1. Field of the Invention
The present invention is generally related to container forming machines. More particularly, embodiments of the present invention pertain to systems, apparatuses, and methods for forming and erecting Bliss-style containers from pre-cut material blanks.
2. Background and Description of Related Art
There is an ever increasing need for better containers to hold commodities having various sizes, shapes and dimensions such as fresh fruits and vegetables, canned and bottled goods, and a wide variety of other products. As new products are developed, new requirements for packing, shipping and storing various quantities of such products arise. Every time such requirements arise, or a new product is developed, there is a need for a new container design, as well as a machine to manufacture it.
In the packaging industry, numerous fiberboard containers and designs have been developed over the years. Such containers are typically constructed of a corrugated material. These materials may be single face corrugated, single wall (double-faced) corrugated, double wall corrugated, triple wall corrugated, etc. Containers may also be made of other paperboard products including, without limitation, container board, boxboard, linerboard, and cardboard.
Many different container box styles and types have also been developed over the years, each being optimally suited for one or more particular products or industries. Slotted box styles include such types as regular slotted containers (RSC), overlapped slotted containers (OSC), full-overlapped slotted containers (FOL), center special slotted containers (CSSC), bag-in-box containers, center special overlapped slotted containers (CSO or CSOSC), center special full-overlapped slotted containers (SFF), and snap-bottom boxes, among others. Telescoping boxes include such types as full-telescope design-style boxes (FTD), full-telescope half-slotted boxes (FTHS), partial-telescope design-style boxes (PTD), partial-telescope half-slotted boxes (PTHS), design-style boxes with cover (SDC), half-slotted boxes with cover (HSC), double-covered boxes (DC), interlocking-covered boxes (IC), bulk bins, and double-thickness score-line boxes, among others. Folder style boxes include such types as one-piece folders (1PF), two-piece folders (2PF), three-piece folders (3PF), four-piece folders (4PF), wrap-around blanks, self-locking trays, tuck folders, and one-piece telescopes (1PT) among others. Slide-type boxes include such types as double-side boxes (DS), and triple-side boxes (TS), among others. Rigid boxes include Bliss boxes and recessed-end boxes, among others. There are also self-erecting boxes, and numerous interior forms for boxes.
In the industry, the terms “case” and “box” are often used interchangeably. These terms each refer to a large, usually rectangular container made out of paperboard which is designed to hold a given number (e.g. 12 or 24) of smaller units such as cartons, bottles, cans, or produce pieces.
Bliss-type boxes have special characteristics which make them highly desirable for use in bulk packing industries such as meats, explosives, fresh fruits and vegetables, and other areas where strong construction and stacking strength are important. Bliss boxes were first developed in the 1920s, and were the subject of a number of early U.S. patents (e.g. U.S. Pat. Nos. 1,697,709 and 1,974,527). Generally speaking, a Bliss box is made of three distinct pieces of paperboard material. The first is an elongated piece of material, sometimes called a body matt (or main blank or main part), which is folded around itself in the shape of a rectangular tube forming the bottom, sides and top of the final box. In some Bliss-type boxes, separate end panels, usually mirror-images of each other, are attached to the open end of the larger piece to form the completed Bliss box. The corners of the side panels typically fold over the corners of the front and back panels of the body matt on the outside, giving the Bliss style of box good corner and stacking strength. The bottom of the Bliss box is generally solid which avoids the need for bottom sealing.
Because of its three-part construction, Bliss style boxes offer a wide range of variations in both construction and materials. For example, the end panels may or may not include upper flaps for closing the top of the box. The body matt may include two large flaps (one on either side) to form the top of the box so that these flaps either meet or overlap; or, there may be only one large top flap (with or without a tuck-in lip) provided to form the top of the Bliss box. Top flaps from the side panels may or may not be provided, or some other suitable combination of large or small flaps from the side panels and body matt may be employed.
Similarly, the corner-area overlaps provided by the side panels may vary widely depending upon the degree of strength required. In some Bliss box variations, flaps are provided along the sides of the body matt so that, when the body matt is folded over itself, these flaps create a frame on either end to which the side panels may be attached (on the inside of the body matt). This way, instead of side-panel flaps overlapping the outside of the body matt corners for attachment and strength, body matt flaps in these corners overlap the side panels. Such frames may be made with panels along both sides as well as the bottom end of the body matt. In many cases, the side panels and the body matt may be made of different paperboard materials (e.g., corrugated body matt and linerboard side panels). The overlapping areas of Bliss boxes are generally glued together, but may also be adhered using staples, rivets, or other similar attachment devices.
The process of manufacturing Bliss boxes first requires the creation of the three pieces of the box. The size and shape of the final box is determined by the dimensions of these pieces which are, in turn, determined by the ultimate product to be placed therein. Once these dimensions are determined, the appropriate method and amount of top flap overlap is determined, as well as the manner and amount of attachment of the side panels to the body matt.
Special Bliss box forming machines have been developed over the years to assemble these three paperboard pieces into the completed Bliss box. Different styles of such container-forming machines have been in existence for many years; however, such machines are generally limited to forming only the most basic of the many possible variations of Bliss boxes.
The need has now arisen for a container in which the main blank has flaps, extending from the side panels, for folding and completing the ends of a box. In contrast to conventional Bliss boxes where end panels are used to attach to and wrap around edges of the side panels, side support parts are provided inside the formed body matt such that the side panel flaps overlap the side support parts. The side support parts provide increased structural integrity as opposed to that offered by end panels, while at the same time eliminating the possibility that the end panels will detach from the side panels resulting to carton failure. Further structural stability can be provided by bottom flaps, extending from the bottom panel, for folding over the side flaps.
Unfortunately, conventional forming machines are incapable of forming such a special reinforced container, in part because of the order in which the various portions of the box are formed; mainly, the bottom flaps are folded over the side flaps which are folded over the support parts.
Therefore, there is a need for systems, apparatuses, and methods that can form a Bliss style container having side flaps extending from side panels, bottom flaps extending from a bottom panel, and side support parts.
Embodiments of the present invention provide apparatuses, systems and methods for forming a container. In general, one or more retractable folding members can be configured to fold side flaps of the main part of the container over the support part so as not to interfere with yet unfolded bottom flaps as the container is moving on a mandrel.
In some embodiments of the present invention, a system for forming a container can include a mandrel movable between a hopper for supplying a support blank of the container to be formed and a compression plate, a feeder located between the hopper and the compression plate for supplying a main blank of the container to be formed, the main blank comprising side panels and a bottom panel, and a folding assembly located between the feeder and the compression plate. The system may form the support blank on the mandrel before the side panels and bottom panel of the main blank are bent against the formed support blank. The folding assembly may bending side flaps of the side panels against the support blank before a bottom flap of the bottom panel is folded over the side flaps.
In some embodiments of the present invention, a system for forming a Bliss-type container can include: a) a mandrel movably mounted on a path and capable of oscillating motion between a beginning and an end of the path; b) a hopper at a first location along the path for providing a support blank of the container at a first side of the mandrel; c) a feeder at a second location along the path between the first location and the end for providing a main blank of the container at a forward end of the mandrel; and d) a folding assembly at a third location along the path between the second location and the end for bending a first side flap of the main blank and a second side flap of the main blank against the support blank.
In some embodiments, the folding assembly can be configured to hold the side flaps against the support blank while a bottom flap of the main blank is folded over the side flaps. In some embodiments, the system can further include a side compression plate at a fourth location along the path between the third location and the end for applying a compressing force to the bottom flap, the side flaps, and the support blank. In some embodiments, the side compression plate can be configured to fold the bottom flap over the side flaps.
In some embodiments, the folding assembly can include at least two folding elements with extended positions for contacting the side flaps after the forward end of the mandrel moves past the third location towards the end. In some embodiments, the folding assembly can further include one of the group consisting of a cylinder, a cable, a mechanical lever, a rotor, and combinations thereof in operable communication with the at least two folding elements and adapted to extend and to retract the at least two folding elements. In some embodiments, the folding assembly can further include a frame defining an opening adapted to receive the mandrel and wherein the folding elements are mounted on the frame. In some embodiments, the folding elements can be configured to retract from the extended positions when the forward end of the mandrel is near the end of the path.
In some embodiments of the present invention, a system can form a container from (i) a main blank having two side panels each having a pair of side flaps, and a bottom panel having a pair of bottom flaps, and (ii) a pair of side support blanks. In some embodiments, the system can include: a) a mandrel movably mounted on a path and capable of oscillating motion between a beginning and an end of the path, the mandrel having a front side, a pair of first opposing sides, and a pair of second opposing sides, wherein the first opposing sides are generally perpendicular to the second opposing sides; b) a pair of hoppers at a first location along the path configured to provide the side support blanks on the first opposing sides of the mandrel; c) at least one plow at a second location along the path between the first location and the end for bending the side support blanks against the second opposing sides of the mandrel; d) a feeder at a third location along the path between the second location configured to provide the main blank at the front side of the mandrel; e) plows at a fourth location along the path between the third location and the end for bending the side panels against the second opposing sides of the mandrel; f) a folding assembly at a fifth location along the path between the fourth location and the end for to bending the side flaps against the side support blanks; and g) a pair of compression plates at a sixth location along the path between the fifth location and the end for applying a compressing force to the side bottom flaps, the side flaps, and the side support blanks.
In some embodiments, the folding assembly can include a plurality of folding elements, each of the folding elements configured to extend from retracted positions after the forward end of the mandrel moves past the fifth location towards the end. In some embodiments, one of the group consisting of the compression plates, a plurality of plows at a seventh location between the fifth and the sixth location, and combinations thereof can be configured to fold the bottom flaps over the side flaps, wherein the bottom flaps have a folding direction generally perpendicular to a folding direction of the side flaps. In some embodiments, the folding elements can be configured to retract from the extended positions after the forward end of the mandrel moves past one of the sixth location or the seventh location. In some embodiments, the folding elements can include an extendable finger in operable communication with one of the group consisting of a cylinder, a cable, a mechanical lever, and combinations thereof.
In some embodiments of the present invention, an apparatus can bend a side flap of a main part of a container against a side support part of the container. In some embodiments, the apparatus can include a folding member on a frame having an opening for receiving a mandrel, the folding member having a portion movable in a direction generally orthogonal to a direction of movement of the mandrel, wherein the movable portion of the folding member is configured to bend the side flap between about 30 degrees and about 90 degrees towards the side support part.
In some embodiments, the folding member can include an extendable finger in operable communication with one of the group consisting of a cylinder, a cable, a mechanical lever, and combinations thereof. In some embodiments, the folding member can include an arm rotatable about an axis generally parallel to the direction of movement of the mandrel.
In some embodiments, the main part can further include a bottom flap, and the apparatus can further include a plate for bending the bottom flap between about 30 degrees to about 90 degrees against the folded side flap. In some embodiments, the folding member can be configured to hold the side flap against the side support part until the bottom flap is folded over the side flap.
In some embodiments, the frame can be coupled to a feeder for providing the main part and a hopper providing the side support part. In some embodiments, the main part can further include a side panel, and the frame can further include a plurality of plows for bending the side panels. In some embodiments, the mandrel can have a side configured to receive the side support part and an end configured to receive the main part, and wherein the main mandrel is configured to push the main part against the plows and through the frame.
In some embodiments of the present invention, a container can be formed from (i) a main blank having at least two side panels with side flaps and a bottom panel, and (ii) support blank. In some embodiments, a method can include the steps of: a) moving a mandrel forward along a path inside a machine; b) engaging the support blank on a first side of the mandrel as the mandrel travels forward on the path; c) engaging the bottom panel on a front of the mandrel as the mandrel travels forward on the path such that an edge of the support blank is aligned against the bottom panel; d) bending the side panels against opposing sides of the mandrel with at least one plow as the mandrel travels forward on the path, wherein the opposing sides of the mandrel are generally perpendicular to the first side of the mandrel; and e) after the side panels are bent, bending the side flaps against the first side of the mandrel by a plurality of folding members having extended and retracted positions.
In some embodiments, the bottom panel can have a bottom flap, and the method can further include the steps of folding the bottom flap over the side flaps while the folding members have the extended positions. In some embodiments, the method can further include the step of applying a compressing force to the bottom flap, the side flaps, and the support blank by a compression plate. In some embodiments, the method can further include the step of retracting the folding members after the compression plate has applied the compression force. In some embodiments, the bottom flap can be folded over the side flap one of the group consisting of a front edge of the compression plate, at least one plow, and combinations thereof.
In some embodiments, the step of engaging the support blank on the first side of the mandrel can include the steps of placing the support blank on a the first side of the mandrel by a hopper and bending the support blank against at least one adjacent side of the mandrel. In some embodiments, the step of engaging the bottom panel on the front of the mandrel can include the steps of placing the bottom panel of the main blank in the path of the front of the mandrel by a feeder. In some embodiments, the step of bending the side flaps comprises the steps of extending the folding member to contact outside surfaces of the side flaps, further extending the folding members in a direction towards the support part, and holding the side flaps against the support part until a bottom flap of the bottom panel is folded over the side flaps. In some embodiments, the method can further include the step of retracting the folding members after the bottom flap is folded over the side flaps.
In some embodiments of the present invention, a container can be formed from (i) a main blank having at least two side panels with side flaps and a bottom panel with bottom flaps, and (ii) two support blanks. In some embodiments, a method can include the steps of: a) first, engaging the support blanks on first opposing sides of a mandrel movable along a path inside a machine by placing the support blanks on the opposite sides of the mandrel by a hopper and bending each of the support blanks against adjacent sides of the mandrel; b) then, engaging the bottom panel on a front of the mandrel by placing the bottom panel in the path of the mandrel moving in a forward direction by a feeder, wherein forward edges of the support blanks are aligned against an inside surface of the bottom panel; c) then, bending the side panels against second opposing sides of the mandrel with at least two plows as the mandrel travels forward on the path, wherein the second opposing sides of the mandrel are generally perpendicular to the first opposing sides of the mandrel; d) then, bending the side flaps against the first opposing sides of the mandrel by extending a plurality of retractable members to contact outside surfaces of the side flaps and further extending the retractable members in a direction towards the support parts; and e) then, while maintaining the retractable members in an extended position, folding the bottom flaps over the side flaps and compressing the bottom flaps, the side flaps, and the support parts.
In some embodiments of the present invention, a container can be formed from (i) a main blank having at least two side panels each having at least two side flaps and a bottom panel having at least two bottom flaps and (ii) at least two side support blanks having a main panel and at least two flaps. In some embodiments, the method can include the steps of: a) first, bending the flaps of the side support blanks at angles of between about 30 degrees to about 90 degrees; b) then, aligning edges of the side support blanks against an inside surface of the bottom panel of the main blank; c) then, bending the side panels of the main blank at angles of between about 30 degrees to about 90 degrees, wherein an inside surface of the side panels are flush against an outside surface of the flaps of the side support blanks; d) then, bending the side flaps of the main blank at angles of between about 30 degrees to about 90 degrees, wherein an inside surface of the side flaps are flush against an outside surface of the main panel of the side support blanks; e) then, bending the bottom flaps of the main blank at angels of between about 30 degrees to about 90 degrees, wherein an inside surface of the bottom flaps are flush against an outside surface of the side flaps of the main blank.
The present invention thus provides systems, apparatuses, and methods where a Bliss style container having a main part with side and bottom flaps can be constructed, wherein the side flaps may be folded over one or more support parts positioned inside the container, without impeding movement of the container on said mandrel caused by yet unfolded bottom flaps.
These and other objects, advantages, and features of the invention, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.
The invention, in its various aspects, will be explained in greater detail below. While the invention will be described in conjunction with several exemplary embodiments, the exemplary embodiments themselves do not limit the scope of the invention. Similarly, the exemplary embodiments as illustrated in the accompanying drawings, wherein like or similar reference characters designate like or corresponding parts throughout the several views and examples, do not limit the scope of the exemplary embodiments and/or of the invention. Rather the invention, as defined by the claims, may cover alternatives, modifications, and/or equivalents of the exemplary embodiments.
Referring to the drawings wherein like reference characters designate like or corresponding parts throughout the several views, and referring particularly to
In some examples, and without limitation, main blank 10 can have a bottom panel 110, a first side panel 120, a second side panel 130. In some examples, main blank 10 may also have a first top panel 140 and a second top panel 150. When formed, bottom panel 110, side panels 120 and 130, and top panels 140 and 150 correspond to the bottom, side, and top portions of the container, respectively. In some examples, and without limitation, the individual panels of main blank 10 may have a rectangular shape, however it is to be appreciated that other shapes are contemplated in accordance with some embodiments of the present invention. Further, while the individual panels of main blank 10 as illustrated in
In some embodiments, main blank 10 can further have flaps extending from one or more panels to form the ends of the container. In some examples, and without limitation, bottom panel 110 may have bottom flaps 113A and 113B on opposite ends. In some examples, and as illustrated by exemplary bottom flaps 113A and 113B, the flaps may comprise a single portion with a width about equal to a width of bottom panel 110. However, it is to be appreciated that the flaps of main blank 10 may comprise multiple portions and/or differing widths in accordance with some embodiments of the present invention.
For example, and without limitation, side panel 120 can have a flap formed of first portion 125A and second portion 123A on one end and first portion 125B and second portion 123B on an opposite end. Similarly, side panel 130 can have a flap formed of first portion 135A and second portion 133A on one end and first portion 135B and second portion 133B on an opposite end. As discussed more fully below, flaps having multiple portions may be used to form containers having non-right angled corners. And while the first and second flap portions of the example of
In some embodiments, the side support blank 20 can also include flaps extending from a main side support panel. For example, and without limitation, side support blank 20 can have a main panel 221, a first flap having a first portion 223A and a second portion 225A, and a second flap having a first portion 223B and a second portion 223B. As discussed more fully below, in some examples, and without limitation, a length of main panel 221 of side support blank 221 may be about equal to a width of the bottom panel 110 of main panel 10. It is to be appreciated that, while the exemplary side support blank 20 of
In some embodiments, one or more flaps of the main blank and/or side support blank may be bent by between 30 and 90 degrees. For example, and without limitation, flaps 125A and 125B may be bent 30 degrees with respect to side panel 120 and flaps 123A and 123B may be bent 60 degrees with respect to flaps 125A and 125B. In other examples, and without limitation, bottom flaps 113A and 113B may be bent 90 degrees with respect to bottom panel 110. In other examples, and without limitation, flaps 225A and 225B may be bent 45 degrees with respect to main side support panel 221 and flaps 223A and 223B may be bent 45 degrees with respect to flaps 223A and 223B. It is to be appreciated that other angles of bends are contemplated in accordance with some embodiments of the present invention.
As illustrated in the exemplary illustrations of
In some examples, and without limitation, the container may be formed by positioning one or more side support blanks 20, 30 perpendicularly against main blank 10. In some examples, and without limitation, the side support panels can be positioned such that an edge of main panel 221 of side support blank 20 is provided at the intersection of bottom panel 110 and bottom flap 113A. In some examples, and without limitation, the side support of the carton may be formed by bending the flaps of side support blank 20 (including, for example, and without limitation, portions 223A, 223B, 225A, and 225B) into a “C” shape. In some examples, one or more panels of main blank 10 (including, for example, and without limitation, side panels 120 and 130 and top panels 140 and 150) may be bent in a “C” shape around the formed side support. As such, it can be appreciated that the geometry and configuration of the side support blanks 20, 30 are to be selected such that, once formed, they may be tightly disposed between opposing side panels 120 and 130 of main blank 10.
In some examples, and without limitation, after side supports 20, 30 are formed and disposed within the partially bent main blank 10, side flap portions 123A and 125A of side panel 120 and side flap portions 133A and 135A of side panel 130 may be folded over main panel 221 of side support blank 20. Similarly, side flap portions 123B and 125B of side panel 120 and side flap portions 133B and 135B of side panel 130 may be folded over support blank 30.
In some embodiments of the present invention, and as discussed more fully below, and without limitation, the side flaps of the main blank 10 may be folded over, and held against, the formed side supports by folding members 311A, 311B, 311C, and 311D until bottom flaps 113A and 113B can be folded over the side flaps. Once folded, the bottom flaps and the side flaps of the main part can be compressed against the formed side support part to produce the formed container.
Referring now to the exemplary illustrations of
In some embodiments, mandrel 510 can be configured with cyclical or oscillating movement between a beginning and a end of a path. In some examples, and without limitation, mandrel 510 can be attached to one end of a movable lever by means of pivotally attached rod. The opposite end of the lever can be pivotally attached through a set of linkages to a pivot. The cam can cause the linkages to impart a back and forth motion to the lever as it rotates around the pivot. It can be appreciated that in such examples, the rod can pull the mandrel back and forth along a track. It is within the abilities of those in the art to implement other means for imparting oscillating motion to the mandrel in accordance with some embodiments of the present invention.
In some embodiments, devices can include one or more hoppers 530 for providing side support blanks 20, 30 of the container to be formed on sides 513, 514 of mandrel 510. In some examples, and without limitation, the hoppers may include generally L-shaped flanges of varying lengths in order to hold large or small quantities of side support blanks. In some examples, and without limitation, hoppers 530 can be configured with a position such that in operation, main panel 221 of side support part 20 can be aligned with side 514 of mandrel. In some embodiments, the flaps of side support blank 20 may be bent around one or more adjacent sides of the mandrel by one or more plows. For example, and without limitation, plow 540 may be provided between hoppers 530 and feeder 520 for bending a top flap of side support blank 30 around side 517. A second plow (not shown) may be provided for bending a bottom flap of side support blank 30. As such, it can be appreciated that by providing two plows, a support blank such as support blank 20 can be formed into a “C” shape wherein main portion 221 is adjacent to side 514 of mandrel 510, the top flap (which may include flaps 223A, 225A) is adjacent to side 517 of mandrel 510, and bottom flap (which may include flaps 223B, 225B) is adjacent to side 518 of mandrel 510.
In some embodiments, devices can include feeder 520, in a forward location from hoppers 530, for providing the main blank 10 of the container to be formed on the forward side 511 of mandrel 510. In some examples, and without limitation, feeder 520 can be configured with a position such that in operation, bottom panel 110 of main blank 10 is aligned with the forward side 511 of mandrel 510. In some embodiments, additional plows may be provided for bending side panels 120 and 130 of main blank 10 around adjacent sides of the mandrel. For example, and without limitation, plow 550C (shown in
It is to be appreciated that the interaction between, and operation of, mandrel 510, feeder 520, hoppers 530, plows 540, and 550A-D is sufficient to (i) form support blanks 20, 30 around the mandrel, (ii) align forward edges of the formed support parts against bottom panel 110 of main blank 10, and (iii) partially form side panels 120, 130 of main blank 10 around the formed support parts. It is within the abilities of those in the art to implement devices having other types and configurations of hoppers, feeders, and plows in accordance with some embodiments of the present invention.
In advantageous embodiments, devices may further include one or more folding assemblies, members, plows, and/or plates for bending and/or folding the side and/or bottom flaps of the main blank. As shown in the exemplary illustration of
Referring back to the exemplary illustrations of
In some embodiments, referring to the example of
In some examples, and without limitation, the fingers can be formed of nylon, plastic, or metal. In preferred embodiments, the fingers have a rounded distal portion (for example, and without limitation, a curved surface or a freely rotating wheel) for contacting the side flaps. In some embodiments, the fingers may be easily removable and replaceable in order to effectively fold and accommodate different sized containers to be formed.
In some other embodiments, referring to the example of
Referring back to
In some embodiments, the folding elements may be retracted from their extended positions after the side flaps are partially folded over the side support parts. In these examples, other means may be provided to finish folding the side panels over the side support part. For example, and without limitation, the folding elements may fold the side flaps about 45 degrees towards the side support parts and a plow or other bending structure may complete the fold. In some other embodiments, the folding elements may be retracted from their extended positions after the side flaps are fully folded over the side support parts (which in some examples, and without limitation, corresponds to about 90 degrees). In these examples, no other plow or bending structure may be necessary to complete the fold.
In some embodiments, the folding elements may be retracted immediately after folding the side flaps. In some other embodiments, the folding elements may remain in extended positions until the bottom flaps 113A, 113B are partially or fully folded over the side flaps. In some examples, and without limitation, the folding elements can remain in the extended position for holding the bent side flaps until the bottom flaps of the bottom panel can be fully or partially bent thereon. In some examples, and without limitation, the bottom flaps may be bent over the side portions by a plurality of plows (not shown).
In some embodiments, devices for forming a container may also include one or more compression plates for sealing the bottom flaps and the side flaps to the side support parts. In some examples, and without limitation, one or more surfaces of the side support part, the side flanges, and the bottom flanges may be sprayed with an adhesive. The squeezing action of the compression plates against the mandrel causes the adhesive to bond the ends of the container. As illustrated in the example of
Thus, the present invention provides apparatuses, systems, and methods for constructing a container having a main part with side and bottom flaps, wherein the side flaps may be folded over one or more side support parts positioned inside the container, without impeding movement of the container on said mandrel caused by yet unfolded bottom flaps. It is to be understood that variations, permutations, and modifications of the present invention may be made without departing from the scope thereof. As such, one or more features of some exemplary embodiments as described above may be practiced in conjunction with some other exemplary embodiments. It is also to be understood that the present invention is not to be limited by the specific embodiments disclosed herein or as illustrated in the referenced drawings, but rather, is defined in accordance with the appended claims when read in light of the foregoing specification.
Number | Name | Date | Kind |
---|---|---|---|
1697709 | Bliss | Jan 1929 | A |
1974527 | Bliss | Sep 1934 | A |
3059753 | Lisinksi | Oct 1962 | A |
3186244 | Baker | Jun 1965 | A |
3196761 | Ullman | Jul 1965 | A |
3318205 | Lefief | May 1967 | A |
3456563 | Roesner et al. | Jul 1969 | A |
3465652 | Bell et al. | Sep 1969 | A |
3521536 | Waldbauer et al. | Jul 1970 | A |
3583295 | Elder et al. | Jun 1971 | A |
3590700 | Paxton | Jul 1971 | A |
3626819 | Hoyrup | Dec 1971 | A |
3635129 | Cobelo, Jr. | Jan 1972 | A |
3638537 | Cato | Feb 1972 | A |
3659505 | Wasyluka et al. | May 1972 | A |
3808959 | Perry | May 1974 | A |
3821875 | Paxton | Jul 1974 | A |
3858489 | Paxton | Jan 1975 | A |
3935798 | Paxton | Feb 1976 | A |
3941037 | Reichert | Mar 1976 | A |
3952635 | Mims | Apr 1976 | A |
4023471 | Royal | May 1977 | A |
4197789 | Moen | Apr 1980 | A |
4201118 | Calvert | May 1980 | A |
4273322 | Ginther, Sr. et al. | Jun 1981 | A |
4283188 | Wingerter et al. | Aug 1981 | A |
4285679 | Wahle | Aug 1981 | A |
4348853 | Morse et al. | Sep 1982 | A |
4398901 | Campbell | Aug 1983 | A |
4557472 | Hannon | Dec 1985 | A |
4581005 | Moen | Apr 1986 | A |
4596542 | Moen | Jun 1986 | A |
4601687 | Gallaher | Jul 1986 | A |
4798571 | Everman et al. | Jan 1989 | A |
4807428 | Boisseau | Feb 1989 | A |
4969861 | Crittenden | Nov 1990 | A |
4988331 | Boisseau | Jan 1991 | A |
5057066 | Nagahashi | Oct 1991 | A |
5104368 | Arbuthnot | Apr 1992 | A |
5156583 | Baas | Oct 1992 | A |
5312316 | Wu | May 1994 | A |
5419485 | Petriekis et al. | May 1995 | A |
5656006 | East et al. | Aug 1997 | A |
5656007 | Olson et al. | Aug 1997 | A |
5807223 | Holton | Sep 1998 | A |
5876319 | Holton | Mar 1999 | A |
6000525 | Frulio | Dec 1999 | A |
6309335 | Holton | Oct 2001 | B1 |
6357654 | Gardner et al. | Mar 2002 | B1 |
6520898 | Moen | Feb 2003 | B1 |
20020013204 | Plemons et al. | Jan 2002 | A1 |
20040056081 | Christensen et al. | Mar 2004 | A1 |
20080081754 | Plemons et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
2175878 | Dec 1996 | CA |
Number | Date | Country | |
---|---|---|---|
20110065559 A1 | Mar 2011 | US |