, have the following as an object in consideration of the above statements. This is to find an approach which enables the head edges of bevel gears to be manufactured accurately and reproducibly with tolerances which are in the range which is less than 1 mm. In some embodiments, head edges, the tolerance of which may be in the range between 500 μm and 1 μm may be manufactured using embodiments of the invention. In some embodiments, the approach is an approach which enables an access to partially automated or fully automated machining of head flanks of bevel gears.
In accordance with a first aspect, a method for finish machining a bevel gear comprises: (a) providing a bevel gear on a workpiece spindle of a machine tool, the bevel gear having a tooth, the tooth having a tooth head, a tooth flank and a tooth width, (b) rotationally driving the bevel gear about a workpiece axis of rotation of the workpiece spindle, (c) providing a first machining tool on a tool spindle of the machine tool, (d) machining the bevel gear by means of the first machining tool, (e) providing a grinding tool as a second machining tool on the tool spindle or on a further tool spindle of the machine tool, (f) driving the grinding tool to rotate about a tool axis of rotation of the tool spindle, wherein the grinding tool comprises a concave machining region that has a ring shape and is arranged concentrically in relation to the tool axis of rotation, and (g) advancing the grinding tool in relation to the bevel gear in order to bring the concave machining region of the grinding tool into chip-removing operational connection with an edge in a region of the tooth head, wherein the edge extends along the tooth width and defines a transition between the tooth flank and the tooth head, to produce a head chamfer on the edge by machine grinding.
In accordance with a second aspect, a machine for machining bevel gears, the machine comprising: (a) a workpiece spindle which can be driven to rotate about a workpiece axis of rotation, wherein the workpiece spindle is configured to accommodate a bevel gear, (b) at least one tool spindle which can be driven to rotate about a tool axis of rotation, wherein the tool spindle is configured to accommodate a grinding tool, and (c) an NC controller programmed to execute the method of the first aspect set forth above.
In accordance with a third aspect, an apparatus comprises: a grinding tool configured for machine grinding bevel gears in a region of a tooth head, wherein the grinding tool (a) is rotationally-symmetrical in relation to a tool axis of rotation, (b) comprises a machining region, which is arranged concentrically in relation to the tool axis of rotation, is concave in an axial section of the grinding tool, has a ring shape, and which results from two ring-shaped areas which intersect one another in a circle which is concentric to the tool axis of rotation, wherein at least one of the two ring-shaped areas is a working area and is provided with an abrasive material.
Depending on the tolerances with which the head edges are to be produced, the method can be carried out in soft material (i.e., before a temperature treatment of the workpiece) or in the hardened material (i.e., after a temperature treatment of the workpiece).
Further details and advantages of embodiments of the invention are described hereafter on the basis of exemplary embodiments and with reference to the drawings.
Terms are used in conjunction with the present description which are also used in relevant publications and patents. However, it is to be noted that the use of these terms is only to serve for better comprehension. The concept of the invention and the scope of protection of the patent claims are not to be restricted in the interpretation by the specific selection of the terms. The invention may be readily transferred to other term systems and/or technical fields. The terms are to be applied accordingly in other technical fields.
The word “head chamfer” is to be understood as a generic concept for both a head edge break 6.1 and also for a head edge rounding 6.2. A head edge break 6.1 has, viewed in normal section, a linear profile (see
Proceeding from the situation shown in
The view in
Instead of the plunging, another method for machining the tooth flanks 5 can also be used (for example, a generating method).
In addition to the tool 20, which is used for the (plunging or generating) machining of the tooth flanks 5 (as shown in
The special grinding tool 10 is designed as rotationally-symmetrical in relation to the tool axis of rotation A2. It has a machining region 11, which is concave. This machining region 11 has a ring shape, which results from two ring-shaped areas 13 and 16. These two ring areas are visible in
The mentioned ring-shaped areas 13 and 16 intersect one another in a circle K1, which is concentric to the tool axis of rotation A2. The passage of this circle K1 through the plane of the drawing is made visible in
In at least some embodiments, at least one of the two ring-shaped areas (the area 13 here) may be used as a so-called working area. At least this area 13 is provided with an abrasive material. This working area 13 is arranged concentrically in relation to the tool axis of rotation A2 in all embodiments.
Details of at least some embodiments will be described on the basis of
At least some embodiments relate to a method for the finish machining of a bevel gear 1 in the region of a tooth head 2 of a tooth 3. At least some embodiments comprise at least the following steps. To be able to execute this finish machining with high accuracy, in at least some embodiments, the bevel gear 1 is not rechucked before the finish machining. That is to say, the bevel gear 1 remains in the same chucking which was also used in the scope of a prior machining (which was performed, for example, using a tool 20, as shown in
At least some embodiments may be carried out in a two-spindle machine 100, as shown in
A bevel gear 1 may be fastened on a workpiece spindle 102 of a machine tool 100, as shown in
The finish machining in at least some embodiments may now be first performed. In at least some embodiments, the finish machining may be performed directly after the machining using the tool 20, or the finish machining may be performed after further (intermediate) steps have been executed. For the finish machining, in at least some embodiments, the grinding tool 10 is provided on the first tool spindle 101 or on a second tool spindle 103 of the machine tool 100.
The bevel gear 1 is then driven to rotate about the workpiece axis of rotation B of the workpiece spindle 102 and the grinding tool 10 is driven to rotate about the tool axis of rotation A1 of the tool spindle 101 or about the tool axis of rotation A2 of the tool spindle 103. The corresponding rotational movement of the tool 10 is designated as the angular velocity ω2.
The grinding tool 10 is advanced in relation to the bevel gear 1 (for example, by executing movements of the X2 and/or Y and/or Z and/or B axes) to bring the concave machining region 11 of the grinding tool 10 into chip-removing operational connection with an edge 4 in the region of the tooth head 2. A chip-removing operational connection is then produced and a head chamfer 6 is produced at this edge 4 of the tooth 3 by grinding machining.
The grinding tool 10 is embodied in the exemplary embodiment of
A concave, ring-shaped region 11 is a region of the grinding tool 10 which has a concave shape in axial section of the grinding tool 10. In other words, it is a circumferential constriction or circumferential reduction, which is shown in the axial section of the grinding tool 10. The concave region 11 is to be understood as a negative image of the head chamfer 6 to be produced. That is to say, the concave region 11 is designed so that it presses closely against the head 2 of the tooth 3 during the grinding machining, as can be recognized, for example, on the basis of the example of
The concave machining region 11 can also be arranged in at least some embodiments, for example, on the external circumference or on the internal circumference of a cup-shaped grinding tool 10. In this case, however, it is to be noted that the basic shape of the tool 10 is to enable collision-free access to the head edges 4 to be ground. The grinding tool 10 of
The grinding tool 10 of
To avoid a collision of the grinding tool 10 with the bevel gear 1, the grinding tool 10 is inclined in all embodiments, as can be recognized, for example, in
In at least some embodiments, the grinding tool 10 is a grinding tool 10 which can be dressed. That is to say, the grinding tool 10 is provided in at least one region of the ring-shaped working area 13 with an abrasive material, which enables dressing multiple times using a dressing tool 50 (for example, in the form of a dressing roll). The typical dressing tools are not suitable, however, to dress a grinding tool 10. This is because the concave region 11 of the grinding tool 10 has a clearly pronounced cavity. The typical dressers cannot penetrate far enough into such a gravity to dress the ring area 13 therein (and optionally also the ring area 16).
In at least some embodiments, the dressing insert 51 can be inserted into an axial borehole 52 of the dressing tool 50 and fastened therein (as indicated in
To be able to use the dressing tool 50 for dressing the concave machining region 11, the dressing axis of rotation R3 can be inclined in relation to the grinding tool 20, for example, as indicated in
A further exemplary, CNC-controlled machine tool 100 is shown in
The embodiments of the invention described and claimed here can also be executed on other grinding machines, however. In addition, this machine tool 100 has a pivot axis C, which enables the bevel gear 1 to be pivoted. In addition, there are multiple linear axes X1, X2, Y, and Z, as shown in
The machine 100 is, in at least some embodiments, designed for machining bevel gears 1 and comprises, in at least some embodiments, a workpiece spindle 102, which can be driven to rotate about the workpiece axis of rotation B. The workpiece spindle 102 is designed to accommodate the bevel gear 1. In addition, the machine 100 comprises, in at least some embodiments, at least one tool spindle 101 (shown in a vertically suspended configuration here), which can be driven to rotate about the tool axis of rotation A1. This tool spindle 101 is designed to accommodate the grinding tool 20 and/or the grinding tool 10. The NC controller 110 of the machine 100 is designed for executing the methods of the invention. A dressing tool 50 is optionally provided for dressing (as shown as an example in
As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, numerous changes and modifications may be made to the above described and other embodiments of the present invention without departing from the spirit of the invention as defined in the claims. Accordingly, this detailed description of embodiments is to be taken in an illustrative, as opposed to a limiting sense.
Number | Date | Country | Kind |
---|---|---|---|
15177426 | Jul 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2539449 | Mackmann | Jan 1951 | A |
5136522 | Loehrke | Aug 1992 | A |
7927048 | Gumpl | Apr 2011 | B2 |
20020182998 | Sicklinger | Dec 2002 | A1 |
20090068927 | Durr | Mar 2009 | A1 |
20130260643 | Durr | Oct 2013 | A1 |
20160089735 | Stadtfeld | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101829815 | Sep 2010 | CN |
10211129 | Oct 2003 | DE |
10303208 | Dec 2004 | DE |
S58181570 | Oct 1983 | JP |
H01188224 | Jul 1989 | JP |
2005329536 | Dec 2005 | JP |
2007030159 | Feb 2007 | JP |
2009502521 | Jan 2009 | JP |
2013505844 | Feb 2013 | JP |
2014514172 | Jun 2014 | JP |
0141960 | Jun 2001 | WO |
Entry |
---|
Office Action in Chinese Patent Application No. 201610575549.2 , dated Jan. 23, 2018, 8 pages. |
Beier H: “Zahnflankenschleifen mit CNC-Profilierten Scheiben” , Werkstatt+ Betrieb, Carl Hanser Verlag, Munchen DE, Bd. 132, Nr. 9, 1. Sep. 1999 (Sep. 1, 1999), Seite, 57/58,60, XP000883299, ISSN: 0043-2792. |
Number | Date | Country | |
---|---|---|---|
20170021437 A1 | Jan 2017 | US |